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Abstract—Distributed data structures are key to implementing
scalable applications for scientific simulations and data analysis.
In this paper we look at two implementation styles for distributed
data structures: remote direct memory access (RDMA) and
remote procedure call (RPC). We focus on operations that require
individual accesses to remote portions of a distributed data
structure, e.g., accessing a hash table bucket or distributed queue,
rather than global operations in which all processors collectively
exchange information. We look at the trade-offs between the two
styles through microbenchmarks and a performance model that
approximates the cost of each. The RDMA operations have direct
hardware support in the network and therefore lower latency
and overhead, while the RPC operations are more expressive
but higher cost and can suffer from lack of attentiveness
from the remote side. We also run experiments to compare
the real-world performance of RDMA- and RPC-based data
structure operations with the predicted performance to evaluate
the accuracy of our model, and show that while the model does
not always precisely predict running time, it allows us to choose
the best implementation in the examples shown. We believe this
analysis will assist developers in designing data structures that
will perform well on current network architectures, as well as
network architects in providing better support for this class of
distributed data structures.

Index Terms—distributed data structures, remote procedure
call (RPC), remote direct memory access (RDMA)

I. INTRODUCTION

Many complex programs need to perform operations on

abstract data structures, such as hash tables, queues, and

arrays. While many mature, high quality libraries exist that

provide implementations of abstract data structures for serial

and multi-threaded programs, the development of techniques

for high-level data structures for distributed programs is still

an active area of research [1]–[3]. Of particular interest are

distributed data structures for irregular applications, where

data access patterns and volumes are not known in advance.

These applications commonly use data structures which may

be complex to implement using traditional message passing

methods in a distributed memory setting, including graphs,

trees, hash tables, and distributed queues. Some recently devel-

oped distributed data structure libraries are founded on remote

direct memory access (RDMA), meaning that all essential

data structure operations will be executed using one-sided

remote put, get, and atomic operations [2], [3]. These data

structure operations have the potential to be very efficient and

to offer low latency, since they operate directly on remote data

structure elements and can be executed directly by the network

interface card (NIC) on most modern supercomputer and dat-

acenter systems. Other high-level programming environments

encourage users to use remote procedure call (RPC) software

primitives to build distributed data structures [4]. While RPCs

require the attention of a remote CPU, which leads to higher

latency, they have the potential to be much more expressive

than the RDMA operations available on today’s interconnects,

potentially leading to fewer round trips.

In this paper, we evaluate the efficacy of RDMA- and RPC-

based manipulation of distributed data structures with a set of

systematic benchmarks. We perform two sets of experimemts.

First, we perform microbenchmarks to gather the costs of the

component operations that make up both RDMA- and RPC-

based data structure implementations. This includes the cost

of various RDMA operations along with the cost of an RPC.

Second, we measure the actual costs of various data structure

operations, such as queue or hash table insertions, at various

levels of concurrency requirements using both RDMA and

RPC-based implementations. We then compare the observed

results with an analytical cost model and determine where it is

more desirable to use RDMA and where it is more desirable

to use RPC.

We break down the cost of RDMA-based data structure

operations in terms of an analytical cost model, which we use

to predict the cost of RDMA-based data structure operations

based on the real measured cost of the component operations.

This type of analysis helps us to determine why RDMA-

based operations are expensive, when they are expensive,

and to focus in on (1) where data structures could be im-

proved to run on current-generation network hardware (e.g.

by avoiding expensive operations), and (2) which operations

hardware designers might focus on optimizing in order to

better support distributed data structures. Our paper has three

main contributions.

• We present a set of microbenchmarks that determine the

cost of various component operations for RDMA-based

distributed data structures on a modern supercomputer

network.

• We present an analytical cost model which can be used

to estimate the cost of RDMA-based distributed data

structure operations, based on the component costs.

• We provide a comparison of RDMA- and RPC-based



distributed data structure performance for queue and hash

table data structures at variable levels of concurrency

requirements.

II. BACKGROUND

A. Remote Direct Memory Access

Remote direct memory access (RDMA) provides an inter-

face to manipulate remote data in a one-sided manner, meaning

that an origin process can perform operations on the remote

memory of a target process without any explicit coordination

with the target. This is commonly executed by having the

target’s network interface card (NIC) directly communicate

with its on-node memory, resulting in very low round-trip

latency on the order of a microsecond. Low-latency RDMA

primitives are now available on a number of supercomputer

interconnects, including Cray Aries and Infiniband. RDMA is

also increasingly available on datacenter commodity hardware

through RDMA over converged Ethernet (RoCE).

