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Abstract. The exponential growth of the web and the extended use of semantic 

web technologies has brought to the fore the need for quick understanding, flex-

ible exploration and selection of complex web documents and schemas. To this 

direction, ontology summarization aspires to produce an abridged version of the 

original ontology that highlights its most representative concepts. In this paper, 

we present RDF Digest, a novel platform that automatically produces summaries 

of RDF/S Knowledge Bases (KBs). A summary is a valid RDFS document/graph 

that includes the most representative concepts of the schema adapted to the cor-

responding instances. To construct this graph, our algorithm exploits the seman-

tics and the structure of the schema and the distribution of the corresponding 

data/instances. The performed preliminary evaluation demonstrates the benefits 

of our approach and the considerable advantages gained. 
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1 Introduction 

The vision of Semantic Web is the creation of a common framework that allows data 

to be shared and reused across application, enterprise, and community boundaries. On-

tologies are playing an important role in the development and deployment of the Se-

mantic Web since they model the structure of knowledge and try to organize infor-

mation for enhancing the understanding of the contextual meaning of data. Lately, on-

tologies have been used in database integration [1], obtaining promising results, for 

example in the fields of biomedicine and bioinformatics, but also as means for publish-

ing large volumes of interlinked data from which we can retrieve abundant knowledge. 

The Linked Open Data cloud for example contains more than 62 billion triples (as of 

January 2014). 

Given the explosive growth in both data size and schema complexity, data sources 

are becoming increasingly difficult to understand and use. They often have extremely 

complex schemas which are difficult to comprehend, limiting the exploration and the 

exploitation potential of the information they contain. Moreover, regarding ontology 

engineering, ontology understanding is a key element for further development and re-

use. For example, a user/ontology engineer, in order to formulate queries, has to exam-

ine carefully the entire schema in order to identify the interesting elements. Besides 



schema, the data contained in the different sources should also drive the identification 

of the relevant items. Currently, an efficient and effective way to understand the content 

of each source without examining all data is still a blind spot.   

As a result, there is now, more than ever, an increasing need to develop methods and 

tools in order to facilitate the understanding and exploration of various data sources. 

Approaches for ontology modularization [2] and partitioning [3] try to minimize and 

partition ontologies for better understanding but without preserving the important in-

formation. Other works focus on providing overviews on the aforementioned ontolo-

gies [5,6,7,8], [13] maintaining however the more important ontology elements. Such 

an overview can also be provided by means of an ontology summary. Ontology sum-

marization [7] is defined as the process of distilling knowledge from an ontology in 

order to produce an abridged version. While summaries are useful, creating a “good” 

summary is a non-trivial task. A summary should be concise, yet it needs to convey 

enough information to enable a decent understanding of the original schema. Moreover, 

the summarization should be coherent and provide an extensive coverage of the entire 

ontology (multiple subjects of the ontology). So far, although a reasonable number of 

research works tried to address the problem of summarization from different angles, a 

solution that simultaneously exploits the semantics provided by the schemas and the 

data instances is still missing. 

In this paper, we focus on RDF/S ontologies and demonstrate an efficient and effec-

tive method to automatically create high-quality summaries. A summary constitutes a 

“valid” sub-schema providing an overview of the original schema considering also the 

available data. Specifically the contributions of this paper are the following: 

 We present RDF Digest, a novel platform that automatically produces RDF schema 

summaries that highlight the most representative concepts of the schema adapted to 

the corresponding data instances. 

 In order to construct these summarized graphs our system exploits a) the semantics 

of the schema, b) the structure of the RDFS graph and c) the distribution of the 

corresponding data/instances in order to identify and select the most important and 

representative elements of the ontology. 

 To identify the most important nodes we define the notion of relevance based on the 

relative cardinality and the in/out degree centrality of a node. Moreover, to ensure 

that our summary selects the most representative nodes of the entire schema we use 

the notion of coverage. Those two notions are combined in an algorithm that finally 

produces a “valid” summary schema out of the original schema. 

 Finally, our experimental evaluation show the feasibility of our approach and the 

considerable advantages gained. 

To our knowledge, this is the first approach that, in the context of ontology, combines 

both schema and data instance information to produce a high-quality summary graph. 

The rest of the paper is organized as follows. Section 2 introduces the formal frame-

work of our solution and Section 3 describes the metrics used in our algorithms to de-

termine the nodes and paths to be included in the summary. Section 4 presents our 

algorithm and Section 5 describes the evaluation conducted. Section 6 presents related 

work and finally, Section 7 concludes the paper. 



