
RCSI: Scalable similarity search in thousand(s) of
genomes

Sebastian Wandelt, Johannes Starlinger, Marc Bux, and Ulf Leser
Humboldt­Universität zu Berlin, Wissensmanagement in der Bioinformatik,

Rudower Chaussee 25, 12489 Berlin, Germany
{wandelt, starling, bux, leser}@informatik.hu­berlin.de

ABSTRACT

Until recently, genomics has concentrated on comparing sequences

between species. However, due to the sharply falling cost of se-

quencing technology, studies of populations of individuals of the

same species are now feasible and promise advances in areas such

as personalized medicine and treatment of genetic diseases. A core

operation in such studies is read mapping, i.e., finding all parts of a

set of genomes which are within edit distance k to a given query se-

quence (k-approximate search). To achieve sufficient speed, current

algorithms solve this problem only for one to-be-searched genome

and compute only approximate solutions, i.e., they miss some k-

approximate occurrences.

We present RCSI, Referentially Compressed Search Index, which

scales to a thousand genomes and computes the exact answer. It

exploits the fact that genomes of different individuals of the same

species are highly similar by first compressing the to-be-searched

genomes with respect to a reference genome. Given a query, RCSI

then searches the reference and all genome-specific individual dif-

ferences. We propose efficient data structures for representing com-

pressed genomes and present algorithms for scalable compression

and similarity search. We evaluate our algorithms on a set of 1092

human genomes, which amount to approx. 3 TB of raw data. RCSI

compresses this set by a ratio of 450:1 (26:1 including the search in-

dex) and answers similarity queries on a mid-class server in 15 ms

on average even for comparably large error thresholds, thereby sig-

nificantly outperforming other methods. Furthermore, we present a

fast and adaptive heuristic for choosing the best reference sequence

for referential compression, a problem that was never studied be-

fore at this scale.

1. INTRODUCTION
Since the release of the first human genome [8], the cost for se-

quencing has rapidly decreased. As of now, the price is at approx.

2,000 USD per genome and is expected to fall further once third

generation sequencing techniques become available [40]. In con-

trast to previous years, where typically only one individual of a

species was sequenced (like humans, mice, E.coli etc.), the de-

crease in cost makes it possible to sequence large samples of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th ­ 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 13

Copyright 2013 VLDB Endowment 2150­8097/13/13... $ 10.00.

given population. Such studies, especially on humans, are inter-

esting from many perspectives, such as correlation of specific mu-

tations to the risk of developing a disease, to fine-tuned dosages of

therapies, or simply to better understand the relationship between

genotype and phenotype. For instance, the 1000 Genomes Project

sequenced 1,092 human genomes to better understand population

dynamics [2]; the International Cancer Sequencing Consortium is

currently sequencing 50.000 human genomes to study the genetic

basis of 25 types of cancer [9]; and the UK-10K project is sequenc-

ing 10.000 British individuals to better understand the impact of

rare genetic mutations1.

Studies at this scale use next generation sequencing (NGS) [40].

A property of NGS is that the sequences (reads) that are directly

measured by the device are shorter (length in total of 30-200 base

pairs) than with traditional Sanger sequencing, yet there are many

more (hundreds of millions). Due to the highly repetitive nature

of the human genomes, such short reads cannot be assembled to

individual genomes; instead, the position of each read within a

genome is typically determined by mapping the read against a sin-

gle reference genome [20]. This problem is called read mapping

or k-approximate search: Given a genome and a (short) read, find

all substrings in the genome with an edit distance below k to the

read, where typical values for k lie in the order of 1-2% of the read

length, i.e., in the range of 1-3. k-approximate search is differ-

ent from the classical bioinformatics problems of global alignment

(measuring the difference between two entire sequences) or local

alignment (finding maximally similar subsequences in the query

and the to-be-searched sequence) [19], but of utmost importance

when dealing with modern sequencing techniques [27]. A large

number of algorithms for solving this problem appeared in recent

years [26–28]. To scale to hundreds of millions of reads, all these

algorithms compute an index (typically q-grams or variations of

suffix trees) of the reference genome and perform several heuristic

pruning tricks during the search, thus trading accuracy for time [5].

An inherent problem of this approach is the dominance of the refer-

ence sequence: Variations of individuals are defined by comparison

to an arbitrarily chosen other individual. This is a severe constraint

without any biological justification [41]; it merely exists for pure

technical reasons, as no algorithm yet exists that can efficiently map

reads against large sets of genomes.

In this paper, we present the Referentially Compressed Search In-

dex (RCSI), which follows a radically different approach to the

k-approximate search problem and scales to a thousand genomes.

Given a set of to-be-searched genomes G, RCSI first selects a refer-

ence r ∈G. Next, it uses a referential compression algorithm [45] to

compress all genomes in G with respect to r. The intuition of a ref-

erential compression is to encode substrings of a to-be-compressed

1See http://www.uk10k.org/

1534

Sequence deviations extracted from referential compression

1000 human genomes (~3 TB)

Index for sequence deviations from

reference

(~105 GB)

Compression against reference

Reference sequence

plus index (~10 GB)

Searching for query q

1. Search for occurrences

 of q in the reference

 sequence

2. Search for occurrences

 of q in sequence

 deviations

Figure 1: Overview of our Referentially Compressed Search Index.

string as positional references into the reference. This compression

is lossless, can be computed quickly, and yields very high compres-

sion rates if applied to genomes of the same species; for instance,

two randomly selected human genomes are approx. 99% identi-

cal [38]. The resulting data structure is a space-efficient representa-

tion of all common subsequences in G and of all differences. RCSI

uses this data structure to solve the k-approximate search problem

for all genomes in G with a single search. Conceptually, RCSI

has to search in two data structures per indexed genome: those

parts that are identical to r and those parts that are different from r;

both parts may vary considerably between different genomes. We

show how each of these types of information can be represented

in a singleton data structure across all genomes by using a com-

pressed suffix tree for the commonalities and another compressed

suffix tree for the differences. Both data structures together allow

solving the read mapping problem against multiple genomes effi-

ciently and exactly. Our approach has the additional advantage that

the index grows only very slowly with more and more genomes,

i.e., RCSI scales very well with increasing data sets. The general

idea of RCSI is depicted in Figure 1.

We evaluate RCSI on a set of 1,092 genomes recently released from

the 1000 Genomes Project, a set that is more than 100 times larger

than the data used for evaluation of similar methods within the last

13 months [30, 49]. RCSI compresses these 3 TB of raw sequence

data down to a 115.7 GB (factor of 26:1) compressed search index.

Using this index, RCSI answers k-approximate queries over 1,092

chromosomes in 1-20 ms on a laptop, and over 1,092 complete

human genomes in 0.02-15.29 ms on a mid-sized server. Already

for much smaller datasets, RCSI outperforms its competitors by a

factor of at least 7.

RCSI always computes the exact answer to a given k-approximate

search, regardless of which genome was chosen as reference for

the compression. However, the achieved compression rates and the

performance of searching do vary with different references. There-

fore, we also study the problem of choosing the best reference for

compression, i.e., the genome for which the compressed index for

all genomes in G is the smallest. We present an efficient heuristic

for this problem using partial compressions. This heuristic shows

considerable improvement compared to a random selection strategy

and is almost as good as the perfect reference selection (computed

exhaustively on a sample), while being orders of magnitude faster.

Altogether, our paper makes the following contributions:

• We present a novel compression algorithm and highly tuned

data structure to efficiently create compact, yet lossless rep-

resentations of genomes with respect to a given sequence.

• We describe efficient algorithms operating on the compressed

search index for answering k-similarity queries.

• We, for the first time, study the problem of selecting the best

reference for referential compression and similarity search

among a set of genomes and present an efficient and effective

heuristic for solving this problem.

• We evaluate all algorithms on a set of 1092 genomes, a data

set that is highly realistic already today, yet far greater than

data sets used in previous studies.

The remainder of this paper is structured as follows: In the next

section we present related work. We introduce the problems of

similarity search and of referential compression in Section 3. Sec-

tion 4 describes our novel algorithm and data structure, RCSI, in

detail. Section 5 is devoted to the problem of finding the best ref-

erence. Our algorithms are evaluated in Section 6, and Section 7

concludes the paper.