For the purposes of this paper, we consider a common set

of RDMA operations available in most modern supercomputer

and datacenter systems. This set includes remote put and

remote get, which can be of variable size, along with the

fixed-size 32 and 64-bit atomic memory operations (AMOs)

compare-and-swap and fetch-and-op. Some have proposed an

expanded set of RDMA operations to support various types of

remote and distributed data structures, such as the Infiniband

extended atomics API [5]. In addition, there are recently

proposed API extensions to RDMA which would allow for

more expressive RDMA operations [1]. These APIs are outside

the scope of this paper.

RDMA-Based Data Structures: Distributed data struc-

tures can be directly built on top of one-sided RDMA op-

erations, so that all major data structure operations will be

executed with RDMA. Examples of such partitioned global

address space (PGAS) distributed data structure libraries in-

clude BCL, DASH, and Multipol [2], [3], [6]. Similar to shared

memory concurrent data structures, these libraries are built to

use a shared global memory space, with synchronization using

atomics when necessary, to operate upon shared data. How-

ever, unlike shared memory data structures, the component

costs and synchronization models of distributed programming

frameworks can be quite different, so care must be taken to

design data structures accordingly. As shown in Figure 1,

libraries can use RDMA operations, which will be directly

executed by the target process’ NIC, to operate on remote data.

There are two remote memory operations in this code example,

CAS, which is a remote compare-and-swap operation, and

RPUT, which is a remote put operation. In the best case,

our inserting process will perform a remote compare-and-

swap, succeed in reserving the first hash table slot, and then

perform a remote put operation. This would have a cost of

ACAS +W , that is the cost of a compare-and-swap operation

and a write. However, in the case of hash table collision,

the algorithm will move on to the next available slot, and

multiple round trips may be required to perform the insert

operation. The particular hash table shown here is a hash table

void insert(key, val) {

slot = hash(key);

while (!success) {

rval = CAS(flags + slot,

free_flag, taken_flag);

success = (rval == free_flag);

if (!success) {

slot++;

}

}

if (success) {

RPUT(data + slot, {key, val});

}

}

Fig. 1. Modifying a hash table using one-sided RDMA operations.

with open addressing and linear probing. Observant readers of

Figure 1 will also notice that the listed code is not fully atomic.

While the code is atomic with respect to concurrent insert

operations, there is no guarantee that the remote put operation

will finish before a remote find operation reads the half-

written value. If we wish for our insert operation to be atomic

with respect to concurrent find operations, we will require

a second fetch-and-op operation to mark the slot as ready

for reading after the remote put operation has finalized. This

would increase the best case cost of the remote insert operation

to ACAS + W + AFAO. So, depending on an application’s

atomicity requirements, data structure operations over RDMA

may have different best-case costs. Also, depending on a

particular execution of the application, the observed cost of

a method may vary due to the number of round trips caused

by contention.

B. Remote Procedure Calls

Remote procedure calls (RPCs), in contrast to RDMA

operations, allow an origin process to remotely trigger the

execution of a procedure on a target process. RPCs have

the advantage of being more expressive than RDMA. While

control flow in individual RDMA operations is limited to

single-instruction atomics like compare-and-swap and fetch-

and-op, RPCs can include complex control flow and arbitrary

computation. This allows more complex data structure oper-

ations, such as inserting into a hash table, pushing a value

onto a queue, or even modifying a dynamically sized data

structure, to be performed with a single communication event.

However, this added expressivity comes at a greater latency

cost, since an RPC operation must wait for the target process to

enter a progress function or interrupt the processor and make

a function call to execute the procedure. It also changes load

balancing across processors, moving away from the clearly

defined SPMD model of execution in ways that can shift

computational workload, intentionally or not.

In this paper, we consider a restricted type of RPC called an

active message (AM) [7]. For the purposes of this paper, AMs

have the following restrictions: (1) active message handlers



void insert_handler(key, val) {

local_hash.insert({key, val});

}

void insert(key, val) {

node = hash(key) % nprocs();

rpc(node, insert_handler, key, val);

}

Fig. 2. Modifying a hash table using an RPC.

may not send additional active messages, except for a single

response to the origin process and (2) active message handlers

may not perform network communication. These restrictions

allow for a high-performance, low-latency implementation of

active messages with bounded buffer space [8], [9].

