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Abstract

The lossless Ethernet is attractive for data centers and cluster

systems, but various performance issues, such as unfairness,

head-of-line blocking and congestion spreading, etc., impede

its large-scale deployment in production systems. Through

fine-grained experimental observations, we inspect the inter-

actions between flow control and congestion control, and are

aware that the radical cause of performance problems is the

ineffective elements in the congestion management architec-

ture for lossless Ethernet, including the improper congestion

detection mechanism and inadequate rate adjustment law.

Inspired by these insights and findings obtained in exper-

iment investigations, we revise the congestion management

architecture, and propose the Photonic Congestion Notifica-

tion (PCN) scheme, which consists of two basic components:

(i) a novel congestion detection and identification mechanism

to recognize which flows are really responsible for conges-

tion; (ii) a receiver-driven rate adjustment method to alleviate

congestion in as short as 1 RTT. We implement PCN using

DPDK NICs and conduct evaluations using testbed experi-

ments and simulations. The results show that PCN greatly

improves performance under concurrent burst workload, and

significantly mitigates PFC PAUSE messages and reduces the

flow completion time under realistic workload.

1 Introduction

Recently, lossless network has become an attractive trend in

data centers and cluster computing systems. Generally, re-

transmission caused by packet loss readily leads to goodput

decrease, completion time increase, and even missing appli-

cation deadlines [9, 10, 50]. In addition, scaling transport pro-

tocols such as Remote Direct Memory Access (RDMA) and

Fibre Channel (FC) over data center requires reliable trans-

mission without packet loss due to network congestion [3,15].

The lossless InfiniBand (IB) [16] is popular in HPC (High

performance Computing) cluster systems, but modern data

center has already been built with IP/Ethernet technologies

that are also dominated in traditional Internet. The data center

operators and cloud builders may do some IB, but much less

ubiquitous than Ethernet. Furthermore, they are reluctant to

simultaneously deploy and manage two separate networks

within the same data center [39, 49]. IEEE DCB (Data Center

Bridging) [4] is naturally imparted appeal as an enhanced

capability of Ethernet, which enables Ethernet to be a con-

solidated switching fabric that can replace traditionally sep-

arated fabrics for special purposes, such as FC for storage,

IPC (Interprocess Communication) for HPC, and Ethernet

for LAN traffic. Converged Ethernet has significant perfor-

mance, cost, and management advantages over maintaining

separate switching fabrics [8]. To enable lossless semantics

for a consolidated Ethernet, both hop-by-hop flow control

PFC (Priority-based Flow Control) [6] and end-to-end con-

gestion control QCN (Quantized Congestion Notification) [5]

are developed in the link layer to enhance traditional Ethernet.

The scalable lossless Ethernet switching fabric is definitely

one of the potential candidates for building future data centers

to accommodate promising applications, such as RDMA over

Converged Ethernet (RoCE) [15], NVMe Over Fabrics [42]

and resource disaggregation [23], etc..

Over the last decade, the rise of various Online Data-

Intensive (OLDI) applications [31] and virtualized ser-

vices [40] generate increasingly diverse traffic patterns and

specific characteristics, e.g., incast, burst and mixture of

mice/elephant flows, etc. [12, 25, 44]. Because it is unclear

whether the lossless Ethernet can work effectively in large-

scale data centers with such complex traffic, we conduct em-

pirical and experimental investigations to attain the in-depth

understanding of congestion management (CM) architecture

in lossless Ethernet. The detailed observation and conjoint

analysis uncover the radical root of some performance issues,

such as congestion spreading and being susceptible to burst

traffic. In the light of these insights, we re-architect CM in

lossless Ethernet. The key findings and main contributions

are summarized as follows.

• Revealing the inadequate elements in existing CM ar-

chitecture for lossless Ethernet, including: a) The congestion
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detection mechanism cannot exactly identify congested or

uncongested flows when they are churned in the same queue,

so that it is unlikely to notify different sources to make dis-

criminative rate adjustments. b) The slow evolution-based

rate adjustment of end-to-end congestion control mismatches

the fast operations of hop-by-hop flow control.

• Developing a novel CM scheme named Photonic Con-

gestion Notification (PCN), which includes: a) A subtle con-

gestion detection and identification mechanism, which can

distinguish real congested flows so as to make a proper rate ad-

justment for congested or uncongested flows even if they are

churned in the same accumulated queue. b) A receiver-driven

rate adjustment rule, which can speed up the convergence of

rate regulation, and is robust to burst traffic and adaptable to

link capacity.

• Implementing PCN using DPDK NICs and conducting

evaluations using both testbed experiments and ns-3 simula-

tions. Extensive simulations in the large-scale network with

synthesized traffic from real workload show that PCN sup-

presses PFC PAUSEs by 12%, 47% and 90% compared to

QCN, DCQCN and TIMELY respectively, and reduces latency

by at most 10x, 11.3x and 13.2x.

2 Background

2.1 Traffic Features in Data Centers

A variety of applications in data centers generate flows with a

wide spectrum of traffic patterns and distributions. For exam-

ple, web search service usually generates short and burst flows.

On the other hand, the log file processing introduces few but

long-lived flows to transmit bulk of data. Investigations on

traffic in many operation data centers show the wide distribu-

tion traffic patterns [41]. The size of flows may range from

0.05KB to more than 100MB, and the distribution is quite

scattered. Among all traffic, mice flows, which finish sending

all packets before receiving any ACK, cannot be adjusted

by the end-to-end congestion control scheme. Furthermore,

many measurements [18, 19, 33, 41] indicate that the occur-

rence of mice flow is not only frequent but also bursty. The

highly dynamic entering/leaving of mice flows would greatly

shock queue length in switches and then the end-to-end la-

tency [12, 13, 44]. Although these flows do not react to the

congestion control scheme, they severely disturb the normal

operations of the congestion management of switching fabric

in data centers or cluster systems.

2.2 Congestion Management in lossless Ether-

net

To guarantee losslessness and provide satisfying job comple-

tion time under such diverse traffic patterns, congestion man-

agement becomes critical and challenging in lossless Ethernet.

IEEE DCB [4] specifies a framework for CM consisting of

two basic functions, including end-to-end congestion control

and hop-by-hop flow control.

The end-to-end congestion control regulates source sending

rate actively according to the congestion information reflected

by measured variables, such as switch queue length or RTT.

Representative solutions include QCN developed by IEEE

802.1 Qau [5], the Layer-3 scheme DCQCN [49], and the RTT-

based scheme TIMELY [36]. Although these protocols can

constrain the switch queue length and accordingly reduce the

packet loss ratio, there is not enough guarantee of zero packet

loss. Actually, the uncontrollable burst may be already lost

before sources are aware of network congestion, especially

when the congestion control loop delay is relatively large or

the degree of burst and concurrency is heavy. What is worse, a

large number of congestion control mechanisms [5, 21, 27, 36,

38, 49] start flows at the line rate to accelerate the completion

of mice flows, which exacerbates the loss problem.

To avoid packet loss due to uncontrollable burst, Priority-

based Flow Control (PFC) is defined by IEEE 802.1Qbb [6] to

ensure losslessness. With PFC, a switch sends a PAUSE frame

to its upstream device (a switch or a NIC) to stop transmission

when the ingress queue length exceeds a certain threshold.