2 Preliminaries 

Schema summarization aims to highlight the most representative concepts of a schema, 

preserving “important” information and reducing the size and the complexity of the 

schema [8]. Despite the significance of the problem there is still no universally accepted 

measurement on the importance of nodes in an RDF/S graph. In our approach, we try 

to elicit this information from a) the structure of the graph, b) the semantics of the 

schema and c) the distribution of the corresponding data. Our goal is to produce a sim-

ple and expressive graph that presents an overview of the schema and also provides an 

intuition about the corresponding stored data.  

Specifically, in this paper we focus on RDF/S KBs, as RDF/S is the de-facto standard 

for publishing and representing data on the web [9]. The representation of knowledge 

in RDF is based on triples of the form of (subject predicate object). RDF datasets have 

attached semantics through RDF Schemas [10]. RDF Schema is a vocabulary descrip-

tion language that includes a set of inference rules used to generate new, implicit triples 

from explicit ones. Note that in our case the inference is implemented only at the RDF 

schema level to avoid overloading the super-classes with instances. Each RDF schema 

S defines a finite set of class names C and property names P. Properties are defined 

using class names or literal types, so that, for each property p, the domain of property 

p, i.e. domain(p), is a class and the range of p, i.e. range(p), is either a class or a literal. 

The classes and the properties of a schema are uniquely identified by the names in N = 

C  P (possibly using namespace URIs for disambiguation). Moreover, we denote by 

H = (N, ), a hierarchy of class and property names. H is well-formed if   is a small-

est partial ordering such that: if p1, p2 ∊ P and p1   p2, then domain(p1) domain(p2) 

and range(p1)   range(p2). In this paper, we ignore unnamed resources, also called 

blank nodes. Moreover, for the representation of the RDF/S documents we will use a 

graph data model first introduced by Karvounarakis et. al [11]. Formally, we define an 

RDF schema graph as: 

Definition 1 (RDF schema graph): An RDF schema graph S is a labeled directed 

graph S = (V, E, λc, λp, H) depicting a collection of triples TS = (s, p, o) = URIs x URIs 

x URIs where: 

 V represents a set of nodes. 

 E represents a set of edges of the form e(vi, vj) with vi, vj ∊ V and direction from vi to 

vj.  Given that, e, vi, vj correspond to a property p, the domain(p) and the range(p), 

respectively. The label of e is λP(e) = p, where p ∊ P.  

 H is a well-formed hierarchy of a class and property names H = (N,  ) 

 λc: is a value function that assigns to each node v ∊ V  in S a class name (URI) from 

C. Such as λc(v) = c, c ∊ C. 

 λp: is a value function that assigns to each edge e ∊ E in S one property name from 

P. Such as λp(e) = p , p ∊ P. 

Moreover, we assume a function кP that characterizes the type of a property p among 

the standard RDF properties (e.g. “rdfs:subClassOf”, “rdfs:label”) and the user de-

fined properties. RDF schema provides also inference semantics, which is of two types, 



namely structural inference (provided mainly by the transitivity of subsumption rela-

tions) and type inference (provided by the typing system, e.g., if p is a property, the 

triple {p, type, property} can be inferred). The RDF schema, which contains all triples 

that are either explicit or can be inferred from explicit triples in an RDF graph S (using 

both types of inference), is called the closure of S and is denoted by Cl(S). An RDFS 

KB S is an RDF schema graph, which is closed with respect to type inference, i.e., it 

contains all the triples that can be inferred from S using type inference. We also assume 

that the RDF/S KBs are valid. The validity constraints that we consider concern type 

uniqueness, i.e., each resource has a unique type, the acyclicity of the subClassOf and 

subPropertyOf relations and that the subject and object of the instance of some property 

should be correctly classified under the domain and range of the property, respectively. 

The full list of the validity constraints we adopt is contained in [12]. Those constraints 

are enforced to enable unique and non-ambiguous detection of the summary. Next, we 

define an RDF instance graph. 

Definition 2 (RDF instance graph): An RDF instance graph I, is a labeled directed 

graph I = (N, R, τv, τc, τp), depicting a collection of triples TI = (s, p, o) = URIs x URIs x 

(URIs  Literals) where: 

 N is a finite set of nodes. 

 R is a finite set of directed edges between nodes, r(ni, nj) with ni, nj ∊ N and direction 

from ni to nj.   

 τv:  is a value function that assigns to each node n ∊ N in I a URI or a literal. 