RPC Data Structures: An implementation of a distributed

data structure operation with RPCs requires two parts: (1) a

handler function, which is the procedure that will be executed

on the target process, and (2) a wrapper function, which is the

function directly called by the user on the origin process and

the code that will issue the RPC request. RPC data structure

implementations can be quite simple, as shown in Figure 2.

The wrapper function insert uses a hash function to map

data to the appropriate nodes, then issues an RPC with the

handler function insert_handler. The handler function

in this case simply inserts the key and value into a local

hash table. In contrast to the hash table implementation based

on RDMA communication, this implementation will typically

only require a single round trip over the network, since the

origin node can push the RPC request onto the target node’s

RPC queue in a single network operation, then the target

node can execute the necessary control flow to unpack and

store the data. However, crucially, the number of network

operations is unrelated to the control flow logic inside the

data structure operation, which takes place on the target side

inside the RPC function. Depending on the specific manner

in which the handler function will be called (either serially

or simultaneously with other threads), the handler function

may require local atomic operations or other mechanisms

for synchronization. However, these local mechanisms are

significantly cheaper than remote memory operations.

One important detail not directly illustrated by the above

code listing is that the execution of the handler function is

dependent on the attentiveness of the target process, which

must enter a progress function in order for its RPC queue

to be serviced. While the liveness of RDMA operations is

guaranteed by the network interface card, which will be

constantly servicing instructions regardless of CPU state, RPC-

based systems must either dedicate specific resources, such

as a progress thread, to ensure attentiveness, or else pay the

possible latency cost associated with waiting until the target

process finishes its computation and enters a call to the RPC

progress function.

Name Notation Latency (us)

put W 3.0
get R 3.7
compare-and-swap ACAS 3.8
fetch-and-op AFAO 3.9

TABLE I
LATENCY OF VARIOUS RDMA OPERATIONS, MEASURED ON CORI WITH

64 NODES.

C. The Berkeley Container Library

In this paper, we compare the performance of RDMA-based

implementations of distributed data structures to RPC-based

implementations. For the RDMA-based implementations, we

will benchmark data structures provided in the Berkeley

Container Library (BCL). BCL is a cross-platform library of

distributed data structures that supports running on top of

MPI, OpenSHMEM, and GASNet-EX. BCL is a header-only

library and is designed to offer high-level interfaces without

any runtime cost for abstraction. BCL data structures are built

using remote put, remote get, and remote atomic operations

such as atomic compare-and-swap and fetch-and-op.

Performance Model: Data structure operations in BCL

can be characterized in terms of an analytical cost model,

which characterizes the best-case costs of data structure op-

erations in terms of the component RDMA operations. The

component costs include remote get, remote put, compare-

and-swap, and fetch-and-op operations. We do not distinguish

different fetch-and-op operations in this performance model,

since the operations involved are typically simple binary

functions such as fetch-and-add or fetch-and-XOR, which have

very low cost compared to the inherent network latency. A

summary of these operations and the associated notation are

shown in Table I.

Alternate Implementations: As discussed in Section II-A,

there are different levels of concurrency requirements with

which RDMA-based data structure operations can be imple-

mented, depending on the specific needs of an application.

BCL exposes multiple implementations of data structure oper-

ations using a mechanism called concurrency promises, which

allows users to optionally specify the operations that could oc-

cur concurrently with the operation being issued. To illustrate

the different levels of concurrency requirements with which a

data structure operation could be implemented, consider the

case of a hash table insertion with arbitrarily large keys and

values. Inserting an element into such a hash table will, in the

general case, require at least two atomic memory operations

and a write. The first atomic memory operation requests a

lock on the bucket into which the element will be inserted, the

write actually writes the value into the distributed hash table,

and a final unlock operation signals that the bucket is ready

to be read after the write hash completed. In this hash table

implementation, without the final atomic memory operation,

concurrent find operations might read halfway written data,

resulting in an incorrect program execution. However, in the

guaranteed absence of concurrent find operations within a



Method Concurrency Level Description Cost

insert

(a) Concurrent Read/Write (CRW ) Fully Atomic Insert ACAS +W +AFAO

(b) Concurrent Write (CW) Phasal Insertions ACAS +W

find

(c) Concurrent Read/Write (CRW ) Fully Atomic Find AFAO +R+AFAO

(d) Concurrent Read (CR) Phasal Finds R

TABLE II
RDMA-BASED HASH TABLE METHOD IMPLEMENTATIONS CONSIDERED IN

THIS PAPER.