2. RELATED WORK
Approximate search in strings (or sequences; we use both terms

synonymously) has a long tradition in computer science [34]. If the

to-be-searched string is large or many strings need to be searched,

index-based methods provide the best performance. Many index

structures have been proposed, such as suffix trees [15], suffix ar-

rays [31], n-gram indexes [43], or prefix trees [39]. Besides the

k-approximate search studied in this paper, other variations of the

problem have been studied intensively, such as approximate dictio-

nary matching [7], searching probabilistic strings [29], searching

with generalized distance functions [50] or searching with regu-

lar expressions instead of edit-distance constraints [23]. Similarity

search over strings is fundamentally important for bioinformatics

due to the fact that DNA and proteins can, for many applications,

be represented as long strings; in this area, local alignment search

is particularly important [3, 21]. The literature on string similarity

search in general is vast and cannot be summarized here; we refer

the reader to several excellent surveys [14, 32].

The k-approximate search problem is important in various appli-

cations, such as entity extraction [48] or pattern matching in time

series [17]. In recent years, its importance in bioinformatics has

grown tremendously because novel sequencing machines produce

1535

much shorter (yet many more) reads than the previous generation.

Those reads cannot be assembled themselves into genomes. In-

stead, researchers map them to a given reference genome, which

suffices to find mutations and variations and thus potential genetic

predispositions of certain phenotypes or genetic diseases. This led

to the development of a large number of algorithms for this so-

called read mapping problem (e.g. [26–28]), which mostly build on

n-gram hash indexes or on some variation of suffix trees or arrays.

All these algorithms utilize thresholds for the number of allowed

errors, and all perform some form of heuristic pruning to achieve

high speed by sacrificing accuracy [5]. Furthermore, all of them

map to a single reference, which is highly problematic from a bio-

logical point of view [41].

Our work uses a radically different approach. We first compress the

set of genomes to be searched with respect to a reference genome.

Next, we build an index over these compressed representations

which is searched at query time. The idea of using compression as

key idea to speed up string matching is not entirely new; recently,

a number of works on this topic appeared almost concurrently.

In [46], we describe an algorithm for exact search over a single

compressed genome; here, we improve on this work by studying

the much more important approximate case and by extending the

search to multiple genomes. [30] sketches a prototype implemen-

tation for executing the popular search algorithm BLAST on com-

pressed genomes; however, this method also gives-up on accuracy

for being faster. Its scalability is unknown, as tests were only re-

ported on small sets of small organisms (genomes less than 100 MB

in size). The short-read aligner GenomeMapper [41] maps mul-

tiple reads simultaneously to multiple genomes using hash-based

graph data structures for the reads and the genomes; thus, it actually

studies a more general problem than we do (we always map only

one read), but it cannot scale beyond a dozen genomes (Korbinian

Schneeberger, personal communication). The most similar work to

ours is GenomeCompress [49], though the proposed algorithm is

considerably different. First, Yang et al. compress genomes us-

ing an alignment technique, while we greedily search for longest

matches (see Section 3). Accordingly, the information encoded

in the compressed genomes is quite different, leading to different

search and indexing techniques. We will compare our method to

this work in more detail in Section 6.5.

To search a large set of genomes as we do, one could also use a

conventional method and build a separate index over each genome.

Besides being highly space demanding (the size of a suffix tree for a

sequence is 3-5 larger than the sequence itself [44], which implies

that such an index structure for 1000 genomes would require 9-

15 TB), searching these indexes in parallel for optimal performance

would require significant investments in hardware. In contrast, our

algorithm searches the same number of genomes in far less than a

second on a modestly strong desktop computer.

There are also other interesting works not explicitly using genome

compression. [15, 33] use specialized suffix trees for indexing col-

lections of highly repetitive sequences, thus implicitly performing

a sort-of compression by representing common parts only once.

Tests were performed on a data set of 500 MB only, and it re-

mains unclear if the space consumption of the suffix tree would

be manageable for a data set like ours (6,000 times larger). [24] de-

scribes a self-index on LZ77 compressions of highly repetitive col-

lections. The authors evaluate their approach on 37 DNA sequences

of S. Cerevisiae, which sum up to an uncompressed size of merely

440 MB. In [42], multiple alignments of individual genomes are

converted into a finite automaton and indexed with an extension

of Burrows-Wheeler transform. The method is evaluated on four

human chromosomes 18 (each one around 75 MB in size). Fi-

nally, [36] also uses reference sequences to speed up global or local

alignment of a query, but does not work with compression.

There is also some more theoretical work on searching over com-

pressed string representations. [16] studies the usage of grammars

and LZ77 parsing for compression of similar sequence collections

and improves complexity bounds with respect to space as well as

time. Complexity bounds on searching LZ77 are also studied in

[13]. Neither of these papers provide a practical system or experi-

mental evaluation.

3. FOUNDATIONS
In this section, we formally introduce the k-approximate search

problem over collections of large strings, and present the compres-

sion algorithm we use for RCSI.

3.1 k­approximate Search
In this work, a sequence s is a finite string2 over an alphabet Σ.

The length of a sequence s is denoted with |s| and the subsequence

starting at position i with length n is denoted with s(i,n). s(i) is an

abbreviation for s(i,1). All positions in a sequence are zero-based,

i.e., the first character is accessed by s(0). The concatenation of

two sequences s and t is denoted with s◦ t. A sequence t is a prefix

of a sequence s, if we have s = t ◦u, for a sequence u. A sequence

s is a subsequence of sequence t, if there exist two sequences u and

v (possibly of length 0), such that t = u◦ s◦ v.

DEFINITION 1. Given two sequences s and t, s is k-approximate

similar to t, denoted s ∼k t, if s can be transformed into t by at

most k edit operations. Edit operations are: replacing one sym-

bol in s, deleting one symbol from s, and adding one symbol to s.

Given a sequence s and a sequence q, the set of all k-approximate

matches in s with respect to q, denoted search(s)k
q, is defined as the

set search(s)k
q = {(i,s(i, j)) | s(i, j)∼k q}.

DEFINITION 2. A sequence database S is a set of sequences

{s1, ...,sn}. Given a query q and a parameter k, we define the set

of all k-approximate matches for q in S as

DBsearch(S)k
q = {(l,search(sl)

k
q) | sl ∈ S}.

EXAMPLE 1. It holds that ATCGG∼1 AT GG, because the sym-

bol C can be removed from ATCGG with one delete operation

to obtain AT GG. If S = {s1,s2,s3}, with s1 = ACACT G, s2 =
ACT GA, s3 = GGCTA, we have

DBsearch(S)1
CGA ={(1,{(1,CA)}),(2,{(1,CT GA),(2,T GA),

(3,GA)}),(3,{(2,CTA)})}.

3.2 Indexing
Since we have several sequences in the sequence database S =
{s1, ...,sn}, one can either build one index for each sequence or

one combined index. A simple way to compute a combined index

is to create an index on s1 ◦ ...◦ sn. However, in many projects only

genomes from one species are considered. These projects often

deal with hundreds of highly similar sequences. We illustrate this

scenario by an example.

EXAMPLE 2. Consider s1 =AAT GAGAGCGTAGTAGAA,s2 =
TAT GAGAGCGTAGTAGAG, and S = {s1,s2}. Assume that we

search all 1-approximate matches for CGC, i.e., we want to com-

pute DBsearch(S)1
CGC. It is easy to see that s1 ∼2 s2, since replac-

ing the first symbol of s1 with T and the last symbol with G does

the job. Computing DBsearch(S)1
CGC sequence by sequence would

imply that many substrings are checked twice.

2We use the terms strings and sequences interchangeably during
the rest of the paper.

1536

Similarity between sequences can be exploited for sequence com-

pression using so-called referential compression schemes [6], which

encode the differences of an input sequence with respect to a pre-

selected reference sequence. Using a space-efficient encoding of

differences and efficient algorithms for finding long stretches of

bases without differences, the best current referential compression

algorithm we are aware of reports compression rates of up to 500:1

for human genomes [12], which is much higher than the compres-

sion rates of non-referential schemes. Due to the quickly increas-

ing number of sequenced genomes, compression is considered a

key technology for genomic labs [37]. In this work, we show that

compression can also be used to speed up similarity search.

3.3 Referential Compression
We define a very general notion for encoding referential matches,

similar to [45].