  τp: is a value function that correlates edges of S to edges of I. (such that τp(r) = λp(e)). 

For each edge r in R going from a node ni to a node nj,  τp returns a property name p 

∊P, where values ni and  nj belongs to the interpretation of p: domain(p) = λc(vi) = 

τc(ni), range(p) = λc(vj) =  τc(nj)  

 τc: is a labeling  function that captures rdfs:type declarations, linking the RDF in-

stance graph I with the RDF schema graph S. The τc returns either the name of a class 

c ∊ C or the value of the container type (literal). Based on terms of RDFS, the n ∊ 
N is an instance of class λc(v) (or the n is type class λc(v)), where v ∊ V. 

Now, as an example, consider the CIDOC-CRM1 ontology part shown in Fig. 1 used 

to describe the process of information acquisition and the involved actors in cultural 

heritage. Although this is only a short example, we have 27 classes and many properties 

that need to be examined in order to understand the schema. In blue color, we can see 

the summarized graph as it is produced by our method. Obviously, it is easier to under-

stand schema content using only the summary graph since it contains the most im-

portant nodes out of the initial graph. 

3 Assessment Measures 

In this section, we present the properties that a sub-graph of our schema is required to 

have in order to be considered a high-quality summary. Specifically, we are interested 

in important schema nodes that can describe efficiently the whole schema and reflect  

                                                           
1 http://www.cidoc-crm.org/official_release_cidoc.html 



 
Fig. 1. Example of RDFS Knowledge Base and the corresponding summary graph (in blue) 

 

the distribution of the data instances at the same time. To capture these properties, we 

use the notions of relevance and coverage which are further analyzed below. Relevance 

is used for identifying the most important nodes and coverage is used for extracting 

nodes/paths, which cover the whole spectrum of the RDF/S document.  

3.1 Relevance 

Importance has a broad range of meanings and this has led to many different algorithms 

that try to identify it. Originating from the analysis of social graphs, in the domain of 

Semantic Web, algorithms adapting the well-known PageRank [4,5] have been pro-

posed to determine the importance of elements in an XML document. For RDF/S, other 

approaches use measures such as the degree centrality, the between-ness and the eigen-

vector centrality (weighted Page Rank and HITS) [7], adjusting them to the specific 

features of RDF/S or they try to adapt the degree centrality and the closeness [8] to 

calculate the relevance of a node.  

In our case, we believe that the importance of a node should describe how well a 

node could represent a part of a KB (its area) giving an intuition about its neighborhood. 

Intuitively, nodes with many connections in a schema graph will have a high im-

portance. However, since RDF/S KBs might contain huge amounts of data, the latter 

data should also be involved when trying to estimate a node’s importance.  

Consider for example the node “E37 Mark” and the node “E38 Image” in the 

schema graph of Fig. 1. The two nodes have the same number of connections and they 

are connected to the same node “E18 Physical Thing”. Now assume that the node “E38 

Image” has the double number of instances. Due to the same number of connections, 

the two nodes may be considered equal but essentially the “E38 Image” is more im-

portant for the specific RDF/S KB, due to the higher number of instances it contains. 

Obviously, the number of instances of the class - that a node corresponds to - is a val-

uable piece of information for identifying its importance. 



In our approach, initially, we determine how central/important a node is, judging 

from the instances it contains (relative cardinality). After that, we estimate the central-

ity of a node in the entire KB (in/out centrality), combining the relative cardinality with 

the number and type of the incoming and outgoing edges in the schema. Finally, the 

relevance of a schema node is defined by comparing its centrality with the centrality of 

its neighbors. 

Relative Cardinality. The cardinality of a schema node is the number of instances it 

contains in the current RDF/S KB. If there are many instances of a specific class, then 

that class is more likely to be more important than another with very few instances. 

Similarly, the cardinality of an edge between two nodes in a graph is the number of the 

corresponding instances of the nodes connected with that specific edge. Now we can 

formally define the relative cardinality of an edge. 

Definition 3 (Relative Cardinality of an edge). Let S = (V, E, λc, λp, H) be an RDF 

schema graph and I = (N, R, τv, τc, τp) the RDF instance graph of S. The relative cardi-

nality of an edge e(vi, vj) in S, where e ∊ E and vi, vj  ∊ V, i.e. the RC(e(vi, vj)), (remember 

that λp(e) = p) is the following: 

 In case of available instances: The number of specific instance connections r(ni, nj) 

∊ R, ni , nj  ∊ N, where τp(r) = λp(e), τc(ni) = λc(vi) and τc(nj) = λc(vj), divided by the 

total number of the connections (rk (ni, na), rt (nb, nj) ∊ R, where na, nb  ∊ N) of the 

instances of these two nodes vi, vj . A constant value a is added to this number. 