Method Concurrency Level Description Cost

push

(a) Concurrent Read/Write (CRW ) Fully Atomic AFAO +W +ACAS-P

(b) Concurrent Write (CR) Only Pushes AFAO +W

(c) Concurrent Local (Cℓ) Local Push ℓ

pop

(d) Concurrent Read/Write (CRW ) Fully Atomic AFAO +RACAS-P

(e) Concurrent Read (CR) Only Pops AFAO +R

(f) Concurrent Local (Cℓ) Local Pop ℓ

TABLE III
IMPLEMENTATIONS FOR CIRCULAR QUEUE METHODS.

barrier region, we can elide the final atomic memory operation,

since the following barrier will ensure that the write completes

before any find operations may be issued.

Similar levels of concurrency requirements exist for both

hash table insert and find operations, as well as operations

on queues. Tables II and III show some of the data structure

implementations available in BCL’s hash table and queue

implementations, along with the associated best case costs. In

the notation used in this paper, CW indicates that an operation

is allowable with concurrent writes (pushes or inserts), while

CR indicates that an operation is allowable with concurrent

reads (pops or finds) and CRW indicates the operation is

allowable with either.

D. GASNet Active Messages

GASNet is a communication library that offers remote

procedure call functionality in the form of active messages.

Active messages are a restricted form of RPC, in that (1) active

message handlers cannot require network communication, and

(2) active message handlers cannot send additional active

messages except for request handlers, which may send a single

reply to the host. Since neither of these are necessary for the

class data structure operations we consider in this paper and

GASNet is known for having a high-quality, fast implemen-

tation of active messages, we use GASNet to implement a

set of RPC-based distributed data structure implementations

to compare against BCL’s RDMA-based data structures.

In our data structure implementations, we use GASNet-EX

2019.6.0, the most recent version of GASNet-EX API at the

time of submission, and our discussion of the active messages

API are as present in this version of GASNet-EX. GASNet-EX

active messages consist of a fixed-size header, which includes

an index referencing the desired handler function, and up

to 64 bytes of arguments, along with an optional variable

length payload. Active message handlers must be registered

with the GASNet runtime before they can be used. When

an origin process wishes to invoke an active message on a

remote target process, it issues an active message request. A

target process, inside the context of an active message handler,

can optionally issue an active message reply to the origin

process, which will result in the corresponding reply handler

running on the origin process. To wait for the completion of an

individual active message, an origin process must wait until a

reply handler issued by the target process has finished running

locally, writing some reply data or otherwise indicating that it

has completed.

In order to service active messages, each process must enter

the GASNet AM poll function, which can be called by the

main process or from a progress thread that constantly checks

the queue in order to provide attentiveness.

III. EXPERIMENTAL DESIGN

In this section, we examine the performance of RDMA-

and RPC-based designs for remote operations on distributed

data structures. Our expectation is that there are some data

structures, applications, and workloads for which RPC, with

its greater expressiveness, will achieve higher performance,

and some situations where RDMA, with its lower round trip

latency and hardware-accelerated execution in the network

interface card, will achieve higher performance. First, we

perform microbenchmarks to measure the component costs for

RDMA- and RPC-based distributed data structure implemen-

tations. That is, the cost of a remote put, remote get, compare-

and-swap, and fetch-and-op operations, as well as the round

trip cost of sending a GASNet active message request and

receiving a reply.

A. Component Benchmarks

For the component benchmarks, we measure the cost of

small-size remote put and remote get operations, along with

the cost of performing the atomic compare-and-swap fetch-

and-op operations. In each of these microbenchmarks, we

begin with a globally visible array located in the shared

segment of each process in the program. To perform the

benchmark, each process will continuously perform a remote

memory operation to a random location in a random process’

globally visible array. After the benchmark completes, we

divide the total amount of time taken by the number of

operations completed per process to arrive at the latency of

the individual operations.

We also measure the cost of sending an active message. In

this case, each process continually sends an active message to

another random process and then waits for a reply to complete

before proceeding.

The purpose of collecting these benchmarks is not only

to evaluate the relative costs of the operations that make

up RDMA-based distributed data structure methods, but also

to evaluate BCL’s analytical performance model. By plug-

ging in the component method costs into the formulas for

different data structure operations, we can evaluate to what

extent observed performance deviates from theoretical best

case performance. Performance could deviate for a number of

reasons, including higher than optimal latency due to specific

application workloads stressing the network hardware and high

contention leading to many more round trips than would be

necessary in the best case. This analysis will allow us to



evaluate what makes up the cost of RDMA-based remote data

structure operations, which can both allow data structure de-

velopers to better design data structure operations, prioritizing

use of cheaper component operations, and allow hardware

designers to identify which RDMA operations to optimize in

order to increase RDMA-based data structure performance.