DEFINITION 3. We define a referential match entry as a triple

rme = (start, length,mismatch), where start is a number indicat-

ing the start of a match within the reference, length denotes the

match length, and mismatch denotes a symbol. The length of a

referential match entry, denoted |rme|, is length+1.

Given a reference re f and a to-be-compressed sequence s, the idea

of referential compression is to find a small set of rme’s from s with

respect to re f that is sufficient to reconstruct s.

DEFINITION 4. Given two sequences s and re f , a referential

compression of s with respect to re f , denoted compress(s,re f), is

a list of referential match entries,

compress(s,re f) = [(start1, length1,mismatch1), ...,

(startn, lengthn,mismatchn)],

such that

(re f (start1, length1)◦mismatch1)◦ ...◦

(re f (startn, lengthn)◦mismatchn) = s.

Sometimes we also use rc instead of compress(s,re f), if s and

re f are known from the context or not relevant. The offset of

a referential match entry rmei in a referential compression rc =
[rme1, ...,rmen], denoted o f f set(rc,rmei), is defined as ∑ j<i |rme j|.
The inverse of a referential compression compress(s,re f) is de-

noted decompress(compress(s,re f),re f). Given a referential match

entry (start, length,mismatch), we write (start, length,mismatch)∈
compress(s,re f), if and only if (start, length,mismatch) is an ele-

ment in the referential compression compress(s,re f).
It is easy to see that decompress(compress(s,re f),re f) = s. The

offset of a referential match entry in a referential compression cor-

responds to the position of the entry in the uncompressed sequence.

The inverse of a referential compression is the decompression of a

referential compression with respect to the reference, such that we

obtain the original input sequence.

EXAMPLE 3. An example for the referential compression of the

sequence CGGACAAACT GACGT TCGACG with respect to the ref-

erence sequence GACGATCGACGACGGACAAACA is shown in Fig-

ure 2. The input is compressed into three referential match entries.

Figure 2: Example for one referential compression

The first referential match entry is (12,9,T), which describes a

match for the string CGGACAAACT at position 12 of the refer-

ence. The mismatch character is T (in the reference an A is found

instead of a T). The second referential match entry compresses

the string GACGT . A referential match entry for the string GACG

in the reference at position 10 is introduced, together with a mis-

match for symbol T . The last referential match entry compresses

the string TCGACG. Although the string can be completely found

in the reference, we only encode the first five symbols as a link to the

reference and add G as a mismatch symbol. The offset of referential

match entry (5,5,G) is |(12,9,T)|+ |(10,4,T)|= 15.

Clearly, we require the less rme’s, the longer the matches, i.e., the

shared subsequences, are. It does not matter at which position of

the reference these matches lie; in particular, matches need not be

in any particular order. We exploit this observation in Algorithm 1.

To create a referential compression of input sequence s with respect

to re f , the algorithm matches prefixes of s with substrings of re f

using a compressed suffix tree of re f . The longest such prefix is

removed from s, encoded as an rme and added to compress(s,re f).
The algorithm terminates once s contains no more symbols. Please

note that a referential compression of a sequence with respect to a

reference is not unique. A simple example for a non-unique ref-

erential compression with respect to the reference re f = ATA is

compress(AA,re f)= [(0,1,A)] and compress(AA,re f)= [(2,1,A)].
The referential compression algorithm is greedy and optimal as-

suming that the storage necessary for referential match entries is

uniform.

3.4 Referential Sequence Database Search
So far, we have considered only two sequences, an input and a

reference. In the following, we study the problem of searching

a database of sequences which are first referentially compressed

with respect to a reference. We call this the referential sequence

database search problem.

DEFINITION 5. Let S= {s1, ...,sn} be a sequence database and

re f be a reference sequence. A referential sequence database RS for

S and re f is a tuple 〈re f ,rcs〉, such that rcs = [rc1, ...,rcn] is a list

of referential compressions with 1 ≤ i ≤ n, rci = compress(si,re f).
Given a query q and a parameter k, we define RDBsearch(RS)k

q

as the set of all k-approximate matches for q in the decompressed

sequences of RS, i.e.,

RDBsearch(RS)k
q = {(l,search(decompress(rcl ,re f))k

q) | rcl ∈ rcs}.

By definition, we have DBsearch(S)k
q = RDBsearch(RS)k

q for ev-

ery sequence database S and each referential sequence database RS

for S. Solving the referential sequence database search problem

will immediately solve the corresponding sequence database search

problem.

4. SEARCHING REFERENTIALLY COM­

PRESSED SEQUENCES
The main contribution of our work is the transformation of the

problem of k-approximate searching in large, highly similar se-

quences into k-approximate searching in referentially compressed

sequences. We emphasize that it is not necessary to decompress

any compressed sequence during the online search phase.

EXAMPLE 4. Suppose we want to search the referentially com-

pressed sequence from previous Example 3 for occurrences of a

string T T GA with k = 1. The situation is depicted in Figure 3.

In this example, the query T T GA has four 1-approximate matches

in CGGACAAACT GACGT TCGACG: substrings CT GA and T GA

(both overlapping referential match entries 1 and 2) and substrings

1537

Algorithm 1 Referential Compression Algorithm

Input: to-be-compressed sequence s and reference sequence re f

Output: referential compression compress(s,re f) of s with respect to re f

1: Let compress(s,re f) be an empty list

2: while |s| 6= 0 do

3: Let pre be the longest prefix of s, such that (i, pre) ∈ search(re f)0
pre, for a number i

4: if s 6= pre then

5: Add (i, |pre|,s(|pre|)) to the end of compress(s,re f)
6: Remove the first |pre|+1 symbols from s

7: else

8: Add (i, |pre|−1,s(|pre|−1)) to the end of compress(s,re f)
9: Remove the prefix pre from s

10: end if

11: end while

Figure 3: Searching for 1-approximate matches of the string

T T GA in sequence CGGACAAACT GACGT TCGACG.

T TCGA and TCGA (both overlapping referential match entries 2

and 3).

Each match in a referential compression must be either 1) a match

inside the reference part of a referential match entry or 2) overlap-

ping at least one mismatch character.

PROPOSITION 1. Given a sequence s, a referential compres-

sion compress(s,re f) for s with respect to a reference re f , a query

q, and value k, then for each (p,m) ∈ search(s)k
q, there exists at

least one rme = (start, length,mismatch) ∈ compress(s,re f) such

that either

1. m is a subsequence of re f (start, length) or

2. p ≤ o f f set(compress(s,re f),rme) + length and p+ |m| ≥
o f f set(compress(s,re f),rme)+ length.

This proposition gives rise to an algorithm for solving k-approximate

string search problems over a single referentially compressed se-

quence (we extend this algorithm for multiple sequences below in

this paper):

1. Find all k-approximate matches inside the reference sequence

and map these matches to referential match entries in the

compressed sequence and

2. find all matches in subsequences overlapping at least one

mismatch character of any referential match entry in the ref-

erentially compressed sequence.

The first step can be performed by using an index structure on

the reference sequence. In our case, we can reuse the index for

the reference sequence, which was used to create the referentially

compressed sequences. The second step, finding all matches in

sequences overlapping mismatch characters, needs more thought.

First of all, the number of these overlapping sequences is equal to

the number of referential match entries, since we have to create one

such sequence for each mismatch character. The maximum length

of these overlap sequences depends on the actual query length and

error threshold k.

4.1 Searching in Referential Match Entries
In order to find all matches inside referential match entries (to be

more precise, inside the reference part of the referential match en-

tries), the reference sequence is searched first and then all matches

from the reference are post-filtered to identify all matches in refer-

ential match entries of the referentially compressed sequence.

The reference sequence is searched with the help of the index struc-

ture that was used to referentially compress the sequences. In our

case, we have used a compressed suffix tree for the reference se-

quence. Exact matches can be found with a compressed suffix tree

easily. For k > 0, we use the “seed-and-extend” paradigm, ex-

ploiting the fact that an alignment that allows at most k mismatches

must contain at least one exact match (”seed”) of a substring of

length
⌊

|q|
k+1

⌋

, where |q| is the length of the query [4]. The query

is broken up into k+ 1 parts and each part is searched exactly in

the compressed suffix tree. All matches for one of the query parts

are extended in order to identify full k-approximate matches. The

result of the seed-and-extend search, search(re f)k
q, is a set of n

matches of the form (posi,mi), such that each match is represented

with a matching position posi in the reference and the matching se-

quence mi. We define a projection operation, which transforms all

matches in the reference into matches in referential match entries.