 In case of no available instances: A constant value a. 

 

  

  
     

 

 





































Rnnr

Rnnr
nnrnnr

nnr

vveRC

jim

jim

jbtaik

jim

ji

,,

,,
,,

,

,



  

(1) 

 

The constant value a has the value 1/#connections where #connections is the number 

of connections e(vi, vj) that exist in the schema. Our algorithm is flexible enough to 

focus on the available instances when they exist, and if they are not available, it only 

exploits the semantics and the structure of the schema. 

 

In/Out Centrality. In order to combine the notion of centrality in the schema and the 

distribution of the corresponding dataset, we define the in/out centrality, exploiting also 

the relative cardinality of nodes and edges. The in/out centrality is an adaptation of the 

degree centrality [7]. In an undirected graph, the degree centrality is defined as the 

number of links incident upon a node. In a directed graph however, as in our case, the 

degree centrality is distinguished to the in-degree centrality and the out-degree central-

ity. 

The in-centrality of a schema node v, i.e. Cin(v), is the sum of the weighted relative 

cardinalities of the incoming edges. The weights, that are used, are experimentally de-

fined and depend on the types of the properties as they are identified by the function кP. 



As already mentioned, there are two types of properties, the standard RDF types (for 

example “rdfs:subClassOf”, “rdfs:label”, “rdfs:comment”) and the user defined prop-

erties (for example the “P45 consists of”, “P128 carries” shown in Fig. 1). We would 

like to consider as more important the latter, whereas the former are not considered to 

be equally important. This is partly because the user-defined properties correlate clas-

ses, each exposing the connectivity of the entire schema, in contrast to the hierarchical 

RDF/S properties. 

Definition 4 (in(out)-centrality of a node). Let S be an RDF schema graph and m 

be the number of the incoming (outgoing) edges e(vi , v) (e(v , vi)) of a node v in S. The 

Cin(v) (Cout(v)) of v is the sum of the relative cardinality of the edges e(vi , v) (e(v , vi)), 

multiplied by a weight wp according to the type of edge. 

  
m

piin wvvRCvC
1

*),(
         


m

piout wvvRCvC
1

*),()(
 

(2) 

Relevance. The notion of centrality, as defined previously, is a measure that can give 

us an intuition about how central a schema node in an RDF/S KB is. However, its im-

portance should be determined considering also the centrality of the other nodes as well. 

Consider for example, the nodes “E60 Number” and “E56 Language” shown in Fig. 

1. They have the same number of incoming and outgoing edges and assume that they 

have the same number of instances as well. However the “E60 Number” is connected 

to more important elements compared to the “E56 Language”. For example, the node 

“E18 Physical Thing” is directly connected to the “E60 Number” and has many other 

connections and instances. Since the “E18 Physical Thing” is obviously a very im-

portant node, the “E60 Number” is a less appropriate node to represent this area in a 

summary. On the other hand, the “E56 Language” is more relevant than the “E60 

Number” to represent the specific part of the graph since its neighbors do not have such 

a high relevance.  

To achieve the aforementioned goal, the relevance of a node is affected by its sur-

rounding neighbors and more specifically by the number and the connections of its 

adjacent nodes. To be more precise, the formula estimates the (number of) connections 

of a node and this number is compared to the connections of its neighbors.  

Definition 5 (Relevance of a node). Let S be an RDF schema graph, npin be the 

number of incoming nodes vi connected to v with ea(vi, v), and the npout be the number 

of outgoing nodes vj connected to v with eb(v, vj). The relevance of v, i.e. Relevance(v), 

is the sum of in and out centrality of v multiplied by the corresponding number of nodes, 

divided by the sum of out-centrality of the incoming nodes vi and the in-centrality of 

the outgoing nodes vj. 
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Obviously, the relevance of a schema node in an RDF/S KB is determined by both 

its connectivity in the schema and the cardinality of the instances. Thus, the number of 

instances of a node is of vital importance in the assessment procedure. When the data 

distribution significantly changes, the focus of the entire data source is shifted as well, 

and as a result, the relevance of the nodes changes. In addition, the importance of each 



node is compared to the other nodes in the specific area/neighborhood in order to iden-

tify the most relevant nodes that can represent all the concepts of a graph.  