B. Data Structure Benchmarks

After collecting microbenchmark results, we ran a series

of experiments where we benchmarked different distributed

data structure operations in BCL and compared them with

equivalent active message implementations. Full descriptions

of these distributed data structure implementations can be

found in the original BCL paper [2].

1) Hash Table: Distributed hash tables are an important

data structure for many applications, including various data

analysis problems such as genomics. In BCL, hash tables are

implemented as a distributed array of buckets, where each

bucket contains room for a key, a value, and a flag that will

be used for synchronization.

CRW Insert: As discussed earlier, to achieve fully concur-

rent safety, a hash table insertion requires, in the best case, two

atomic memory operations and a remote put operation. In the

BCL implementation, this is a compare-and-swap operation

to request the hash table bucket, a remote put, and an atomic

fetch-and-AND operation to mark the bucket as ready to read.

CW Insert: An insert operation without find concurrently

occurring can be preformed using using only one atomic

memory operation, setting the bucket’s flag to ready, then

performing a remote put. The collective barrier that must

separate the inserts from any find operations will guarantee

that the remote put has completed before any find operations

can read the value.

CRW Find: To perform a fully concurrently safe find

operation, the reading process must first obtain a read lock

on a bucket before reading what is inside it. This is to prevent

other processes from modifying the bucket while the process

is reading it. In BCL’s implementation, this is done with an

atomic fetch-and-OR operation to set one of a number of read

bits in the flag. After the lock is obtained, the process will

read the bucket with a remote get operation, then unset the

read bit with an atomic fetch-and-AND.

CR Find: A find without inserts concurrently occurring

can be performed with a single remote get operation, since it

is able to retrieve both the flag and the key and value in a

single remote memory operation.

2) Queue: Queues are widely used data structures in many

applications such as data redistribution and asynchronous all-

to-all operations, producer-consumer problems, frontier based

graph algorithms, and others. The most crucial operations for

queues are pushing and popping. Since these operations are

symmetric, we only consider push operations here for reasons

of brevity. Queues in BCL are implemented as hosted data

structures, meaning they live on a single host process, but

are visible to all processes. Applications may either require

a single queue to be manipulated by all or a subset of

processes, or, commonly, a queue on each process. Queues

are implemented as a ring buffer, with sets of head and tail

pointers marking the beginning and end of data stored within

the queue.

CRW Push: Similar to the hash table insertion example,

with this queue implementation, a fully concurrently safe push

requires two atomic memory operations and a remote put

operation. The first operation is a fetch-and-add operation,

which requests space in the queue by advancing the tail

pointer, followed by a remote put to the reserved space.

Finally, a remote compare-and-swap operation is necessary

to advance the ready tail pointer to indicate that the written

segment of the queue is ready to be read. A fetch-and-add

operation is not correct here, since it could advance the ready

tail pointer past previous insertions which are not yet finished

writing.

CW Push: A push without pops concurrently occurring

can be completed with a single atomic fetch-and-add, to

reserve space, followed by a remote put to write to the reserved

spot in the queue. This is because a barrier will separate all the

push operations from any pop operations, thus guaranteeing

that the written data is ready to be read.

C. RPC Implementations

Our RPC implementations, based on GASNet-EX active

messages, consist of a handler function, which performs the

relevant operation on a local data structure then sends a reply.

If the operation has no return value, the reply will simply

increment a counter on the origin side, which can be used to

ensure fine-grained completion of data structure operations. If

the operation has a return value, it will also write the return

value to a memory location passed in by the request AM.

IV. RESULTS

First we measured our set of component costs, which in-

clude individual operations that make up remote data structure

operations. Measured operations include 32-bit remote get,

remote put, atomic fetch-and-add, atomic compare-and-swap,

and a round-trip active message with a payload of 64-bits.

Each process picks a random process for each operation, and,

for the case of the RDMA operations, a random memory

location. The active message experiment measures the cost

of a round trip with a 64-bit payload, with the inner operation

being an insertion into a remote hash table.