DEFINITION 6. Given a referential compression rc with respect

to sequence re f and given search(re f)k
q, the set of projected matches,

denoted pro ject(search(re f)k
q,rc), is defined as

pro ject(search(re f)k
q,rc) = {

(p,m) | ∃i, pre f .((starti, lengthi,mismatchi) ∈ rc∧

(pre f ,m) ∈ search(re f)k
q ∧ (pre f ≥ starti)∧

(pre f + |m| ≤ starti + lengthi)∧

p = pre f − starti +o f f set(rc,(starti, lengthi,mismatchi)))}.

Depending on the number of referential match entries in the ref-

erential compression and the number of results in search(re f)k
q,

different strategies for computing pro ject(search(re f)k
q,rc) show

different performance. We have used an index structure for the start

positions of all referential match entries (using hash buckets), in or-

der to speed up the lookup of subsuming referential match entries

for a set of given matches in search(re f)k
q. Especially in case of

multiple queries, index structures over the referential match entries

can improve the time needed for computation of projected matches.

EXAMPLE 5. Let sequence s = GACTATAACAGGATAC and

re f = AACAGGACT T TATAC. One referential compression of s

with respect to re f is rc = [(5,4,A),(10,2,A),(2,5,T),(1,1,C)].
Now assume a query AC and k = 0. It follows that search(re f)0

AC =

1538

Figure 4: Extracting one overlap sequence for the referen-

tial match entries (12,9,T) and (10,4,T) of the referentially

compressed sequence of CGGACAAACT GACGT TCGACG with

QLmax = 4 and kmax = 2.

{(1,AC),(6,AC),(13,AC)}. As a result of the projection we obtain

pro ject(search(re f)0
AC,rc) = {(1,AC)}, because (6,AC) is con-

tained in the rme (5,4,A). For the other two matches in re f we

cannot find an rme.

4.2 Searching across Sequence Deviations
Finding all matches overlapping at least one mismatch character is

described next. In the example from Figure 3, the 1-approximate

match CT GA overlaps the first and the second referential match

entry. The length of these to-be-checked overlapping sequences

depends on the actual query length and k. In the worst case, for ex-

act string matching, the last (first) character of the query q matches

the mismatch character. At most |q| − 1 characters can be found

to the left (right) of the mismatch character. In the case of ap-

proximate search, in the worst case, k symbols might be inserted

in the sequence. Therefore, in addition k characters need to be

extracted from the left and the right of the mismatch character.

Assuming a maximum query length QLmax and a maximum edit

distance kmax, the overlap sequence is built by extracting the first

QLmax + kmax − 1 characters from the left of the mismatch char-

acter, concatenating the mismatch character, and concatenating the

next QLmax +kmax −1 characters to the right of the mismatch char-

acter.

DEFINITION 7. Given a referential compression rc for the se-

quence s, and a referential match entry rmei ∈ rc, with rmei =
(start, length,mismatch), the overlap sequence of rmei with re-

spect to rc, denoted ovl
re f
rc (rmei), is defined as

ovl
re f
rc (rmei) =(decompress(rc,re f))(o f f set(rc,rmei)+ length−

(QLmax + kmax −1),2∗ (QLmax + kmax −1)+1).

The set of overlap sequences for a referential compression rc with

respect to re f , denoted overlaps(re f ,rc), is defined as

overlaps(re f ,rc) ={(o f f set(rc,rme)+ length−

(QLmax + kmax −1),ovl
re f
rc (rme)) | rme ∈ rc}.

In fact, the referentially compressed sequence does not have to be

decompressed completely in order to compute ovlrc(rmei). It is

sufficient to partially decompress QLmax + kmax −1 symbols to the

left and to the right of the mismatch character in rmei.

EXAMPLE 6. An example for the extraction of an overlap se-

quence is shown in Figure 4. Given QLmax = 4 and kmax = 2, the

overlap sequence for the referential match entries (12,9,T) and

(10,4,T) is extracted, yielding CAAACT GACGT . The length of the

overlap sequence is (4+2−1)+1+(4+2−1) = 11 symbols. The

referential compression for CGGACAAACT GACGT TCGACG with

respect to the reference GACGATCGACGACGGACAAACA con-

tains three referential match entries. Therefore, two more overlap

sequences have to be extracted: T GACGT TCGAC (for the over-

Algorithm 2 Referential Search Algorithm

Input: Referential sequence database 〈re f ,rcs〉 with rcs =
[rc1, ...,rcn], query q, and k,

Output: Solution 〈re f ,rcs〉k
q

1: 〈re f ,rcs〉k
q = /0

// First step – search reference

2: re f matches = search(re f)k
q

3: for 1 ≤ i ≤ n do

4: Add (i, pro ject(re f matches,rci)) to 〈re f ,rcs〉k
q

5: end for

// Second step – search overlap sequences

6: for 1 ≤ i ≤ n do

7: for (pos, t) ∈ overlaps(re f ,rci) do

8: for (pos2,u) ∈ search(t)k
q do

9: Add entry (i,(pos+ pos2,u)) to 〈re f ,rcs〉k
q

10: end for

11: end for

12: end for

lap of entries number two and three) and TCGACG (for the final

referential match entry, which is only extended to the left).

In order to completely search the referentially compressed sequence

of CGGACAAACT GACGT TCGACG, the reference sequence needs

to be searched (following the seed-and-extend approach), and, in

addition, three shorter strings have to be searched, i.e., one for each

referential match entry. For the sake of simplicity, the length of

referential matches are chosen rather small in this example. In gen-

eral, the number of overlap sequences is equal to the number of

referential match entries in these sequences. However, in case of

collections of highly-similar DNA sequences, many extracted over-

lap sequences turn out to be identical, as most differences between

human genomes are rather short and there exist only three possible

deviations. This effect is the stronger for shorter maximum query

lengths, and it would be weaker if strings over a larger alphabet

were searched. We evaluate the number of non-identical overlaps

in Section 6.

4.3 Searching Referential Sequence Databases
The complete referential search algorithm is shown in Algorithm 2.

The algorithm solves a referential sequence database search prob-

lem 〈re f ,rcs〉k
q. In Line 2, all k-approximate matches inside the

reference sequence are computed. In our implementation we have

used compressed suffix trees (with seed-and-extend for k > 0). The

for-loop from Line 3 to Line 5 projects these matches from the ref-

erence sequence onto the referential match entries in the referen-

tial sequence database. The remaining part of the algorithm (Line

6-13) finds all matches in overlapping sequences. The first loop

iterates over all the referential compressions in the referential se-

quence database. The second inner loop (starting Line 7) iterates

over all overlapping sequences of the referential compression rci.

The innermost loop (starting Line 8) iterates over all k-approximate

matches inside the current chosen overlap sequence u and adds

these matches to the solution set. Note that adding elements to

〈re f ,rcs〉k
q might require care, in case a match for a sequence with

the same identifier exists already.

EXAMPLE 7. We want to search for 0-approximate occurrences

of q = AA (with fixed QLmax = 3 and kmax = 0) in sequences:

• s1 =CGGACAAACT GACGT TCGACG

• s2 =CGGACAAACAGACGT TCGACC

• s3 =CGGACAAACT GACGT TCGAA

1539

With re f = GACGATCGACGACGGACAAACA, we obtain the fol-

lowing three referential compressions:

• rc1 = [(12,9,T),(10,4,T),(5,5,G)]

• rc2 = [(12,9,A),(10,4,T),(5,5,C)]

• rc3 = [(12,9,T),(10,4,T),(5,4,A)]
We want to compute 〈re f , [rc1,rc2,rc3]〉

0
AA. During the first step of

the algorithm, we obtain

re f matches = search(re f)0
AA = {(17,AA),(18,AA)}.

Projecting these reference matches onto the referential compres-

sion rc1, we add (1,{(5,AA)}) and (1,({6,AA})) to the solution

〈re f , [rc1,rc2,rc3]〉
0
AA.