And a RESUME frame is sent when the queue drains below

another threshold. Although PFC can guarantee zero packet

loss due to network congestion, it leads to some performance

issues such as head-of-line blocking (HLB), unfairness and

even deadlock [26, 28, 45, 46, 49]. When PFC is triggered in-

cessantly, the local congestion spreads back to both congested

and uncongested sources, and then the network throughput

and flow completion time are drastically harmed. The fun-

damental solution for these performance issues is to elimi-

nate persistent congestion by end-to-end congestion control

schemes such that PFC is not triggered incessantly [46, 49].

In total, the end-to-end congestion control needs PFC to

prevent packet loss due to transient congestion of uncontrol-

lable burst, and PFC also needs end-to-end congestion control

to eliminate persistent congestion. That is, the end-to-end

congestion control and hop-by-hop lossless flow control are

complementary to each other in lossless Ethernet.

3 Experimental Observation and Insights

3.1 Observations

Although both end-to-end congestion control and hop-by-

hop flow control can meet their goals independently under

the diverse traffic patterns, their interaction would induce

unexpected issues. (1) When burst short flows enter into the

network, existing flows in the network would still suffer from

the PFC-related side-effects, i.e., congestion spreading and

unfairness. (2) After burst leaving the network, congestion

control would not efficiently and timely reallocate available

bandwidth.
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Figure 1: Compact and typical network scenario.

Most existing work considerably concerns the single ele-

ment in the CM of lossless Ethernet (e.g., congestion con-

trol [36, 49]) or special symptoms (e.g., HLB [7], dead-

lock [28,29,45]), but unconsciously overlooks the interaction

of congestion control and flow control under diverse traffic

patterns, thus is likely to shield the essential cause of afore-

mentioned performance issues. Subsequently, we first con-

duct a careful, fine-grained and multi-variable observation,

and then infer the radical root of special symptoms and issues.

Specifically, we define a compact and typical network sce-

nario, which is not too complex to hinder us capturing the

basic principles of both key elements and core mechanisms in

the CM of lossless Ethernet. At the same time, it should have

sufficiently common features so as to ensure the obtained con-

clusions and insights are without loss of generality. As shown

in Fig.1, we choose a basic unit of a typical network topol-

ogy in data center, like Clos [22] and Fat-Tree [11], where

16 senders and 2 receivers are connected by two switches.

All links are 40Gbps, with a propagation delay of 5µs. The

traffic is a mixture of long-lived flows and concurrent burst

mice flows. In detail, H0 and H1 start long-lived flows to R0

and R1, respectively. Assume that F0 and F1 achieve their

fair bandwidth allocation of the 40Gbps bottleneck link from

switch S0 to S1 at the beginning of simulation. At time 0,

each sender of H2∼H15 generates 16 short flows to R1 at

line rate (i.e., 40Gbps) simultaneously, and the size of each

flow is 64KB. Since each mice flow only lasts for 12.8µs

(<1 RTT), it is uncontrollable by the end-to-end congestion

control mechanisms. These uncontrollable burst flows last

for about 3ms in total. We conduct simulations with ns-3 to

investigate various CM schemes including PFC, PFC+QCN,

PFC+DCQCN, and PFC+TIMELY. All parameters are set to

the default values recommended by the related standard [5, 6]

and literature [36, 49], and the details are given in § 7. The

results are presented in Fig.2.

When PFC is solely employed, the input port P1/S1 pauses

its upstream port P0/S0 to avoid packet drops, and the port

P2/S1 is congested by concurrent burst flows. Subsequently,

“Pause” spreads upstream along with the long flow, and both

H0 and H1 are eventually paused. We measure the PAUSE

Rate (i.e., the rate of transmitting PAUSE messages), and the

instantaneous throughput. As shown in Fig.2(a), a congestion

tree, which roots from S1, spreads to H0 and H1, appears
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Figure 2: Interactions between PFC and existing congestion

controls.

and lasts for 3.1ms (>100 RTT) until the burst mice flows

finish. During this process, both the congested flow F1 and

uncongested flow F0 face great throughput loss as shown in

Fig.2(b), no matter whether they are responsible for the real

congestion at port P2/S1.

When QCN, DCQCN or TIMELY works with PFC jointly,

the congestion tree still appears, as shown in Fig.2(a). How-

ever, its lasting time is reduced to 0.5ms (≈17RTT), 1.8ms

(≈57RTT) and 1.4ms (≈47RTT). Surprisingly, the two long

flows F0 and F1 may fail to recover to their initial throughput

quickly after both concurrent burst flows and congestion tree

disappear. As illustrated in Fig.2(b), the throughput loss un-

expectedly lasts for 12.5ms with QCN, 25ms with DCQCN

and 60ms with TIMELY, respectively, even if the concurrent

burst flows last for only 3ms. Totally, the performance of

PFC+QCN, PFC+DCQCN and PFC+TIMELY is worse than

PFC in this scenario.

3.2 Interaction Issues

To understand the long duration of congestion tree and un-

expected great throughput loss, we analyze the dynamic be-

haviors of flows in detail, and reveal the interaction issues

between hop-by-hop flow control and end-to-end congestion

controls. We believe that careful analysis and rigorous rea-

soning from interactive behavior could enlighten us the root

causes of various performance issues reported by existing

work [26, 34, 37].

1) PFC confuses congestion detection. In above experi-

ments, an ideal end-to-end congestion control scheme should

only throttle F1 to 2.5Gbps and allocate flow F0 the remaining
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Figure 3: The responsiveness of different congestion controls.

bandwidth (37.5Gbps) of bottleneck link from S0 to S1. How-

ever, this ideal bandwidth allocation cannot be achieved even

existing congestion controls (QCN, DCQCN and TIMELY)

are employed. To explore the cause of this phenomenon, we

record the sending rate regulated by the end-to-end congestion

control and the real sending rate of the uncongested flow F0

and congested flow F1. The results are presented in Fig.3(a).

When congestion tree exists, both the queue length and RTT

increase at port P0/S0. Because senders infer congestion ac-

cording to the feedback information (i.e., queue length or

RTT), F0 is also regarded as congested. Hence, the sending

rate of F0 is reduced by QCN, DCQCN and TIMELY, even

if it contributes nothing to the real congestion point at P2/S1.

Therefore, after the congestion tree disappears (as marked by

the dash line in Fig.3(a)), the sending rate of F0 is very low

although it escapes from the collateral damage of PFC.

In summary, it takes some time for congestion controls to

eliminate congestion tree. In this transient process, the large

queue length and RTT due to congestion spreading caused

by PFC would mislead congestion controls to decrease the

sending rate of victim flows (F0 in this example).

2) The slow evolution-based rate adjustment of end-to-

end congestion control mismatches the fast hop-by-hop

operations of PFC. Fig.3 also unveils the reason why the

congestion tree is still created and lasts for tens of RTTs with

QCN, DCQCN and TIMELY. Although F0 and F1 are throt-

tled immediately when the concurrent burst mice flows enter,

it takes a long time for QCN, DCQCN and TIMELY to reduce

the sending rates (the regulation time of different congestion

controls are marked in Fig. 3). However, PFC works hop-by-

hop and thus the congestion spreads very fast. During the rate

decrease of F0 and F1, PFC is triggered incessantly. So the

real sending rates of F0 and F1 are mainly determined by PFC

rather than end-to-end congestion control, thus the through-

put of both F0 and F1 are small. This is why the congestion

tree spreading still occurs even if the end-to-end congestion

control is employed.