Experimental Setup: We measured the component costs

on Cori Phase I, which is a Cray XC40 supercomputer

with a Cray Aries interconnect and 32 cores per node. All

benchmarks were run with one process per core. Experiments

were run with 100,000 local elements per process, unless noted

otherwise. In each experiment, the target operation is executed

a million times inside a loop, then the total time spent inside

the loop is divided by the number of issued operations to

calculate the operation’s latency. In order to avoid systematic

errors due to variations in network performance, which may

be caused by varying job placement within a cluster as well

as contention with other jobs, each dot on each graph was



submitted as a separate job submission, averaged over at least

four jobs.

Component Benchmarks: Our component benchmark re-

sults are shown in Figure 3. This figure includes the bench-

marks discussed above, along with two extra versions for the

two measured atomic operations.

Compare-And-Swap: We show two benchmarks for

compare-and-swap, “Single CAS,” which measures the cost

of a single compare-and-swap operation and “Persistent CAS,”

which measures the cost of a compare-and-swap which con-

tinually polls until it succeeds in changing the value from the

previous value to a new value. The Single CAS experiment

measures the cost of the CAS AMO operation, while the

Persistent CAS experiment provides some measure of the cost

of a persistent CAS that repeatedly polls until it succeeds in

modifying the target value.

Fetch-And-Add: We include two versions of the fetch-

and-add operation, “FAD,” which measures the cost of a

fetch-and-add operation issued to a random value on another

process, and “FAD, Single Variable,” which measures the cost

of a fetch-and-add operation issued when there is only a single

target variable per process.

In general, there is a large jump in latency for RDMA

operations when moving from a single node to two nodes,

which is to be expected when switching from shared memory

to distributed memory. From there, each operation increases in

cost gradually, which can be explained by (1) the decreasing

percentage of operations that will be operating on local, fast

memory and (2) an increase in the distance that messages must

travel across the network as the allocation size increases.

We find that the Put operation has the lowest cost, followed

by a cluster of operations of similar cost, including Get,

FAD, and Single CAS. As one might expect, the “Persis-

tent CAS” operations are much more expensive, since they

may require multiple round trips to succeed in swapping

the target value. More surprisingly, we also find that the

“Single FAD” benchmark, which operates on a single target

value per process, has a much higher cost than the “FAD”

benchmark, which operates on a range of values per process.

This indicates that, for this operation, the target memory

locations, not just the number of incoming operations on the

target NIC, can impact the amount of time that a fetch-and-add

operation will take (at least on the Cray Aries NIC). While

this might be expected for a shared memory environment,

where a directory or snooping protocol must be used to ensure

cache coherence, NIC-accelerated atomic memory operations

are not atomic with respect to CPU atomics, and the authors

expected the speed of NIC-accelerated fetch-and-add atomics

to be unaffected by the target address. Indeed, experiments

on the Summit supercomputer, which has an Infiniband FDR

interconnect, did not reveal any difference between the two

benchmarks.

Queue Benchmarks: Next, we measured the cost of a set

of queue data structure microbenchmarks, and compared our

empirical data structure benchmark results with our perfor-

mance model’s prediction using the component microbench-
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Fig. 3. The component latencies for RDMA operations and AMs on Cori.

mark results. These results are shown in Figure 4. Pushing

and popping are the primary queue operations, and since they

are symmetric, we choose to only show queue push results

here for reasons of space. We compare four different queue

results: (1) an “AM Push” benchmark, which uses an active

message to insert into a local queue on each process, (2)

a “RDMA Push CW” benchmark, which is a phasal queue

that allows either concurrent pushing or popping, but not

simultaneously, (3) an “RDMA Push CRW” benchmark, which

uses an additional atomic operation to signal the completion of

the write of data onto the queue, and (4) a “RDMA Checksum

Push CRW” benchmark, which is a separate design of queue

that in addition to writing the data values into the queue also

writes a checksum value that can be used to verify whether

the write has finished.

After accounting for the increased cost of the “Single FAD”

experimental result and plugging that in as the parameters for

our analytical performance model in Table I, we found that the

performance model generally predicted the behavior of the

queue data structure benchmarks. The one exception is the

RDMA Push (CRW) benchmark, which is consistently more

expensive than the performance model would predict. This

appears to be due to the fact that the second atomic memory

operation in the CRW push operation requires more round

trip attempts than the Persistent CAS microbenchmark would

suggest. While our Persistent CAS microbenchmark attempts

to change the target value from the previously seen value to

the desired value, the persistent CAS involved in the queue

benchmark attempts to increase a “tail ready” pointer that

marks the frontier of values written into the queue. It may only

proceed after any other insertions have finished writing, which

leads to some inherent serialization that is not represented in

the performance model.