3.2 Coverage  

After having estimated the relevance of each node in the schema graph, it is now time 

to focus on the paths that exist in a schema graph. The idea behind this is that we are 

not interested in extracting isolated nodes, but most importantly we want to produce 

valid sub-schema graphs. So the chosen paths should be selected having in mind to 

collect the more relevant nodes by minimizing the overlaps.  

Definition 6 (Path vs⟶vi). A path from vs to vi, i.e. vs⟶vi, is the finite sequence of 

edges, which connect a sequence of nodes, starting from the node vs and ending in the 

node vi. 

As a consequence, the relative cardinality of a path is the sum of relative cardinalities 

of the individual edges. Moreover, the length of a path, i.e. dvs⟶vi, is the number of the 

edges that exist in that path. 

In our running example of Fig. 1, the nodes “E53 Place” and “E57 Material” are 

directly connected to the node “E18 Physical Thing” and have similar connectivity in 

the graph.  The node “E18 Physical Thing” has a high relevance in the graph and as a 

consequence a great probability to be included in the summary. However, although the 

“E18 Physical Thing” can be located only in one “E53 Place”, it might consist of many 

“E57 Material”. As a consequence, the relative cardinality of the path from the “E18 

Physical Thing” to the “E57 Material” (RC(e(“E18 Physical Thing”, “E57 Material”))) 

will be higher than the relative cardinality of the path form “E18 Physical Thing” to 

“E53 Place”. This means that the path from “E18 Physical Thing” to “E57 Material” 

is more representative to be included in the summary than the path from “E18 Physical 

Thing” to “E53 Place”. This is because the “E18 Physical Thing” already covers the 

“E53 Place” - a physical thing is located only in one place.  

In the above example, we dealt with paths of length one. However, the paths included 

in the summary should contain the most relevant schema nodes which represent the 

remaining nodes, achieving the digest of the entire content of the RDF/S KB. As a 

consequence, the main criteria to estimate the level of coverage of a specific path are: 

a) the relevance of each node contained in the path, b) its relevant instances in the da-

taset and c) the length of the path. As a result, similar to the approach of Yu et al. [5], 

we define the notion of coverage as follows: 

Definition 7 (Coverage of a path). Let S be an RDF schema graph and I be an 

instance of S. The coverage of a path vs⟶vi, i.e. the Coverage(vs⟶vi), is derived by 

the sum of the Relevance of the sequential nodes vj contained between the nodes vs and 

vi, multiplied by the relative cardinality of each edge e(vj-1, vj) contained in the path. 

The result is divided by the length of the path in order to penalize the longer paths. 
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The above formula assesses a path and provides a metric to identify the degree of 

the contained relevant nodes and how this path can represent (a part of) the original 



graph without overlapping issues. Our goal is to select the schema nodes that are more 

relevant while avoiding having nodes (or paths) in the summary which cover one an-

other. The highest the coverage of a path, the more relevant this path is considered in 

representing the original graph or part of it. 

4 Construction of RDF Summary 

Now that we have explained all formulas required in order to calculate the relevance 

and the coverage of the elements of an RDF/S KB, we can describe the algorithm for 

constructing the RDF schema summary, shown in Fig. 2. Below we explain in more 

detail each of the steps of the algorithm. 

In the beginning (lines 2-3) the relevance of each schema node is assessed. Specifi-

cally, a value is assigned to each node in the RDF graph according to the Relevance 

measure (calculated using the Def. 5). Having calculated the relevance of each node we 

would like to get the n most important ones to be further elaborated (line 4). Usually n 

is defined by the user. However, if it is left blank this function automatically retrieves 

a specific percentage of the nodes in the schema (usually 30%-40%). The schema nodes 

in TOP are the structural components to build the schema summary. However, these 

nodes might not be directly connected in the RDF schema. Since our goal is to create a 

valid summary schema, we should find the appropriate paths that connect the non-ad-

jacent nodes of the selected collection (lines 5-6). If all nodes are adjacent then the 

schema summary S is the connected subgraph containing these nodes produced using 

the construct_subgraph function. Usually however, the nodes included in the TOP set 

are not adjacent. Nevertheless, they should also be included in the produced summary. 