This problem is attributed to the mismatch between the

slow evolution-based rate adjustment of end-to-end conges-

tion control and the fast operations of hop-by-hop flow control.

More specifically, when the available bandwidth reduces sud-

denly due to the concurrent burst mice flows, the end-to-end

congestion control schemes have no idea of the target rate

thus only make rate decrease based on the current sending rate

step by step, which is at most 50% per update period. More-

over, the update period is about 20µs (time of transmitting

100 packets) for QCN, 50µs for DCQCN and at least 12.5µs

(time of sending 64KB segment) for TIMELY. What’s more,

when the throughput of F0 and F1 is very small, DCQCN may

not receive a single packet in one update period, and would

start rate increase automatically. As a result, tens of update

periods may be needed to decrease F1’s rate to approach the

remaining available bandwidth, as shown in Fig.3.

3) The rate increase is inadaptable to dynamic network

conditions. After the concurrent burst mice flows vanish and

the congestion tree disappears, the sending rates of both F0

and F1 have been throttled, and need to increase step by step.

QCN and DCQCN increase the sending rate towards the tar-

get rate stored at previous rate decrease in a binary-search

way and raise the target rate linearly with a pre-configured

value periodically. TIMELY adds the sending rate with a

fixed value in each update period. Briefly, all rate increasing

methods are linear. Consequently, they fail to take full use

of available bandwidth immediately after the disturbance of

concurrent burst mice flows. This is why flows F0 and F1

need much longer time to recover to full throughput as pre-

sented in Fig.2(b). Moreover, the step of rate increase in each

update period needs to be configured adaptively according

to network bandwidth. For example, the parameters of QCN,

DCQCN and TIMELY tuned for 40Gbps link may be too con-

servative for 100Gbps link, but too aggressive for 1Gbps link.

The tuning of parameters would become difficult in practice.

4 Principles

The root cause of all aforementioned performance issues can

be concluded as the existing end-to-end congestion control

scheme cannot cooperate with hop-by-hop flow control well.

To address these issues, we revisit the architecture of CM. We

first present a discussion about which elements in existing

congestion management introduce these performance issues,

and then propose the ways to overcome these incongruities

by re-architecting the CM for lossless Ethernet. Briefly, the

principles are threefold.

1. The uncongested flow becomes a victim because the ex-

isting congestion management cannot identify real con-

gested flows. The operation of PFC would back pressure

congestion and contaminate current congestion signals
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(i.e., queue length and RTT). We need to find out a new

mechanism to properly distinguish which flows are really

responsible for congestion.

2. Congestion spreading is caused by the slow evolution-

based rate decreasing mechanism, thus a fast and accu-

rate rate decreasing solution is indispensable.

3. When burst traffic vanishes, the long-lived flows mainly

rely on the linear rate increase to share the released

bandwidth, which leads to sluggish convergence and

bandwidth waste. Therefore, a prompt rate increasing

mechanism should be developed.

4.1 Congestion Detection and Identification

Traditionally, the end-to-end congestion control detects the

network congestion based on the measured variables like

switch queue length and RTT. However, this congestion de-

tection mechanism is confused by PFC in lossless Ethernet.

We need to revise the congestion detection and identification

mechanism to avoid this confusion and then correctly identify

which flows are really congested.

4.1.1 Detecting Congestion

To aid detecting congestion, we classify the egress ports of

switches into the following three states.

Real-Congestion: The ports in real-congestion fully utilize

the egress links and the excessive incoming packets accumu-

late in the buffer, as shown in Fig.4(a). For example, in the

previous simulation, when the concurrent burst mice flows

start, port P2/S1 is in real-congestion.

Non-Congestion: As illustrated in Fig.4(b), no packets

accumulate in the buffer of egress ports, and thus the incoming

packet is transmitted immediately. That is, the egress links

work normally with utilization less than 100%. The port P3/S1

in above simulation is always in non-congestion.

Quasi-Congestion: The ports in quasi-congestion also

keep certain queue length, but the associated egress link is

not fully utilized due to PAUSE and RESUME, as depicted in

Fig.4(c). Therefore, it is unknown whether the incoming rate

of packets exceeds the link capacity or not. For example, in the

previous simulation, port P0/S0 turns into quasi-congestion in

face of PFC triggers. However, because flows passing through

this port would suffer large queue length and delay, the con-

gestion detection mechanism in existing congestion controls

(e.g., QCN, DCQCN and TIMELY) dogmatically judges that

these flows experience congestion.

Consequently, to distinguish these different states of the

egress ports, especially the quasi-congestion state, the impacts

of PFC should be taken into consideration when detecting

congestion.

4.1.2 Identifying Congested Flows

Owing to the impact of PFC, packets from both congested and

uncongested flows are likely to backlog in the same queue

length in egress port, which is paused by its downstream

ingress port. Therefore, it may be proper to predict potential

congestion depending on the queue length of egress port,

but indeed unwise to make congestion judgment and provide

indiscriminate information to all flow sources, just like QCN

and DCQCN. TIMELY also hardly distinguishes whether

the flow actually traverses the real congested port by merely

measuring RTT and its variations.

To avoid the confused congestion information in existing

CM architecture to perturb the normal interaction between

flow control and congestion control, and even lead to mu-

tual damage, we advocate decoupling congestion detection

and identification functions during re-architecting the CM

of lossless Ethernet. The switch is responsible for detecting

congestion and providing congestion signals through moni-

toring the related network status. The end systems synthesize

relevant information to judge congestion and identify whether

its flow is really congested.

4.2 Receiver-Driven Rate Decrease

The ideal congestion control scheme should throttle the con-

gested flows towards a proper rate directly. To achieve this

goal, we need to obtain this proper rate at first. In lossless

Ethernet, the proper rate should not trigger PFC but can still

keep high throughput. To find this rate, we should answer the

following two sub-questions: 1) what is the minimum rate

for congested flows to not lose throughput? 2) what is the

maximum rate for congested flows to not trigger PFCs?

The first answer is intuitive. It should be the arrival rate of

receiver. We define it as Receiving Rate. On one hand, the path

of congested flows must have at least one real congested port,

thus the sum of receiving rates of all flows just achieves the

capacity of bottleneck link. On the other hand, if the congested

flow decreases rate to less than its receiving rate, there must

be idle bandwidth on the bottleneck link, which means that
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this flow can actually send more data. Thus, the receiving

rate is the minimum rate for the congested flows to not lose

throughput. The power of receiving rate has also introduced in

recent designs like Fast TCP [32], NDP [27] and Homa [38].

They both take advantage of receiving rate to achieve fast

convergence when detecting congestion.

Fortunately, the receiving rate is also the answer to the sec-

ond sub-question. That is, when the sending rate does not ex-

ceed the receiving rate, the packets of congested flows do not

accumulate at the ingress port of congested switches and then

PFCs are not triggered. What’s more, this phenomenon occurs

regardless of whether the egress port of the same switch is

congested or not.