For rc2 and rc3 we add the results {(2,{(5,AA)}),(2,{(6,AA)})}
and {(3,{(5,AA)}),(3,{(6,AA)})}, respectively. In the second

step, all matches in overlapping sequences are added. The over-

lap sequences are:

overlaps(re f ,rc1) = {(7,ACT GA),(12,CGT TC),(18,ACG)}

overlaps(re f ,rc2) = {(7,ACAGA),(12,CGT TC),(18,ACC)}

overlaps(re f ,rc3) = {(7,ACT GA),(12,CGT TC),(17,GAA)}

The only overlap sequences with 0-approximate match for AA is

GAA for referential compression rc3. Therefore, the algorithm adds

the match (3,{(18,AA)}) to 〈re f , [rc1,rc2,rc3]〉
0
AA. The overall re-

sult of Algorithm 2 for the example is:

〈re f ,[rc1,rc2,rc3]〉
0
AA = {(1,{(5,AA),(6,AA)}),

(2,{(5,AA),(6,AA)}),(3,{(5,AA),(6,AA),(18,AA)})}

One interesting observation from the example is that the number

of unique overlap sequences can be smaller than the total num-

ber of referential match entries. In total, we have to check nine

overlap sequences: one for each referential match entry inside a

referentially compressed sequence. However, extracting the ac-

tual overlaps yields that we only have six unique overlaps, since

CGT TC occurs three times and ACT GA occurs twice. This obser-

vation is important when searching the overlaps for k-approximate

matches: instead of naively searching each overlap sequence, we

find (and remove) identical overlap sequences in a preprocessing

step. The preprocessing step is implemented using hash tables and

can greatly speed up the actual query answering time.

All unique overlap sequences are searched for matches using a very

simple approach: all overlaps are concatenated to a large string

(separated by kmax fresh symbols, not contained in the alphabet of

sequences). For instance, the overlaps AGT and AC are stored as

AGT ∗∗AC, if kmax = 2.

We use a compressed suffix tree to find matches in the concatenated

string in the same way as we search the reference sequence. Fol-

lowing the seed-and-extend approach, we can find all k-approximate

matches in all overlaps efficiently. Matches in the large concate-

nated string are being projected back to the single overlaps. The

idea is depicted in Figure 5. Although this approach is quite sim-

ple, it scales surprisingly well. Standard data structures for k-

approximately searching collections of strings [47] should improve

search times. Such an optimization is left for future work. Note

that we do not uncompress any overlaps during the search phase,

since we build the above compressed suffix tree over all overlaps.

5. BEST REFERENCE SELECTION
One open problem when searching compressed sequences is the

selection of a best reference sequence with respect to our refer-

ential compression algorithm. With increasing similarity between

reference and to-be-compressed sequence, longer referential match

List of overlaps:

A T G C A A T

C G A T A G A

A T G C A A T

A T T C G C C

…

A T G C A A T * * C G A T A G A * * A T T C G C C * * …

Concatenated overlap string for compressed suffix tree

Figure 5: Approximately searching overlaps.

Algorithm 3 Reference Selection RSbitX

Input: set of to-be-compressed sequences s1, ...,sn, set of can-

didate reference sequences re f1, ...,re fm, a base reference se-

quence re fbase, and a speedup value X

Output: index b for best reference

1: for 1 ≤ j ≤ n do

2: Split s j into 1000 blocks b1, ...,b1000 of equal length

3: Let sx j be the concatenation of each X-th block of

b1, ...,b1000

4: end for

5: for 1 ≤ i ≤ m do

6: Let vali = 0

7: for 1 ≤ j ≤ n do

8: vali = vali + |rsim(compress(sx j,re fbase),
compress(re fi,re fbase))|

9: end for

10: end for

11: Find the smallest valmin from val1, ...,valm and let b = min

entries can be found and the compression ratio is increasing. Thus,

choosing a proper reference will increase the compression ratio and

also reduce search times.

DEFINITION 8. Given a sequence s and a set of candidate ref-

erences {re f1, ...,re fm}, re fi is called an optimal reference iff there

does not exists a j 6= i with |compress(s,re f j)|< |compress(s,re fi)|.
A naive strategy to find an optimal reference sequence is to com-

press all the to-be-compressed sequences against all possible refer-

ence sequences and select the reference that yields the least number

of referential match entries, named RSbest. If sequences are long,

as in our case, this is a highly time consuming undertaking as we

need to compute m2 referential compressions, where m is the num-

ber of candidate reference sequences. If one wants to compress

1,000 sequences, choosing the best reference following this strat-

egy does not scale.

In the following, we describe a heuristic which scales well in the

number of candidates and, as shown in the evaluation section, in

many cases identifies near-optimal references. However, the prob-

lem of efficiently finding an optimal reference remains unsolved

and is an important topic for future work (see Section 7).

Instead of compressing a sequence against all candidate references,

we compare the referential compression of the sequence and the

referential compression of the reference candidates with respect to

one chosen base reference. We then select that reference whose

referential compression against this base references has the high-

est referential similarity to the referential compressions of all se-

quences to the base reference. The idea is that two referential com-

pressions are more similar if they share more referential match en-

tries.

1540

0.0625

2

64

1 3 5 7 9 11 13 15 17 19 21 X

S
iz

e
 i
n

 M
B

Chromosome

Original size BM compressed size

Gzip compressed size Referentially compressed size

Figure 6: Compressing human chromosomes against HG19.

Values are averaged over 1,092 genomes.

DEFINITION 9. The referential similarity of two referential com-

pressions rc1 and rc2, denoted rsim(rc1,rc2), is defined as

rsim(rc1,rc2) = |rc1 ∪ rc2|− |rc1 ∩ rc2|.

As a second optimization, we use only parts of the sequences to

select the best reference, building on the fact that the degree of

similarity between similar long sequences does not change signifi-

cantly between local stretches. The full algorithm, called RSbitX,

is shown in Algorithm 3. RSbit5 stands for compressing only 1
5

of each sequence. Note that RSbitX computes m+ n referential

compressions and n*m referential similarities.

6. EVALUATION
We evaluated our RCSI algorithm using different data sets, set-

tings, and computers. Most experiments were run without any par-

allelization on an Acer Aspire 5950G with 16 GB RAM and an

Intel Core i7-2670QM processor; the exception is Section 6.4, for

which we used a server with 1 TB RAM and 4 Intel Xeon E7-4870

(in total, hyperthreading enables the use of 80 virtual cores). Code

was implemented in C++, using the BOOST library, CST [35], and

libz.

6.1 Data and Queries
We tested our method on a set of 1,092 human genomes from the

1000 Genomes Project [2]. The data is originally provided in the

Variant Call Format (VCF) [10]3, which we converted into raw con-

sensus sequences for each chromosome of each genome. The total

dataset has 3.09 TB uncompressed, or 700 GB when compressed

with GZip. Note that in the following experiments we sometimes

search on sets of chromosomes and sometimes on the full set of

genomes.

We measured search times on different sets of sequences and differ-

ent edit distance thresholds. For those measurements, we created

a set of 50,000 queries of length 120-170 (equally distributed) for

each chromosome by (1) randomly extracting substrings and (2)

adding modifications: Bases were randomly replaced with a prob-

ability of 0.05 and single bases were added/removed with a proba-

bility of 0.01 percent, respectively. For scalability studies, we used

randomly chosen subsets of the input genomes of sizes 5, 10, 20,

40, 80, 160, 320, 640, and 1,092.

6.2 Compression
We first evaluate our compression scheme using as reference the

human genome HG19 [22], which is commonly used as a human

reference genome (note that the experiments described below used

a different – and better from a compression point of view – refer-

ence). The size of the uncompressed chromosomes of HG19 varies

between 50 MB (Chromosome 22) and 250 MB (Chromosome 1).

3ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/

0

5000

10000

15000

0

5000

10000

1 3 5 7 9 11 13 15 17 19 21 X

T
im

e
 i
n

 s

S
iz

e
 i
n

 M
B

Chromosome
Size of index (bar) Index creation time (line)

Figure 7: Size and creation time of RCSI per chromosome.

0.04

0.4

4

40

12 228 444 660 876 1092

A
v
g

 t
im

e
 i

n
 m

s

Number of chromosomes

k=0 k=1 k=2 k=3 k=4 k=5

Figure 8: Average query run times on different number of chro-

mosomes and using different error thresholds.

0
1
2
3
4
5

0.01 0.1 1 10 100 1000

k

Time in ms

Figure 9: Query search time against k.