The goal is to find paths, which connect these nodes with the already connected ones 

(lines 7-11). However, we are not looking for random paths but the ones maximizing 

the coverage. In other words, we select the paths which contain the most relevant nodes 

according to the coverage measure as described in the previous section. Note that the 

selection of the nodes to complete the subgraph is done out of the initial RDF schema 

Algorithm 1: ComputeRDFSchemaSummary(B, n) 

Input: An RDF/S Knowledge Base B, n the number of the requested nodes 

Output: An RDF Schema Summary S 

 1. Let V be the set of nodes in B 

 2. for each node vi ∊ V 

 3.  ri := calculate_relevance(B, vi) 

 4. TOP := select_top_nodes(B, r, n) 

 5. ADJ := identify_adjacent_nodes(TOP)  

 6. S := construct_subgraph(ADJ) 

 7. if ADJ  < > TOP then 

 8. for each node vi ∊ TOP/ADJ 

 9.           ADJ := ADJ - vi 

10.         TOP:= TOP vi 

11.         S := S identify_path_with_max_coverage(B, S, vi) 

12. Return S 





Fig. 2. The algorithm for computing the RDF Schema Summary 



graph, since the summary should be coherent with the original schema. Moreover, in 

this selection, other nodes might be also included in the summary in order to connect 

the most important ones. 

When the algorithm finishes its execution, the selected sub-graph S, according to the 

previous steps, will be the RDF schema summary. In addition, the result of our algo-

rithm for a specific input is unique. If the data distribution changes, the summary is also 

changed in order to provide an updated view on the corresponding schema and the up-

dated data instances. 

5 Evaluation 

The algorithm described in this paper was implemented in the RDF Digest prototype. 

We developed the RDF Digest using JAVA and a beta version of the platform is cur-

rently available as a service online2. A user can upload the RDF/S document, he would 

like to be summarized and he is optionally able to define the expected length of the 

summary as well. When the input is submitted, the RDF/S document is preprocessed 

by computing the corresponding RDF/S KB. The result is stored in a Virtuoso Instance 

(http://virtuoso.openlinksw.com/) which enables efficient data access. Then, the algo-

rithm described in Section 4 runs and the results are presented to the user. 

To evaluate our system, we selected four ontologies: the BIOSPHERE ontology3, 

the Financial ontology4, the Aktors Portal ontology5 and the CIDOC-CRM6 ontology. 

BIOSPHERE (87 classes, 3 properties) models information in the domain of bio-infor-

matics, the Financial ontology (188 classes, 4 properties) incudes classes and properties 

in the financial domain and the Aktors Portal ontology (247 classes, 327 properties) 

describes an academic computer science community. Finally, the CIDOC-CRM (82 

classes, 539 properties) provides definitions and a formal structure for cultural heritage 

documentation. The first three ontologies have been previously used to evaluate rele-

vant works on RDF/S summarization, so we can compare our results with these works. 

More specifically our algorithms are compared to the algorithms proposed by Peroni et 

al. [13] and by Queiroz-Sousa et al. [8]. Peroni et al. automatically define the key con-

cepts in an ontology, combining cognitive principles, lexical and topological measure-

ments. Queiroz-Sousa et al. on the other hand propose an algorithm that produces an 

ontology summary in two manners: automatically using relevance measures and semi-

automatically, using the users’ opinion in addition. Moreover, we tried but could not 

get access to [7] to perform the same experiments. 

Note that in order to compare our results with the aforementioned works we used 

only the RDF schema graph of each ontology since the other approaches do not consider 

instances. To demonstrate a scenario where instances are available we evaluated our 

                                                           
2 http://www.ics.forth.gr/isl/rdf-digest 
3 http://www.aiai.ed.ac.uk/project/biosphere/downloads.html 
4 http://www.larflast.bas.bg/ontology 
5 http://www.daml.org/ontologies/322 
6 http://www.cidoc-crm.org/official_release_cidoc.html 



algorithms using CIDOC-CRM with instances as well. Those instances are real in-

stances retrieving from a real database. Thus, the evaluation is more objective rather 

than the creation of synthetic data which may not correspond to a real situation. To 

proceed with the evaluation of the first three ontologies, summaries were generated by 

eight human experts. These human experts had a good experience in ontology engi-

neering [13] and were familiar with the aforementioned ontologies. The experts were 

requested to select up to 20 concepts which were considered as the most representative 

of each ontology.  The generated reference summaries were also used by Queiroz-Sousa 

et al. [8] in their evaluation. The level of agreement among experts for the three ontol-

ogies had a mean value of 74% [13] meaning that the experts did not entirely agree on 

their selections. For CIDOC-CRM, the CIDOC Core7 ontology was proposed by ex-

perts as the core subset of the ontology aimed to represent the basic concepts of CIDOC-

CRM into a simple ontology of 29 classes. We used this subset as the reference sum-

mary of CIDOC-CRM. 