To vividly illustrate this phenomenon, we repeat the experi-

ment in the network scenario given in § 3.1. We start H2∼H4

at line rate to simulate uncontrollable bursts. And both the

congestion-irrelevant flow F0 and congestion-relevant flow

F1 are controlled by rate limiters. The sending rate of F0

is fixed at its fair allocation (i.e., 20Gbps), and the sending

rate of F1 varies from 20Gbps to 0 step by step manually.

When the simulation is running, both flows are throttled by

their fixed rate limiters and PFC. The sending rates set in

rate limiters and receiving rates at the receiver side for these

two long flows, as well as the generating rate of PAUSE

frames on ingress port p1/S1, are drawn in Fig.5. Obviously,

when the sending rate of congestion-relevant flow F1 exceeds

9.5Gbps, its receiving rate is only 9.5Gbps. At the same time,

the ingress port p1/S1 generates PFC PAUSEs persistently

and the congestion-irrelevant flow F0 is collaterally dam-

aged. On the contrary, when the sending rate of F1 does not

exceed 9.5Gbps, no PAUSE frame is generated from port

p1/S1 and the congestion-irrelevant flow F0 can achieve its

expected throughput. This experiment indicates that throt-

tling congested flows to their receiving rate can prevent more

PFC triggers on the associated egress ports, and then suppress

congestion spreading in this branch of congestion tree.

Consequently, we obtain a valuable insight, that is decreas-

ing the rate of congested flows to their receiving rate di-

rectly. It inspires us to design a receiver-driven rate decreas-

ing algorithm to work in harmony with PFC in lossless Ether-

net, which will be elaborated in the following.

4.3 Gentle-to-Aggressive Rate Increase

The rate increase should accelerate non-congested flows to

rapidly share available bandwidth and then keep at full uti-

lization stably simultaneously. The rate-increase rule of a

non-congested flow is needed in two cases.

1) The flow has just turned its state from congested to non-

congested. According to our receiver-driven rate decrease

principle, the flow rate has reduced to its receiving rate, which

implies no PFC trigger and no throughput loss. Thus, the flow

has little space for rate increase. Therefore, the rate of this

flow should be increased gently.

Sender (RP)
 Rate Adjustment

Switch (CP)
 Congestion Signal

   (Non-PAUSE ECN)

Receiver (NP)
 Identify Congested Flows

 Rate Estimator

 Congestion Notification

Data Data

CNP CNP

Figure 6: PCN framework.

2) The flow has remained in the non-congested state for

several continuous update periods. In this case, the flow can

increase more aggressively to occupy the available bandwidth.

Since our receiver-driven rate-decrease rule can sharply re-

duce the overflowed traffic, the rate increasing mechanism can

be designed more aggressively to fulfill network bandwidth

quickly.

Therefore, we obtain a suggestion, that is increasing the

rate of non-congested flows gently at first and then ag-

gressively. It guides us to design a gentle-to-aggressive rate

increasing algorithm that can guarantee stability and fast con-

vergence simultaneously.

5 PCN

In this section, based on the principles in § 4, we re-architect

congestion management for lossless Ethernet and propose

Photonic Congestion Notification (PCN)1, which is designed

to be a rate-based, end-to-end congestion control mechanism

to work with PFC in harmony. As shown in Fig.6, PCN is

composed of three parts: reaction point (RP), congestion point

(CP) and notification point (NP). In general, the CP, which

always refers to the congested switch, marks passing pack-

ets using a Non-PAUSE ECN (NP-ECN) method to detect

whether the egress ports are in real congestion. Notice that

a packet marked with NP-ECN does not definitely mean en-

countering congestion, it requires NP to make the final deci-

sion. The NP, i.e., the receiver, identifies the congested flows,

calculates their receiving rate and sends the congestion noti-

fication packets (CNP) to RP periodically. The RP, which is

always the NIC of senders, adjusts the sending rate of each

flow according to the information in CNPs. Subsequently, we

introduce each part of PCN in details.

5.1 CP Algorithm

We develop the NP-ECN method to detect congestion and

generate the congestion signal. The CP algorithm follows the

state machine in Fig.7. Suppose that when one egress port

of a switch receives a RESUME frame from its downstream

1We liken current schemes (e.g. QCN, DCQCN and TIMELY) to quan-

tum, because they can only quantify the network congestion as a whole, but

cannot provide different congestion notifications for congested flows and

non-congested victim flows, which seems in quantum entanglement. And as

an analogy, our design is like the photon, which breaks down the entangle-

ment, i.e., directly recognizing the congested flows and allocating them the

appreciate rates.
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Figure 7: CP state machine.

node, there are N packets in the associated waiting queue.

NP-ECN will set its counter PN=N. Then the port restarts

to transmit packets. Each time a packet is transmitted, the

counter is decremented by one, until all of the N paused pack-

ets have been transmitted. For these N packets, they will not

be marked. And for the later packets that have not been paused

and correspondingly PN=0, the switch will mark them with

ECN in the traditional method, with the threshold as zero.

In this way, all packets in the real-congestion egress ports

will be marked with ECN. On the contrary, the packets are

never marked with ECN in the non-congestion ports. And for

quasi-congestion ports, the paused packets are not marked

with ECN. Meanwhile, when the queue of ingress port is

not empty, the packets arriving and leaving the ports in RE-

SUME status are marked with ECN, namely, packets in quasi-

congestion ports are partially marked with ECN. In PCN,

CP only works for marking a congestion signal on packets

and lets the NP node finally determine whether the flow is

congested.

It is noted that NP-ECN mechanism can be implemented

easily based on the commercial switch equipped with both

ECN and PAUSE functions. Compared to the traditional ECN

method in commodity switches, the NP-ECN method of PCN

requires one more counter per port, and several more lines of

logic. The space and computing complexities of modification

are both O(1).

5.2 NP Algorithm

The functions of NP include identifying congested flows,

estimating receiving rate and sending Congestion Notification

Packets (CNP) periodically. T denotes the CNP generation

period.

Identifying congested flows: NP identifies the congested

flows based on the ECN signal marked by the NP-ECN mech-

anism. A flow is regarded to be congested if 95% packets re-

ceived in CNP generation period T are marked with ECN. The

value 95% is set empirically to filter some tiny disturbances

in practice, such as queue oscillation and priority schedule,

which make that one or more packets of real-congested flows

are unlikely marked with ECN.

Estimating receiving rate: The receiving rate is calcu-

lated directly with T divided by the total size of arrived pack-

First of a flow

Timer=0;

RecNum=1;

recData=pSize;

ECNNum=ECN set?1:0;

Wait for timeout expire of Timer 

recNum+=1;

recData+=pSize;

ECNNum+=ECN set?1:0;

Calculate interArrivalTime;

Received a packet

recNum>0?

ECNNum/TotalNum>0.95?

Timer=0;

recNum=0;

recData=0;

ECNNum=0;

ECN=0;

recRate=0;

ECN=1;

recRate=pSize/interArrivalTime;

No

No

Yes

Yes

recNum>1?
No

ECN=1;
recRate=recData/Timer;

Send CNP

Figure 8: NP state machine.

MAC 

Header

Ipv4/IPv6 

Header

UDP 

Header
BTH

16 Bytes 

reserved
ICRC FCS

1-bit ECN 32-bits Normalized RecRate

Figure 9: Packet format of CNP

ets. Noticeably, the receiving rate of flow may be so small that

just one packet arrives in several CNP generation periods. To

address this special case, PCN also records the inter-arrival

time of packets at the NP. When the inter-arrival time is larger

than T , NP estimates the receiving rate by replacing T by the

inter-arrival time.