We created a compressed suffix tree for each chromosome for per-

forming the compression of the 1,092 genomes. These suffix trees

are on average 1.72 times larger than the input sequences. The time

required for creating them grows linearly with the size of the in-

put and took 17-118 s (Chromosome 22, Chromosome 2), which

amounts to a throughput of approx. 2.4 MB/s. Compressing a com-

plete genome took approx. 30 s on average; compressing all 1,092

genomes took roughly eight hours.

Figure 6 shows the average sizes of all 1,092*23 compressed chro-

mosomes using different compression techniques. With bit manip-

ulation techniques (BM), i.e., encoding three symbols within one

byte, we obtain a ratio of 3:1. GZip achieves a ratio of 4:1 on av-

erage. In contrast, RCSI yields an average compression ratio of

436:1.

6.3 Searching 1092 Chromosomes
We compressed all 1092 genomes against the reference chosen by

RSbit5 (see Section 6.6) and created RCSI for QLmax = 200 and

kmax = 5. In total, this process took 54 hours (40 min for Chr22,

50 MB, and 3.2 hours for Chr2, 250 MB) on our test laptop. The

size of the entire search index is 115 GB (1.7 GB for Chr22 and

9.1 GB for Chr2); details are shown in Figure 7.

We next ran 50,000 chromosome-specific queries on each of the

chromosome-specific indexes (refer to Section 6.4 for searching all

1,092 genomes). Figure 8 studies the impact of the error thresh-

old and the number of genomes on search performance. For exact

string matching, average search time per query is between 0.06 ms

(for five sequences) and 0.25 ms (for 1,092 sequences). Runtimes

are fairly constant for the different chromosomes, i.e., the size of

1541

1

100

10000

1000000

0.1 1 10 100 1000

N
u

m
b

e
r
 o

f
re

s
u

lt
s

Time in ms

Figure 10: Query search time against number of results.

a chromosome only has a negligible effect on runtime (data not

shown). For k = 1, the average search time per query is still below

1 ms even for 1,092 chromosomes. Starting from k = 4, average

search runtimes increase recognizably. For k = 4 and 1,092 chro-

mosomes, we need 6 ms to search one query. For k = 5, search-

ing 1,092 sequences already takes 23.6 ms on average; however,

the median is only 4.6 ms. In total, searching 1,092 sequences

takes only 10 times more search time than searching five sequences,

showing that the use of compression gives our algorithm very good

scalability in the size of the data set.

We further analyze query runtimes in Figure 9. While the slow-

est exact query only takes around 1 ms, the slowest 5-approximate

query needs almost 1 s. However, for values of k < 5, almost all

queries (exactly 98.4%) can be answered in less than 10 ms; even

for k = 5, 85.5% of queries take less than 10 ms. The reason for this

deviation can be seen in Figure 10, where we break down search

times by result sizes. Due to the high number of repeats in the

human genome (up to 60% of the human genome consist of repeti-

tive elements [11]), some queries fall into regions that appear very

often throughout the genome (recall that queries were sampled at

random). These queries with 10,000 and more results require ex-

cessive runtimes, which explains the large deviation between mean

and median runtimes. Note however, that in biological applications

such regions are typically masked before performing searches as

results are uninformative for all but very few questions (see, for in-

stance, RepeatMasker). One way to solve the problem with large

result sets might be to introduce some kind of polynomial delay al-

gorithm [18], returning the most similar matches first, or those with

the fewest number of occurrences.

6.4 Searching 1,092 Genomes
So far, all our measurements were obtained by running chromosome-

specific queries on a commodity laptop. Clearly, the obtained speed

can be scaled up by using 23 cores (one for each chromosome) and

sufficient memory to load the entire index into memory. To show

the feasibility of this strategy, we performed an experiment on a

mid-size server with 1 TB RAM and 80 virtual cores. We cre-

ated a workload of 23,000 queries (from each chromosome, 1,000

queries were taken from the set described in the beginning of Sec-

tion 6), and searched each query against all 1,092 genomes in par-

allel, where each core searched one chromosome-specific index.

Average runtimes per query are shown in Figure 11. On average,

exact matching takes 0.02 ms, 1-approximate matching 0.09 ms,

and 5-approximate matching 15.29 ms. The difference between

these average runtimes and those reported in previous chapters are

due to the more powerful CPU of the server compared to our laptop.

6.5 Competitive Evaluation
We are aware of only one other tool that follows a similar approach

to RSCI: GenomeCompress. Other algorithms either create indexes

0.01

0.1

1

10

100

k=0 k=1 k=2 k=3 k=4 k=5

A
v
g

 t
im

e
 i

n
 m

s

Figure 11: Average query runtime (in ms)

that are much larger than the to-be-searched sequences and are thus

not applicable for the data sets we target [31, 35], or provide only

incomplete solutions and often solve slightly different problems.

Still, we find it instructive to compare against such tools as it shows

that, for the special setting of searching similar sequences, RSCI

scales as well or even better than these heuristics. Therefore, in the

following we compare RSCI against GenomeCompress, BLAST,

and Bowtie 2.

We compare our runtimes against a range of competitors, namely

BLAST, the standard search tool for local alignments, Bowtie 2, a

state-of-the-art read mapper, and GenomeCompress, an algorithm

following a similar approach as RCSI.

First, we illustrate the speed-up of RCSI compared to the popular

sequence search tool BLAST [3]. BLAST is capable of searching

high data volumes; for instance, it is used at the GenBank servers

where it runs on large clusters to serve thousands of queries per day

on the archive currently containing approx. 145 GB (which is 20

times smaller than our data set). Note that RCSI is not directly

comparable to BLAST, as RCSI exactly answers k-approximate

searches, while BLAST is a heuristic to find local alignments; still,

we believe that the differences in runtimes are interesting. We in-

dexed only HG19 [22] with BLAST, leading to an index of 4.9 GB.

BLAST queries (with default parameters) on this single genome

took 12 s on average, with extreme cases taking several minutes.

Experiments with one to eight Chromosome 1 showed that search

times grow linear with the number of chromosomes (63 ms for one

chromosome and 328 ms for eight chromosomes); the same holds

for database size (62 MB for one chromosome and 498 MB for

eight chromosomes). This is in stark contrast to the runtimes and

scalability behaviour of RCSI.

Next, we compared RCSI against Bowtie 2 [25], a state-of-the-art

tool for mapping long sequence reads (50-1000 bp) against a refer-

ence genome. In contrast to many other read mappers which only

cope with base substitutions, Bowtie 2 also allows small gaps in

matches and is thus in principle comparable to RCSI. However,

there are also important differences: (1) Bowtie 2 only reports

best matches, while RCSI computes all matches within the error

threshold; (2) Bowtie uses several heuristics to filter repetitive or

generally uninformative matches, while RCSI finds all matches;

1542

100

1000

10000

100000

0 200 400 600 800 1000

In
d

e
x

si
ze

(M
B

)

Number of sequences
IndexBased GenomeCompress RCSI

Figure 12: Index size (in MB).

300
900

1500
2100

0 200 400 600 800 1000

M
a

in

m
e

m
o

ry

u
sa

g
e

 (
M

B
)

Number of sequences
GenomeCompress RCSI

Figure 13: Main memory usage (in MB).

(3) Bowtie searches a single reference, while RCSI searches many

references implicitly in parallel. Indexing HG00096 with Bowtie

2 took around three hours and the index size is 3.9 GB. Query

times (with default parameters set) are very fast, with an average

time of 0.11 ms, which is about the time RCSI needs to answer

1-approximate queries when working in parallel (see Section 6.4).

We tried to generate a composite index for several human genomes

(by simply concatenating them), but failed to do so as Bowtie 2 can

handle only sequences up to around 3.6 GB. For larger sequences

the developers of Bowtie 2 propose to split up the input sequence

into smaller chunks and create single indexes for each chunk. For

1,092 human genomes, one would need to create more than 1,000

indexes, summing up to more than 3 TB of storage. Unless all these

indexes can be queried in parallel (on more than 1,000 cores), the

average query time will increase recognizably.

Finally, we compared RCSI to two other methods which solve ex-

actly the same problem. As a baseline, we simply built one com-

pressed suffix tree for each sequence and searched these one-after-

the-other (we call this method IndexBased in the following). Fur-

ther, we installed GenomeCompress [49], a very recent tool that

also builds on genome compression (see Section 2). GenomeCom-

press takes so-called delta files as input, i.e., files that describe the

difference to a reference. The tool transforms these files into a com-

pressed index over multiple sequences. As delta files represent sets

of edit operations, the algorithm to search the compressed index

is considerably more complex than ours which essentially searches

just strings - either from the reference or from an input sequence

or from both. Unfortunately, the code provided with GenomeCom-

press does not contain an algorithm to generate those delta files (X.