Metrics like precision, recall and F-measure, used by the previous works [8], [13], 

[14], [15], are limited in exhibiting the added value of a summarization system because 

of the “disagreement due to synonymy” [16] meaning that they fail to identify closeness 

with the ideal result when the results are not exactly the same with the reference ones. 

On the other hand, content based metrics compute the similarity between two summar-

ies in a more reliable way [7]. In the same spirit, Maedche et al. [17] argue that ontol-

ogies can be compared at two different levels: lexical and conceptual. At the lexical 

level, the classes and the properties of the ontology are compared lexicographically, 

whereas at the conceptual level the taxonomic structures and the relations in the ontol-

ogy are compared. To this direction, we use the following similarity metric Sim(S, A) 

in order to define the level of agreement between an automatically produced summary 

S and a reference summary A.  
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More precisely, K is set of classes contained in A, Kmatch ⊂ K, is the set of classes 

appearing also in S, Ksub ⊂ K - Kmatch  / Ksuper ⊂ K - Kmatch (where Ksub ∩ Ksuper = ø) is the 

set of classes having sub-classes / super-classes in K and depth is the distance between 

the ideal class and the class identified by the summary. Note that the above formalism 

assesses the existence of sub-classes and the super-classes of S in A with a different 

percentage. The idea behind that is that the super-classes, since they generalize their 

sub-classes, are assessed to have a higher weight than the sub-classes. Consequently, 

the effectiveness of a summarization system is calculated by the average number of the 

similarity values between the summaries produced by the system and the set of the 

corresponding experts’ summaries. In our case, each summary contains approximately 

the same number of classes according to the experts’ selections, 20 classes for the 

BIOSPHERE, the Financial, and the Aktros Portal ontologies, and 29 classes for the 
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CIDOC-CRM ontology. Our evaluation compares the similarity – as defined previ-

ously- between the summaries produced by our algorithm and the reference summaries 

used by the other works and the results are shown in Fig. 3. 

 As we can observe, the summaries generated by our system appear to be quite sim-

ilar to what experts have produced, in most of the cases showing better results than 

other similar systems. Specifically, the summary of the CIDOC-CRM ontology pre-

sents the highest similarity. On the other hand, the results of our system have a good 

similarity with the experts in the cases of the BIOSPHERE, the Financial, and the Ak-

tros Portal ontologies. We have to note that whereas the reference summaries on these 

three ontologies contain only isolated classes in the case of CIDOC-CRM the CIDOC 

Core contains an entire sub-ontology similar to the result we get from our system. This 

is also the reason for the better results that appear for CIDOC-CRM. Obviously, when 

instances are used the similarity of the result summary highly increases and in our case 

we reach a similarity level of 0.965 which demonstrates the added value of our ap-

proach. 

Moreover, our system seems to react better when it deals with dense schemas, which 

are confirmed also by the results shown in Fig. 3. As we can see in the image the Aktors 

Portal and the CIDOC-CRM ontologies have better results compared to the 

BIOSPHERE and the Financial ontologies which contain only hierarchical relation-

ships. However, this observation is to be further verified with more experiments. 

Furthermore, during our experiments, we observed that as the ontology size and as 

a consequence the complexity increases, the similarity of the summaries produced by 

the RDF Digest is improved. This is also depicted in Fig. 4 showing that the similarity 

increases as the number of properties and classes in the ontology increases as well. 

Finally, to test the efficiency of our system, we measured the average time to produce 

the summaries using the aforementioned ontologies. We have to note that the experi-

ments run on a 64 bit Windows 8.1 system with 4GB of main memory and a Core i5 

Intel CPU running at 1.6 GHz. The results are shown in Fig. 5. As we can observe, our 

algorithms produce the requested summary quite fast and require at most 33 sec. More-

over, it is obvious that the larger and the more complex the ontology, the more time it 

requires to calculate the corresponding RDF schema summary which is reasonable as 

Fig. 3. A comparative result of ontology summarization methods 



it has to calculate the relevance for more nodes and has to perform more path construc-

tions for calculating the coverage. 