Generating CNPs: The NP sends CNPs to notify the

source of flow with the receiving rate in period T , which

is set to be 50µs similar to DCQCN. Moreover, PCN gener-

ates CNP explicitly when the flow needs either rate-decrease

or rate-increase, different from DCQCN which only generates

CNPs to notify rate-decrease. And the CNP is not generated

when none of its packets is received in period T . In details,

the format of CNP packets is compatible with the CNP packet

in RoCEv2 [15], as shown in Fig.9. The main information

encapsulated by CNP includes 1-bit ECN in the IPv4/IPv6

header and 32-bit RecRate in the reserved segment, which

carries the receiving rate normalized by 1Mbps. The state

machine of NP algorithm is summarized in Fig.8.

5.3 RP Algorithm

Algorithm 1 describes the pseudo code of how RP adjusts

the sending rate according to the information in CNP. In

the beginning, flows start at the line rate to improve flow

completion time (FCT) for short flows.

Rate Decrease: When RP receives a CNP with ECN-

marked, it conducts a rate decrease following the rule in line

6. Instead of resetting the sending rate to the receiving rate di-
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Algorithm 1 PCN RP Algorithm.

1: sendRate← lineRate

2: w← wmin

3: repeat per CNP (CE, recRate)

4: if CE == 1 then

5: (CNP notifies rate decrease)

6: sendRate←min{sendRate, recRate · (1−wmin)}

7: w← wmin

8: else

9: (CNP notifies rate increase)

10: sendRate← sendRate · (1−w)+ lineRate ·w
11: w← w · (1−w)+wmax ·w
12: until End of flow
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Figure 10: Evolution of w and rate when a sender receives

continuous CNP notifying rate increase.

rectly as discussed in § 4.2, a small discount wmin is conducted,

such that the build-up queue in switches can be drained out.

Accordingly, during draining the build-up queue, the recRate

may be larger than the sendRate, the sending rate should be

non-increasing in line 6.

Rate Increase: When RP receives a CNP without ECN-

marking, it makes rate adjustments following the law in line

10 and 11. Specifically, the RP increases the sending rate by

computing a weighted average of its current value and the

line rate. This rate increase law is effective in multiple folds.

(1) The ideal sending rate can be reached as it always stays

between the current sending rate and the line rate.

(2) Since the value of w is identical for all flows, the slow

flows increase more aggressively than fast flows, which is

beneficial to fairness.

(3) The weight w changes automatically from the minimum

value wmin to the maximum value wmax such that PCN can

realize the gentle-to-aggressive rate increase as discussed in

§ 4.3. For example, when wmin = 1/128, wmax = 0.5, and

CNPs without ECN-marking are received successively, the

evolution of w and the sending rate from 0 to the lineRate are

presented in Fig.10. The sending rate grows by no more than

10% of the line rate in the first 5 CNPs, but increases to 95%

of the line rate after only 15 CNPs.

(4) Any parameter configurations are not specially required

to adapt to the upgrade of link capacity from 1Gbps to even

400Gbps.

5.4 Discussion

As discussed in §4, the main root of performance issues in

current lossless Ethernet is the improper interaction between

PFC and end-to-end congestion control schemes. We demon-

strate that PCN solves the core problems in lossless Ethernet

using a minimal implementation cost.

Implementation requirement: To implement PCN, a lit-

tle switch modification is needed. Compared to the traditional

ECN method in commodity switches, the NP-ECN method

of PCN (see Fig.7) only requires one more counter per port,

and several more lines of logic. The space and computing

complexities of modification are both O(1).

Benefits: To demonstrate the advantages of PCN, we en-

able PCN and repeat the simulations in § 3.1, and the results

are also inserted into Fig.2 and Fig.3, respectively. The results

in Fig.2(a) tell that PAUSE in both S0->H0 and S0->H1 links

are completely avoided and only a handful of PAUSE fleet-

ingly appears in the S1->S0 link, but congestion spreading

is quickly suppressed and congestion tree is not generated.

The results in Fig.3 confirm that PCN can help the uncon-

gested flows grab idle bandwidth quickly, and regulate the

congested flows to proper rates correctly and promptly. PCN

increases F0 to fully utilize network bandwidth during con-

current bursts. After the concurrent burst vanishes, F0 and F1

fairly share bandwidth without wasting network resources or

triggering PFC PAUSEs as shown in Fig.2(b).

6 Theoretical Analysis and Parameter Setting

6.1 Theoretical Analysis

We build a fluid model of PCN and analyze its performance,

including convergence, fairness, and stability. The main con-

clusions are summarized in the following propositions and

the detailed analyses are listed in Appendix A.

Proposition 1. PCN can achieve convergence of total rate

towards the bottleneck capacity as fast as in only one control

loop, i.e., one RTT.

Proposition 2. PCN can always fairly share the bottleneck

link, i.e., Ri→
C
N

regardless of the initial sending rates and

parameter settings, where Ri is the receiving rate of flow i, N

is the number of sources sharing the bottleneck link, and C is

the link capacity.

Proposition 3. PCN is stable and the oscillation of both

the queue length and rate are bounded in the steady state.

The maximum oscillation ranges of queue length (∆Q) and

receiving rate of flow i (∆Ri) are

∆Q = (N−2+wmin)wminCT (1)

∆Ri→ wminC (2)
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Figure 11: Dynamic behavior of PCN, DCQCN and TIMELY.

6.2 Parameter Settings

Based on the above conclusions, we can obtain some practical

guidelines towards parameter settings, including the CNP

generating period T , and the minimum and maximum value

of weight factor w.

CNP generating period T : It should be identical for all

flows. It is noteworthy that T is also the control loop period,

thus a large T will damage the responsiveness of PCN. How-

ever, in practice, there exists an inherent control loop delay,

i.e., RTT. If T is smaller than RTT, PCN is hardly aware of

status change in the last control loop, which leads to over-

much adjustments and considerable oscillations. Therefore,

the recommended T should be the maximum value of RTT in

networks, which can be estimated in advance.

Minimum weight wmin: The value of wmin should make a

trade-off between fast convergence and stability. A large/small

wmin will speed up/slow down the convergence of queue

length, but make the flow oscillate more/less aggressively

at steady state. According to Proposition 2, Equation (1) and

(2), we recommend the proper value of w to be 0.1/N, which

limits the aggregate rate oscillation not exceeding 0.1C and

the queue oscillation less than 0.1CT .

Maximum weight wmax: The value of wmax determines

how aggressively a flow increases when the network is de-

tected under-utilized continuously. Thus an aggressive wmax

is recommended, i.e., wmax = 0.5.

7 Evaluation

We evaluate the performance of PCN in a variety of settings

using testbed experiments (§ 7.1) and ns-3 simulations (§ 7.1

∼ 7.4), and compare it against QCN, DCQCN and TIMELY.

The functional modules of our simulator are developed based

on the open project for DCQCN [48] and code snippet (per-

packet pacing version) for TIMELY [35], and all parameters

are set to the default values recommended by the related

literatures [36,49]. All experiments enable PFC with XOFF =
512KB.

7.1 Basic Properties

In this subsection, we verify the basic function of PCN using

simple synthetic microbenchmarks.