Yang, personal communication); however, since delta files are not

unique and the concrete representation has an impact on the com-

pressed index, we think that re-implementing this step could add

bias to the comparison. Therefore, we could compare Genome-

Compress to RCSI only on those sequences used in [49] (for those,

delta files are provided). This dataset consists of up to 1,000 se-

quences taken from the first 10 MB of a Chromosome 1, giving a

total size of only approx. 10 GB (uncompressed). Queries were

randomly generated as before.

Figure 12 shows the size of indexes for a growing numbers of se-

quences. The size of IndexBased grows linearly since one com-

pressed suffix tree is created for each sequence. For five sequences

the index size of GenomeCompress is roughly three times smaller

(275 MB) than for RCSI (736 MB), but with increasing number

of sequences, index sizes of GenomeCompress and RCSI become

very similar. For 1,000 sequences (of length 10 MBases), Genome-

Compress requires 1,550 MB and RCSI needs 1,650 MB. Besides

the footprint on disk, we also measured memory consumption of

RCSI and GenomeCompress for different number of sequences;

see Figure 13. Interestingly, the runtime memory footprint of RCSI

is larger than that of GenomeCompress for sets of up to 400 se-

quences, but grows only very slowly with more sequences. The

slope of GenomeCompress is much steeper. For 1,000 sequences,

the main memory usage already almost doubled (2,200 MB for

GenomeCompress, and 1,300 MB for RCSI). If the main memory

usage keeps on growing in this way then GenomeCompress will not

be able to manage an index for 1,000 complete genomes in 1 TB

of main memory. The indexing times for GenomeCompress are a

little bit higher than for RCSI: roughly a factor of five. Note RCSI

works directly on raw sequences, while GenomeCompress is run

on preprocessed input, produced by a process similar to global se-

quence alignment. The time for this preprocessing step of all input

sequences is not included in the indexing times for GenomeCom-

press, but will increase indexing times considerably.

Average search time for different numbers of sequences are com-

pared in Figure 14. Clearly, search times for IndexBased grow lin-

early with the number of sequences. Searching 1,000 sequences

with IndexBased takes 1 ms (for exact search) and 230 ms (for

3-approximate search; recall that here we only search 10 MB of

each Chromosome 1), respectively. GenomeCompress on average

needs 8.8 ms for exact search in 1,000 sequences while RCSI needs

only 0.07 ms. For 3-approximate search, RCSI is roughly 7 times

faster than GenomeCompress (5.3 ms vs. 35 ms) on the full set,

and the advantage seems to grow with more compressed and larger

sequences. The main memory storage required per sequence is

roughly constant for GenomeCompress (1.7 MB/sequence). There-

fore, doubling the number of sequences will yield double main

memory usage. For RCSI the necessary storage is decreasing with

an increasing size of the database (1.2 MB/sequence at 160 se-

quences, 0.27 MB/sequence at 1,000 sequences). This shows im-

proved scalability of RCSI over GenomCompress for the very small

dataset already. We conjecture that 1,092 complete genomes can-

not be kept within even 1 TB of main memory with the current

implementation of GenomeCompress.

Please note that in our experiments GenomeCompress did not find

all k-approximate matches because it cannot find matches shorter

than a given threshold when compression is enabled (X. Yang, per-

sonal communication).

6.6 Best Reference Selection
We tested our methods for finding the best references using a set of

nine randomly chosen candidates: HG00236, HG01048, HG01360,

NA06994, NA18946, NA19028, NA19445, NA20508, and HG19.

Testing against all genomes would require an estimated time of

7,500 hours; however, since the range of obtained compression

rates remains fairly robust (exhaustive evaluation of all 1,092 ref-

erence candidates for Chromosome 22; data not shown), we be-

lieve that using a randomly selected subset is sufficient to show the

achievable improvements. Compression sizes for the best, worst,

and average reference are shown in Figure 15. In total, storing

all genomes compressed with respect to the best reference requires

7.1 GB, while storing them with respect to the worst reference

needs 8.8 GB (difference approx. 20%). Note that we always chose

the optimal reference for each chromosome separately, i.e., the

complete reference is composed of chromosomes from different

individuals. Compressing all genomes with respect to all nine ref-

erences took 67 hours.

We compared the space consumption and compression time for RS-

bit1 and RSbit5 (i.e. RSbitX with X=1 and X=5, see Section 5),

1543

0.001

0.1

10

0 200 400 600 800 1000 A
v
g

 s
e

a
rc

h
 t

im
e

(m
s)

Number of sequences

IndexBased GenomeCompress RCSI

(a) Exact search.

0.1

10

1000

0 200 400 600 800 1000 A
v
g

 s
e

a
rc

h
 t

im
e

(m
s)

Number of sequences
IndexBased GenomeCompress RCSI

(b) 3-approximate search.

Figure 14: Average search time (in ms) for up to 1,000 sequences of length 10 MB.

100

300

500

700

1 3 5 7 9 11 13 15 17 19 21 X

S
iz

e
 i
n

 M
B

Chromosome
Best reference Worst reference Average reference

Figure 15: Difference between optimal, average and worst com-

pression rate per chromosome, depending on reference.

1

1.05

1.1

1.15

1.2

1 3 5 7 9 11 13 15 17 19 21 X

P
e

rc
e

n
tu

a
l

st
o

ra
g

e

Chromosome
RSrand RSbit1 RSbit5

Figure 16: Space overhead by reference selection method com-

pared to best reference. Except for Chr16, RSbit1 and RSbit5

select references clearly better than RSrand.

the exhaustive strategy RSbest, and a random selection strategy

(RSrand) on our test set of nine genomes. Figure 16 shows the in-

crease in storage depending on the reference selection method with

baseline RSbest. RSrand leads to an average increase in storage of

7.6% compared to the optimal reference. RSbit1 performs signifi-

cantly better and leads to only 1.8% increase. RSbit5 even slightly

outperforms RSbit1 (1.7%). Only for Chromosome 16, RSbit1 and

RSbit5 choose a reference worse than RSrand. Our experiments

indicate that this is caused by the extremely high number of repeats

in Chromosome 16 [1].

7. CONCLUSIONS
We presented RCSI, a novel method for searching thousands of hu-

man genomes. RCSI first compresses all genomes with respect to

a reference. The resulting data structure, when encoded properly,

is much smaller than the raw data and can be searched efficiently,

thereby implicitly searching all genomes in parallel. Experiments

with 1,092 genomes show that runtimes on a commodity laptop are

in the range of 1-20 ms when searching a specific chromosome,

or roughly in the same range when searching entire genomes on a

mid-class server. We showed that RCSI considerably outperforms

close and less close competitors. We also studied the problem of

reference selection and presented heuristics that result in an addi-

tional 15% space reduction compared to a random selection.

Though this is not a dramatic space reduction, we believe that the

topic of reference selection deserves more research in the future.

First, the question of efficiently finding an optimal reference re-

mains open. Second, there is no need to choose the reference from

the set of sequences to be compressed (as we did); instead, any

other or also an artificial sequence could be used. Accordingly,

another open problem is that of efficiently creating an optimal ref-

erence for a set of to-be-compressed genomes.

8. REFERENCES
[1] An integrated map of genetic variation from 1,092 human

genomes. Nature, 491(7422):56–65, Oct. 2012.

[2] 1000 Genomes Project Consortium. A map of human

genome variation from population-scale sequencing. Nature,

467(7319):1061–1073, Oct. 2010.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.

Lipman. Basic local alignment search tool. Journal of

Molecular Biology, 215(3):403–410, Oct. 1990.

[4] R. A. Baeza-Yates and C. H. Perleberg. Fast and practical

approximate string matching. Information Processing

Letters, 59(1):21–27, 1996.

[5] S. Bao, R. Jiang, W. Kwan, B. Wang, X. Ma, and Y. Song.

Evaluation of next-generation sequencing software in

mapping and assembly. Journal of human genetics,

56(6):406–414, 2011.

[6] S. Christley, Y. Lu, C. Li, and X. Xie. Human genomes as

email attachments. Bioinformatics (Oxford, England),

25(2):274–275, Jan. 2009.