6 Related Work 

As already stated, various techniques have been developed for the identification of sum-

maries over different types of schemas and data. The first works on schema summari-

zation focused on conceptual [18] and XML schemas [4,5]. Yu et al. [5] affirm that, 

while schema structure is of vital importance in summarization, data distribution often 

provides important knowledge that improves the summary quality. Another work [4] 

on XML Schemas derives a summary of the schema and then transforms the instances 

through summary functions. Other works focus on summarizing meta-data and large 

graphs. For example, Hasan [15] proposes a method to summarize the explanation of 

the related metadata over a set of Linked Data, based on user specified filtering criteria 

and producing rankings of explanation statements. One of the latest approaches that 

deals with graph summaries [19] examines only the structure of an undirected graph, 

neglecting any additional information (such as semantics). The goal of this work is to 

generate a summary graph that minimizes the loss of information out of the original 

graph. However, our system differs from the above in terms of both goals and tech-

niques. Although we reuse interesting ideas from these works, our approach is focused 

towards RDF/S KBs expressing richer semantics than conceptual schemas and XML.  

More closely related works to our data model and approach are [7], [13] and [8]. 

Zhang et al. [7] propose a method for ontology summarization based on the RDF Sen-

tence Graph. The notion of RDF Sentence is the basic unit for the summarization and 

corresponds to a combination of a set of RDF statements. The creation of a sentence 

graph is customized by the domain experts who provide as input the length of the sum-

mary and their navigation preferences to create the RDF Sentence graph. The im-

portance of each RDF sentence is assessed by determining its centrality in the graph. In 

addition, the authors compare five different centrality measures (degree, between-ness, 

PageRank, HITS), showing that weighted in-degree centrality and some eigenvector-

based centralities are better. However, in this approach, the coverage of the entire graph 

is not considered and many important nodes may be left out. 

 

Fig. 4.  The similarity as the number of 

properties increase (CIDOC-CRM) 

 

Fig. 5.  Execution times for producing the 

RDF Schema summary  



On the other hand, Peroni et al. [13] try to identify automatically the key concepts in 

an ontology, combining cognitive principles, lexical and topological measurements 

such as density and the coverage. The goal is to return a number of concepts that match 

as much as possible those produced by human experts. However, this work focuses only 

on hierarchical relationships ignoring the complexity of a graph. In the same direction, 

Queiroz-Sousa et al. [8] propose an algorithm which produces an ontology summary in 

two ways: automatically, using relevance measures and, semi-automatically, using ad-

ditionally the users’ opinion (user-defined parameters), producing a personalized on-

tology summary. However, this work ignores the coverage of the graph thus producing 

summaries which include nodes that are already represented by other nodes.  

Pires et al. [14], propose an automatic method to summarize ontologies that represent 

schemas of peers participating in a peer-to-peer system. In order to determine the rele-

vance of a concept, a combination two measures, centrality and frequency is used.  

Although in most of works the importance of each node is calculated considering 

each node in isolation, in our work, we assess its importance in comparison with its 

neighbors, producing a better result. Moreover, many of these works (such as [8] and 

[15]) do not consider the coverage of each node and end up collecting nodes already 

represented by other nodes. In addition, some of these works (e.g. [8], [13]) provide a 

list of the more important nodes, whereas others [7], [8], [14] and our approach, create 

a valid summary schema. Finally, other approaches try to navigate on the Linked Data 

Cloud using summaries of interlinked datasets [20]. However, our work is the only one 

that automatically produces a summary graph, exploiting the data instances and essen-

tially provides an overview of the entire KB (both schema and instances). 

7 Conclusions and Future Work 

In this paper, we present a novel method that automatically produces summaries of 

RDF/S KBs. To achieve that, our algorithm exploits the semantics and structure of the 

schema and the distribution of the data by combining all these information using the 

relevance and the coverage properties. The performed evaluation verifies the feasibility 

of our solution and demonstrates the advantages gained by efficiently producing good 

summaries. Compared to other similar systems, our approach produces better results, 

further improved by exploiting knowledge about the instance distribution. Moreover, 

although most of the systems just select nodes or paths as the result summary, our result 

is a valid RDFS graph/document out of the initial RDF schema graph and can be used 

for query answering as well.  

We plan to extend our implementation in order to produce the schema summary of 

large schemas in the Linked Data Cloud. Instead of relying on reference summaries for 

the evaluation of the automatically produced summaries, an interesting idea is to check 

if these summaries are able to answer the most common queries formulated by the us-

ers. Another interesting topic would be to extend our approach for OWL ontologies. As 

the size and the complexity of schemas and data increase, ontology summarization is 

becoming more and more important and several challenges arise. 
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