Testbed setup: Since current commodity switches do not

provide the interface to modify the ECN-marking logic, we

implement PCN upon DPDK [1]. We plug two Intel 82599

NICs to one PowerEdge R530 server to act as PCN’s CP. Each

NIC has two 10Gbps Ethernet ports and the server is equipped

with dual Intel Xeon E5-2620 v3 CPUs (6 cores, 2.4GHz).

Thus, the server can work as a four-port switch. By deploying

DPDK in the server, both PFC and NP-ECN are implemented

based on the reference test-pipeline project [2].

DPDK also enables the implementation of our special

packet processing required at NICs. On the sender side, the

rate limiter at a per-packet granularity is employed for rate ad-

justment. On the receiver side, PCN receives packets, records

ECN marking information, and sends back CNP packets peri-

odically.

Scenario: We use a dumbbell topology where 3 pairs of

sender and receiver share the same 10Gbps bottleneck link.

Specially, the number of flows on one of three pairs is twice

of that on other two. We run this experiment on both hardware

testbed and ns-3 simulator for cross-validation. In both testbed

experiments and simulations, the RT T is measured to be about

500µs, thus the same configuration is kept in simulations.

Fine-grained observation: First, four long-lived flows are

launched and the dynamic behaviors of PCN, QCN, DCQCN

and TIMELY is observed. The evolutions of queue length

in bottleneck and the aggregate sending rate are depicted in

Fig.11. As illustrated in Fig.11(a) and 11(b), PCN exhibits

the same performance on the testbed and simulator. Com-

paring Fig.11(b) to 11(c), 11(d) and 11(e), PCN outperforms

QCN, DCQCN and TIMELY in terms of fast convergence

and stability.

In both testbed experiment and simulation, PCN regulates

the aggregate sending rate to the bottleneck capacity within

2ms (4 RTT), which is 20x, 25x and 45x faster than that with

QCN, DCQCN and TIMELY, which is benefited from the

receiver-driven rate-decrease method of PCN. It can throttle

the incoming traffic to match the bottleneck capacity directly,

rather than explore the available bandwidth round by round.

Consequently, PCN can limit the bottleneck queue length
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Figure 12: Generating rate of PAUSEs and FCT under concurrent burst.
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Figure 13: Performance of PCN

with different wmin and wmax.

at a very low level (about several packets) in no more than

7.5ms (∼15 RTT), while it costs 13ms (∼26 RTT) for QCN,

41ms (∼80RTT) for DCQCN and 72ms (∼144 RTT) for

TIMELY.

In the steady state, PCN oscillates with low amplitude in

both testbed experiment and simulation. The queue length

almost approaches zero and the aggregate sending rate keeps

near 10Gbps. QCN has the similar performance. However,

both DCQCN and TIMELY lead to large oscillations and high

buffer occupancy. This advantage comes from the congestion

detection method of PCN. The threshold of queue length for

ECN marking is set to zero, rather than a positive value.

7.2 Burst Tolerance

One advantage of PCN is robustness against PFC triggers

caused by concurrent burst flows. Next, we use the basic

scenario in Fig.1 to evaluate PCN in the typical head-of-

line scenario. All links are 40Gbps with 5µs propagation

delay, hosts H0∼H15 generate flows according to the heavy-

tailed Hadoop workload [44] with exponentially distributed

inter-arrival time. Specially, the workload generators at hosts

H2∼ H15 are set to be synchronous to simulate concurrent

bursts. The target load at the two bottleneck links is set to 0.6.

We measure the pause rate and flow completion time (FCT)

of PCN and compare them with QCN, DCQCN and TIMELY.

The left subgraph in Fig.12 shows the generating rate of

PFC PAUSEs. QCN triggers the smallest PAUSEs, and PCN

can prevent at least 53% and 92% of PFC PAUSEs compared

to DCQCN and TIMELY, respectively. And the average and

99th percentile FCTs from different hosts are drawn in the

right subgraph in Fig.12. The solid bar at the bottom indicates

the average FCT and the upper stripe bar shows the 99th

percentile value. Clearly, PCN performs better than QCN,

DCQCN and TIMELY for all kinds of hosts.

1) Actually, QCN avoids PAUSEs by drastically reducing

the sending rate, which likely leads to poor link utilization

and high FCT for long-lived flows. On the contrary, PCN

can prevent PAUSEs without harming throughput, and then

achieves 2.25x∼3.03x shorter FCT than QCN.

2) For the victim host H0, PCN achieves 2.4x and 2.0x

faster average FCT compared to DCQCN and TIMELY, which

is mainly benefited from a fact that PCN can mitigate PFC

Flow size
% of number % of traffic

W1 W2 W1 W2

0KB-10KB (S) 80.14 70.79 3.08 0.22

10KB-100KB (M) 10.32 16.59 5.89 1.56

100KB-1MB (L) 9.12 3.52 83.8 1.53

1MB- (XL) 0.41 9.1 7.04 96.7
W1 Web-server rack at Facebook [44].

W2 Hadoop cluster at Facebook [44].

Table 1: Flow size distribution of realistic workloads.

triggers between two switches. For the concurrent burst from

H2∼ H15, PCN can keep the buffer at egress port P2 nearly

empty, and thus obtain an improvement of 3.5x and 3.4x in the

99th percentile FCT compared to DCQCN and TIMELY. And

for host H1, whose flows traverse two congested switches, the

flow transmission speed of PCN is at least 2.2x of DCQCN

and 1.7x of TIMELY.

7.3 Parameter sensitivity

As discussed in § 6.2, the minimal and maximal of weight

factor wmin and wmax determine the convergence speed and

oscillation amplitude in steady state. To evaluate the parame-

ter sensitivity, we repeat the concurrent burst simulation with

different wmin and wmax values. Fig.13 shows the result. With

the changes of wmin and wmax, PCN can always achieve the

satisfied performance. As wmax decreases, switch S0 receives

fewer PFC PAUSEs from its downstream device, but the 99%-

tile of FCT grows a little. Meanwhile, the value of wmin has

almost no impact on pause rate, but the small wmin increases

FCT slightly. The results indicate that our recommended pa-

rameter settings are proper.

7.4 Realistic Workloads

In this subsection, we evaluate the performance of PCN with

realistic workload.

Scenario: We consider an 8-pod clos network. Each pod

consists of 2 Leafs, 4 ToRs, and 64 hosts, and communi-

cates with other pods through 8 spines. The link capability

is 10Gbps below ToRs and 40Gbps above them, and the link

delay is 5µs. The over-subscription ratio is 1:1 at the ToR

switch layer, so does in other layers. To support multi-path
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Figure 14: Performance for realistic workloads.

capability, Equal Cost Multi Path (ECMP) routing scheme is

used. In this configuration, the congestion tends to occur at

the last hop. When PFC is employed to guarantee losslessness,

the root congestion at the last hop may spread to the whole

network.

Workloads: We choose two different workloads, whose

flow size distribution is listed in Table 1. These two workloads

are typical traffic pattern in operation data centers: (1) most

flows are short, and (2) most traffic is constituted by few but

large flows. The difference is that W2 contains more heavy-

tailed flows.

We generate over 50 thousands of flows with exponentially

distributed inter-arrival time, and configure the target load

at 0.6 for ToR down-links. The source and destination of

each flow are arbitrarily selected with a random in-cast ratio

ranging from 1 to 15.