[7] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary

matching and indexing with errors and don’t cares. In

Proceedings of STOC, pages 91–100, New York, NY, USA,

2004. ACM.

[8] I. H. G. S. Consortium. Initial sequencing and analysis of the

human genome. Nature, 409(6822):860–921, February 2001.

[9] Consortium ICG. International network of cancer genome

projects. Nature, 464(7291):993–998, Apr. 2010.

[10] P. Danecek, A. Auton, G. Abecasis, and 1000 Genomes

Project Analysis Group. The variant call format and

VCFtools. Bioinformatics (Oxford, England),

27(15):2156–2158, Aug. 2011.

[11] A. P. J. de Koning, W. Gu, T. A. Castoe, M. A. Batzer, and

D. D. Pollock. Repetitive elements may comprise over

two-thirds of the human genome. PLoS Genetics,

7(12):e1002384, 12 2011.

[12] S. Deorowicz and S. Grabowski. Robust Relative

Compression of Genomes with Random Access.

Bioinformatics (Oxford, England), Sept. 2011.

[13] H. H. Do, J. Jansson, K. Sadakane, and W.-K. Sung. Fast

relative lempel-ziv self-index for similar sequences. In

Proceedings of FAW-AAIM 2012, Beijing, China, 2012.,

volume 7285 of LNCS, pages 291–302. Springer, 2012.

1544

[14] P. Ferragina. String algorithms and data structures. CoRR,

abs/0801.2378, 2008.

[15] J. Fischer, V. Mäkinen, and G. Navarro. An(other)

entropy-bounded compressed suffix tree. In Proceedings of

19th Annual Symposium on Combinatorial Pattern Matching

(CPM), LNCS 5029, pages 152–165, 2008.

[16] T. Gagie, P. Gawrychowski, J. Kärkkäinen, and Y. Nekrich.

A faster grammar-based self-index. In LATA’12, pages

240–251, Berlin, Heidelberg, 2012. Springer.

[17] X. Ge and P. Smyth. Deformable markov model templates

for time-series pattern matching. In Proceedings of SIGKDD,

pages 81–90, New York, NY, USA, 2000. ACM.

[18] L. A. Goldberg. Efficient algorithms for listing

combinatorial structures, volume 5, page 7. Cambridge

University Press, 2009.

[19] D. Gusfield. Algorithms on strings, trees, and sequences:

computer science and computational biology. Cambridge

University Press, New York, NY, USA, 1997.

[20] O. Harismendy, P. Ng, et al. Evaluation of next generation

sequencing platforms for population targeted sequencing

studies. Genome Biology, 10(3):R32+, 2009.

[21] W. J. Kent. BLAT-The BLAST-Like Alignment Tool.

Genome Research, 12(4):656–664, Apr. 2002.

[22] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H.

Pringle, A. M. Zahler, and D. Haussler. The human genome

browser at UCSC. Genome Research, 12(6):996–1006, 2002.

[23] Y. Kim, K.-G. Woo, H. Park, and K. Shim. Efficient

processing of substring match queries with inverted q-gram

indexes. In Proceedings of ICDE 2010,Long Beach,

California, USA, pages 721–732.

[24] S. Kreft and G. Navarro. On compressing and indexing

repetitive sequences. Theoretical Computer Science,

483:115–133, 2013.

[25] B. Langmead and S. L. Salzberg. Fast gapped-read alignment

with bowtie 2. Nat Meth, 9(4):357–359, Apr. 2012.

[26] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast

and memory-efficient alignment of short DNA sequences to

the human genome. Genome Biology, 10(3):R25–10, Mar.

2009.

[27] H. Li and R. Durbin. Fast and accurate short read alignment

with burrows-wheeler transform. Bioinformatics (Oxford,

England), 25(14):1754–1760, 2009.

[28] Y. Li, A. Terrell, and J. M. Patel. Wham: a high-throughput

sequence alignment method. In Proceedings of the ACM

SIGMOD International Conference on Management of Data,

Athens, Greece, June 12-16, pages 445–456. ACM, 2011.

[29] Z. Li and T. Ge. Online windowed subsequence matching

over probabilistic sequences. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of

Data, pages 277–288, New York, NY, USA, 2012. ACM.

[30] P.-R. Loh, M. Baym, and B. Berger. Compressive genomics.

Nature Biotechnology, 30(7):627–630, July 2012.

[31] U. Manber and E. W. Myers. Suffix arrays: A new method

for on-line string searches. SIAM J. Comput., 22(5):935–948,

1993.

[32] G. Navarro. A guided tour to approximate string matching.

ACM Computing Surveys, 33(1):31–88, 2001.

[33] G. Navarro. Indexing highly repetitive collections. In

Proceedings 23rd International Workshop on Combinatorial

Algorithms (IWOCA), LNCS 7643, pages 274–279, 2012.

[34] G. Navarro and M. Raffinot. Flexible pattern matching in

strings: practical on-line search algorithms for texts and

biological sequences. Cambridge University Press, New

York, NY, USA, 2002.

[35] E. Ohlebusch, J. Fischer, and S. Gog. Cst++. In SPIRE’10,

pages 322–333, 2010.

[36] P. Papapetrou, V. Athitsos, G. Kollios, and D. Gunopulos.

Reference-based alignment in large sequence databases.

Proceedings of the VLDB Endowment, 2(1):205–216, Aug.

2009.

[37] E. Pennisi. Will Computers Crash Genomics? Science,

331(6018):666–668, Feb. 2011.

[38] D. E. Reich, S. F. Schaffner, M. J. Daly, G. McVean, J. C.

Mullikin, J. M. Higgins, D. J. Richter, E. S. Lander, and

D. Altshuler. Human genome sequence variation and the

influence of gene history, mutation and recombination.

Nature Genetics, 32(1):135–142, Aug. 2002.

[39] A. Rheinländer, M. Knobloch, N. Hochmuth, and U. Leser.

Prefix tree indexing for similarity search and similarity joins

on genomic data. In Proceedings of the 22nd SSDBM, pages

519–536, Berlin, Heidelberg, 2010. Springer.

[40] E. E. Schadt, S. Turner, and A. Kasarskis. A window into

third-generation sequencing. Human molecular genetics,

19(R2):R227–R240, Oct. 2010.

[41] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann,

S. Gesing, O. Kohlbacher, and D. Weigel. Simultaneous

alignment of short reads against multiple genomes. Genome

biology, 10(9):R98+, Sept. 2009.

[42] J. Sirén, N. Välimäki, and V. Mäkinen. Indexing finite

language representation of population genotypes. In

Proceedings of the 11th international conference on

Algorithms in bioinformatics, WABI’11, pages 270–281,

Berlin, Heidelberg, 2011. Springer.

[43] E. Sutinen and J. Tarhio. On using q-gram locations in

approximate string matching. In Proceedings of the Third

Annual European Symposium on Algorithms, ESA ’95, pages

327–340, London, UK, 1995. Springer.

[44] N. Vaelimaeki, V. Maekinen, W. Gerlach, and K. Dixit.

Engineering a compressed suffix tree implementation. ACM

Journal of Experimental Algorithmics, 14, 2009.

[45] S. Wandelt and U. Leser. Adaptive efficient compression of

genomes. Algorithms for Molecular Biology, 7:30, 2012.

[46] S. Wandelt and U. Leser. String searching in referentially

compressed genomes. In Proceedings of the 4th Int. Conf. on

Knowledge Discovery and Information Retrieval, Barcelona,

Spain, 2012.

[47] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?:

an adaptive framework for similarity join and search. In

SIGMOD Conference, pages 85–96, 2012.

[48] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient

approximate entity extraction with edit distance constraints.

In Proceedings of the ACM SIGMOD International

Conference on Management of data, pages 759–770, New

York, NY, USA, 2009. ACM.

[49] X. Yang, B. Wang, C. Li, J. Wang, and X. Xie. Efficient

direct search on compressed genomic data. In Proceedings of

the IEEE International Conference on Data Engineering

(ICDE), Australia (to appear; preprint at

http://www.ics.uci.edu/ xhx/publications/genomecompress.pdf).

[50] H. Zhu, G. Kollios, and V. Athitsos. A generic framework for

efficient and effective subsequence retrieval. Proceedings

VLDB Endow., 5(11):1579–1590, July 2012.

1545