Hash Table Benchmarks: We also measured the cost

of several hash table data structure operations, which are



displayed in Figure 5. The less expensive RDMA Find (CR)

operation is the cheapest operation, followed by the active

message implementations of AM Find (CRW) and AM Insert

(CRW), with find possibly having a slightly higher cost, due to

the fact that the return trip message is slightly larger, contain-

ing a return value. The more expensive RDMA Find (CRW)

is initially slightly more expensive than the active message

implementations, but appears to scale better, ending up at a

similar cost at 128 nodes. The insert implementations, both

CRW and CW, are more expensive. Both RDMA operations

seem to roughly match their associated performance models,

with some increase in the real benchmark runtime perhaps

due to hash table collisions, which are not included in the

performance model. Surprisingly, both hash table insertion

methods vary significantly from their associated cost models’

prediction. However, except for RDMA Insert CW , the pre-

dicted order of implementations in terms of performance is

correct.

Attentiveness Benchmarks: Each of the above active

message benchmarks could be considered a close to optimal

case in terms of attentiveness, by which we mean the avail-

ability of remote processes to service active message requests.

This is because, without an independent progress thread to

ensure attentiveness, which is the model assumed in the above

benchmarks, a process must enter a progress function in order

to ensure that inbound requests are serviced. In each of the

above benchmarks, each process issues a single active message

request, then polls on a progress function, servicing incoming

active messages, until a reply is received for the active message

request. In a more realistic scenario, remote data structure

operations will be interspersed with computation, which may

impact the attentiveness of remote processes, resulting in

longer latencies for active messages. Figure 6 shows the impact

of adding interspersed computation on the latency of a queue

insertion. We arrived at this plot by inserting a small function

to perform a given number of microseconds of computation

inside a loop of queue insertions. To calculate only the time

spent performing queue insertions, we subtract the compute

time from the total time taken in the calculation. As shown

in the plot, the active message version, while initially faster

than the RDMA-based implementation, quickly becomes more

expensive as the interspersed computation time exceeds 2

microseconds. From there, the increase in queue insert time

grows roughly linearly with the compute time, as the average

time an active message must wait to be serviced is half the

compute time. We observe that the latency for the RDMA

queue insertion actually goes down, which we attribute to

lower latency across a quieter network as queue insertions

are spaced out among a greater quantity of computation. It is

important to note that RPC-based implementations can attain

better attentiveness by explicitly using a progress thread, which

will continually poll for new RPC operations to execute. In the

figure, “AM Queue Insertion (PT)” demonstrates this. When

using a progress thread, active messages are not subject to the

same pathological behavior due to lack of attentiveness, but

do receive a performance hit, likely due to contention between
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the progress and main compute thread.

V. RELATED WORK

UPC++ is a high-level asynchronous PGAS programming

interface for C++ [4]. UPC++ has a heavy emphasis on

asynchrony and allows users to build arbitrary computation

graphs by combining futures together with callbacks. UPC++

also encourages users to build data structures and applications

on top of RPC.

AM++ is C++ library built on top of MPI that provides a

high-level active message API similar to that discussed in this

paper [10]. Active Pebbles extends AM++ by adding support

for message aggregation and more sophistocated termination

detection mechanisms [11]. You’ve Got Mail (YGM) is an

MPI-based system that provides an active message-like API

with message- and node-level aggregation [12].
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STAPL is a parallel programming framework that provides

distributed data structures loosely based on a partitioned global

address space (PGAS) model, but is not strictly designed to

support RDMA [13]. PETSc, Chombo, and AMReX provide

data structures for sparse and dense matrices and structured

and unstructured grids, but do not focus on the types of

irregular, generic data structures discussed here [14]–[16].

Aguilera, et al. have proposed various hardware extensions

to RDMA specifically to allow for the efficient execution of

operations on remote data structures in NIC hardware [1].

These include an indirect access primitive that can be used to

access a value at an offset from a pointer on a remote node,

allowing for a dynamically resizing remote vector; various

scatter and gather primitives, and a form of notifications. We

believe that performance models like the one presented here

are a good fit for evaluating potential new RDMA instructions,

and that similar microbenchmark analysis can help hardware

and software developers to design and evaluate new hardware

and data structures.