Fig.14 presents the results. The generating rates of PFC

PAUSEs from different switch layers are drawn in Fig.14(a),

where the solid bat at the bottom indicates the PAUSE rate

from the ToRs, the middle stripe bar denotes that from the

Leafs, and the top empty bar shows that from the Spines.

In Fig.14(b), we draw the statistical FCT of all flows, and

Fig.14(c) shows the flow completion rate (FCR) i.e., the num-

ber of completed flows per second. Subsequently, we compare

the performance of PCN with QCN, DCQCN and TIMELY

under different workloads.

(1) W1 contains the most S size flows in number and the

most L size flows in bytes. Under this workload, the net-

work congestion condition would change dramatically. Al-

though PCN triggers 5.73x more PFC PAUSEs than QCN,

it achieves 1.60x faster 99%-ile FCT and 3.70x larger FCR.

This is because QCN reduces the sending rate of large flows

so drastically that the network becomes seriously underload.

Since PCN can rapidly detect the congestion point and ad-

just the rate of congested flows, short flows experience a low

queuing delay and complete quickly. This can improve the

overall FCT and increase FCR. Compared with DCQCN and

TIMELY, PCN avoids 64% and 75% PFC PAUSEs, speeds

up 1.75x and 2.35x in average FCT, and obtains 1.73x and

12.16x FCR, respectively.

(2) W2 is significantly heavy-tailed, where the S size

flows occupy almost 80% of the number and less than

1% of the bytes, while the XL size flows only take less

than 10% of the number but occupy almost all bytes. Un-

der this workload, PCN suppresses 35%/89%/99% PAUSEs,

speeds up 1.44x/1.57x/10.96x in average FCT and achieves

1.27x/1.13x/6.5x more FCR compared with QCN, DCQCN

and TIMELY, respectively.

7.5 External Evaluations

Furthermore, we conduct external evaluations to explore

PCN’s performance in more scenarios. The detailed descrip-

tions are in Appendix B, and the main findings are five folds.

Flow Scalability: PCN can hold as many as 1024 con-

current long flows, guaranteeing few PFC PAUSEs, low and

stable queue length, near-full network utilization, as well as

good fairness.

Adversarial Traffic: When facing dynamic flows entering

and exiting with an interval of 10∼100 control loops, the

end-to-end congestion control schemes fail to start the fast

rate increasing algorithm. Compared with QCN, DCQCN

and TIMELY, PCN can alleviate but not fully eliminate the

interruption from adversarial traffic.

Multiple Bottlenecks: In the parking lot scenario with N

bottlenecks, PCN allocates bandwidth following proportional

fairness. That is, it allocates 1
N+1

of capacity to the flow that

passes all N bottlenecks.

Multiple Priorities: When concurrent burst in higher pri-

ority leads to severe oscillation of available bandwidth in

lower priority, PCN triggers less PAUSE compared with DC-

QCN and TIMELY. Consequently, PCN outperforms other

schemes in speeding up the overall flow completion.

Deadlock: PCN can not essentially prevent PFC deadlock,

neither can other end-to-end congestion control schemes, but

can significantly decrease the probability of deadlock. Com-
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pared to DCQCN and TIMELY, PCN can reduce 79.2% and

96.7% of deadlocks, respectively.

8 Related Work

The lossless switching fabric is a lasting topic. Here we only

present a brief survey on the related work of lossless Ethernet

and its congestion management, as well as receiver-driven

rate control schemes.

Scaling RDMA over data centers. There are two lines

in scaling RDMA over data centers. The first line, such as

DCB [4] and RoCE [15, 26], attempts to enhance Ethernet

with lossless property using PFC. It requires little modifica-

tion to the well-tested RDMA transport stack but involves

new issues caused by PFC. So an appropriate end-to-end con-

gestion control scheme is needed. And the second line, such

as Resilient RoCE [34] and IRN [37], tries to improve the

RDMA transport stack to tolerate packet loss. Thus it can

scale RDMA over lossy networks. We prefer the first line. We

think the lossless Ethernet is more potential. On one hand, not

just for RDMA, lossless Ethernet makes it easier to enable

various well-tested transport protocols in data centers. It does

not require NICs to support selective retransmission using

the limited storage resources. On the other hand, lossless Eth-

ernet can avoid retransmission of lost packets, and then can

improve both network latency and throughput performance.

Lossless Ethernet switching fabric. It is always attrac-

tive to build cost-effective, efficient and large-scale lossless

switching fabric leveraging commodity Ethernet chips. The

related studies broadly follow three fundamental ways, which

are reservation, explicit allocation, and congestion manage-

ment. TDMA Ethernet [47] advocates reserving slots by de-

ploying TDMA MAC layer. Fastpass [43] conducts explicit

bandwidth allocations by a centralized arbiter to determine

the time at which each packet should be transmitted and the

path it should take. Whether TDMA Ethernet or Fastpass,

they leverage non-conflict bandwidth access to build lossless

Ethernet. However, due to slot wastage and unneglectable

signal overheads, their flexibility and scalability in large-scale

and ultra-high speed networks need to be further validated in

practice. The third approach is to enhance traditional lossy

Ethernet by introducing congestion management.

Congestion management for lossless Ethernet. IEEE

DCB task group [4] defines the congestion management

framework and develops concrete mechanisms, including

PFC [6] and QCN [5], to enhance traditional Ethernet to be

Converged Ethernet where losslessness should naturally be

indispensable. To enable RoCE deployment in large-scale

IP-routed data center networks, DCQCN [49] is developed

through replacing the congestion notification mechanism de-

fined in QCN with ECN in Layer 3, and then stitching together

pieces of rate adjusting laws from QCN [5] and DCTCP [12].

TIMELY [36] follows the implicit congestion detection mech-

anism developed by TCP Vegas [20] and uses delay measure-

ments to detect congestion, and then adjusts transmission rates

according to RTT gradients. Both explicit and implicit conges-

tion detection mechanisms in existing end-to-end congestion

control schemes cannot identify the real congested flows, thus

the performance issues in lossless Ethernet, such as HoL, con-

gestion spreading and unfairness, are hardly solved essentially.

In addition, IEEE 802.1 pQcz [7] has been supplemented to

prevent PFC harming victim flows by isolating congestion.

However, modification of current commodity switches is re-

quired to add more functions. In comparison, the congestion

detecting mechanism in our PCN can correctly identify con-

gested flows, moreover is practicable and back-compatible,

which endows fundamental advantages for congestion man-

agement in lossless Ethernet.

Receiver-driven rate control. Recently, a series of

receiver-driven rate control schemes have been proposed,

such as ExpressPass [21], NDP [27] and Homa [38]. Express-

Pass proactively controls congestion even before sending data

packets by shaping the flow of credit packets in receivers.

Both NDP and Homa also use the receiver-driven method to

allocate priority to different flows in lossy data center net-

works. The receiver-driven rate adjustment in our PCN not

only has the similar benefit of matching the incoming traffic

load to the network capacity in one RTT, but also can dras-

tically mitigate PFC triggers in one RTT as well, which is

especially appropriate for lossless Ethernet.