VI. CONCLUSIONS

In this paper, we compared implementing distributed data

structures using RDMA and RPC. We developed an analytical

performance model which predicts the performance of the

distributed data structures based on their components, then

compared this to real-world performance. In most of the cases,

our model’s predictions matched the real-world results. We

observed the impact of system-specific hardware behavior,

namely the increased cost of a fetch-and-add performed on a

single memory location on Cray Aries; and also observed the

impact of increased contention due to multiple round trips, as

in the case of a concurrent read/write queue insertion. We also

examined the impact of attentiveness on RPC performance,

observing that RDMA may have advantages when it comes to

communication interspersed with computation.
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APPENDIX A

ARTIFACT DESCRIPTION: RDMA VS. RPC FOR

IMPLEMENTING DISTRIBUTED DATA STRUCTURES

A. Abstract

This artifact describes all experiments presented in the sub-

mission titled “RDMA vs. RPC for Implementing Distributed

Data Structures.”

B. Description

1) Check-list (artifact meta information):

• Program C++, BCL, and GASNet-EX.

• Compilation Compilation with GCC 8.2.0 and GASNet-

EX 2019.6.0

• Datasets No datasets.

• Runtime Environment SUSE Linux Enterprise Server

12 on NERSC Cori.

• Hardware

– NERSC’s Cori Phase I supercomputer, a Cray XC40.

Each node is equipped with two 16-core Intel Xeon

E5-2698 v3 CPUs, which use the Intel Haswell

microarchitecture. All nodes have 128 GB of RAM

and are connected via a Cray Aries interconnect.

– NERSC’s Cori Phase II supercomputer, a Cray

XC40. Each node is a self-hosted 68-core Intel Xeon

Phi 7250 accelerator, which uses the Intel Knights

Landing microarchitecture. All nodes are equipped

with 96 GB of DRAM and 16 GB of MCDRAM

and are connected via a Cray Aries interconnect.

• Output Total execution time and operation latency (in

seconds and microseconds).

• Experiment Workflow Download software, compile

from source, run the applications, examine the outputs.

• Publicly available? Yes.

2) How software can be obtained:

• BCL can be downloaded from https://github.com/

berkeley-container-library/bcl. All benchmarks can be

found in the examples/benchmarks/am-comp di-

rectory on branch am-comp.

• GASNet-EX can be downloaded from https://gasnet.lbl.

gov/.

3) Hardware dependencies: The experiments can be per-

formed on any cluster than supports RDMA, although the

results may have discrepancies due to differences in hardware,

which is expected. Our precise results should be reproducible

on Cray Aries systems similar to Cori Phase I.

4) Software dependencies: To compile and run our bench-

marks, a C++-17-compliant compiler along with a copy of

GASNet-EX is required. Reproducing our precise results will

also require that GASNet-EX be compiled with the Cray uGNI

conduit for the Cray Aries interconnect.

5) Datasets: No datasets are required to run our bench-

marks.

C. Installation

• BCL can be installed by cloning the BCL Git reposi-

tory at https://github.com/berkeley-container-library/bcl,

checking out branch am-comp, and adding the new

directory to the CPLUS_INCLUDE_PATH environment

variable.

• Instructions for installing GASNet-EX are available at

https://gasnet.lbl.gov/. Our BCL Makefiles require that

the gasnet_prefix environment variable be set to the

directory of the GASNet-EX installation.

D. Experiment Workflow

Each benchmark is available in the

examples/benchmarks/am-comp folder of the

am-comp branch of the BCL Git repository. Each set

of benchmarks can be compiled with the Makefile included

in the corresponding directory. It may be necessary to modify

the Makefile if it is necessary to use another conduit or if

the user moves the benchmark files out of the main BCL

directory.

To reproduce our results, each benchmark should be exe-

cuted with one process per core, or 32 processes per node

on Cori Phase I. This can be done with Slurm commands

of the form srun -N NNODES -n $((NNODES*32))

./benchmark. To modify the local size, which is the size

of each process’ local portion of the global array in the

components benchmarks, users may use the flag -s. To change

the number of operations performed in each benchmark—for

example because a particular operation has a different cost on

a particular architecture and thus the total benchmark runtime

is unreasonably fast or slow—users may set the -n flag to

control the number of operations performed.

https://github.com/berkeley-container-library/bcl
https://github.com/berkeley-container-library/bcl
https://gasnet.lbl.gov/
https://gasnet.lbl.gov/
https://github.com/berkeley-container-library/bcl
https://gasnet.lbl.gov/
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