9 Conclusion

This paper re-architects congestion management for loss-

less Ethernet, and proposes Photonic Congestion Notifica-

tion (PCN), which is appropriate for lossless Ethernet by two

ingenious designs: (i) a novel congestion detection and iden-

tification mechanism to recognize which flows are really re-

sponsible for congestion; (ii) a receiver-driven rate adjustment

scheme to alleviate congestion in as fast as one loop control

round, i.e., one RTT. PCN can be easily implemented on

commodity switches with a little modification. Extensive ex-

periments and simulations confirm that PCN greatly improves

performance, and significantly mitigates PFC PAUSE mes-

sages and reduces the flow completion time under realistic

workload.
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A Theoretical Analysis

We build a fluid model of PCN to exhibit PCN’s good perfor-

mance of fast convergence, fairness, and stability. The main

symbols are summarized in Table 2.

A.1 Fluid Model

Suppose N sources share the bottleneck link with capacity C.

For each source i (i= 1, · · · ,N) and each CNP generating time

tk = kT (k = 1,2, · · ·), Ri(k), R̂i(k) and Q(k) denote the send-

ing rate and receiving rate of source i, and the queue length in

bottleneck link, respectively. Clearly, the queue length Q(k)
evolutes as follows

Q(k+1) = max{0,Q(k)+ [∑Ri(k)−C]T} (3)

As the associated egress port is not paused by its downstream

device and excessive packets are accumulated in buffer, we

regard the flow through this port is congested. Define the

congestion indicator function p(k)

p(k) =

{
0, i f Q(k+1) = 0

1, i f Q(k+1)> 0
(4)

When N sources share the bottleneck capacity C by the send-

ing ratio ηi(k) =
Ri(k)

∑N
j=1 R j(k)

. If the link is underflow, all incom-

ing traffic can arrive their receiver side. Consequently, the

receiving rate of each source satisfies

R̂i(k) = p(k)ηi(k)C+(1− p(k))Ri(k) (5)

With probability p(k) and receiving rate R̂i(k), source i will

change its sending rate and the weight factor according to the

corresponding adjustment rule. Thus, we have,

Ri(k+1) = p(k)R̂i(k)(1−wmin)+
Ri(k+1) =(1− p(k))[Ri(k)(1−w(k))+Cw(k)]

(6)

and

w(k+1) = p(k)wmin+
w(k+1) =(1− p(k))[w(k)(1−w(k))+wmaxw(k)]

(7)

The dynamic behavior of PCN congestion management sys-

tem can be described using Equation (3), (4), (5), (6) and (7).

Based on this fluid model, we analyze PCN’s properties in

terms of convergence, fairness, and stability.
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Variable Description

Ri Sending rate of Flow i

ηi Bandwidth allocation ratio, ηi =
Ri

∑Ri

R̂i Receiving rate of Flow i

w Weight factor

Q Bottleneck queue length

T CNP generating period

k Sequence of CNP generating periods

C Bottleneck link capacity

Table 2: Variables of fluid model
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Figure 15: Convergence of PCN.

A.2 Performance Analysis

A.2.1 Convergence

Without loss of generality, assume the queue associated with

bottleneck link is empty and the sending rate of N flows is

arbitrary at initial time 0. Hence, there are two cases.

(1) ∑Ri(0) > C: If the total rate exceeds the bottleneck

capacity, the corresponding queue increases and all flows

conduct the rate-decrease adjustment, thus,

{
Q(1) = [∑Ri(0)−C]T

Ri(1) = (1−wmin)ηi(0)C

Note that the total rate ∑Ri(1) = (1−wmin)C <C, thus the

buffer will be drained out in next several periods. When the

port is in congestion, the rate-decrease algorithm takes effect.

Since
Ri(1)

∑Ri(1)
= Ri(0)

∑Ri(0)
, we have

{
Q(k) = [∑Ri(0)−C]T − (k−1)wminCT

Ri(k) = (1−wmin)ηi(0)C
(8)

Equation (8) implies that the total sending rate ∑Ri(k) con-

verges to (1−wmin)C in one control loop, while the queue

length approaches to zero after ⌈1+ ∑Ri(0)−C

wminC
⌉ control loops.

The detail evolutions are illustrated in Fig.15(a).

(2) ∑Ri(0)≤C: If the total rate is less than the bottleneck

capacity, all flows run the rate-increase algorithm. Eventually,

the total sending rate will exceed the link capacity after K0

control loops, where K0 < 10 according to Fig.10. Therefore,

we have ∑Ri(k0) >C and Q(k0) = 0. Subsequently, the dy-

namic behavior of both queue and aggregate rate drawn in

Fig.15(b) are similar with those in above case.

In a word, PCN can achieve convergence of total rate to-

wards the bottleneck capacity as fast as in only one control

loop, and drain out backlog packets.

A.2.2 Fairness

Suppose the above convergence phase ends at the start of k1

control loop, where the buffer has been drained out, and the

sending rate of flow i is increased from (1−wmin)ηi(k0)C,

then,

{
Q(k1) = 0

Ri(k1) = (1−wmin)
2ηi(k0)C+wminC

(9)

and

ηi(k1) =
Ri(k1)

∑Ri(k1)
=

(1−wmin)
2ηi(k0)+wmin

(1−wmin)2 +Nwmin

(10)

Note that ∑Ri(k1) = [1+(N−2+wmin)wmin]C >C, the bot-

tleneck link becomes real congested and the RP conducts the

rate-decrease adjustment in the next period, thus we have

{
Q(k1 +1) = (N−2+wmin)wminCT

Ri(k1 +1) = (1−wmin)ηi(k1)C
(11)

Since the aggregate sending rate will become below C, the

backlog packets in queue will be drained out at a rate of wminC

per period and the sending rate is kept, then

{
Q(k1 + k) = (N− k−1+wmin)wminCT

Ri(k1 + k) = (1−wmin)ηi(k1)C

Obviously, the buffer will become empty again at the start-

ing of k1 +N control loop, and the sending rate of flow i is

increased from (1−wmin)ηi(k1)C, thus

{
Q(k1 +N) = 0

Ri(k1 +N) = (1−wmin)
2ηi(k1)C+wminC

(12)

and

ηi(k1 +N) =
(1−wmin)

2ηi(k1)+wmin

(1−wmin)2 +Nwmin

(13)

Comparing equation (9) and (12), we can find that PCN re-

peats the one period of rate-increase and N-1 periods of rate-

decrease, as illustrated in Fig.16. And from equation (10)

and (12), we also obtain the following dynamic evolution of

bandwidth allocation ratio of each flow,

ηi(k1 + kN) = aηi(k1 +(k−1)N)+b

= akηi(k1)+∑
k−1
j=0 a jb

= ak+1ηi(k0)+∑k
j=0 a jb
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Figure 16: Dynamic behavior of PCN.

where a= (1−wmin)
2

(1−wmin)2+Nwmin
∈ (0,1), b= wmin

(1−wmin)2+Nwmin
. Con-

sequently, as k→ ∞, there is

ηi(k1 +Nk)→
b

1−a
=

1

N
(14)

That is, PCN can always achieve fair bandwidth allocation

regardless of the initial sending rates of flows and parameter

settings.

A.2.3 Stability

Finally, we show the steady state behavior of PCN. As il-

lustrated in Fig.16, the queue length varies between 0 and

Q(k1 +1) periodically. Based on equation (11), the maximal

queue oscillation ∆Q satisfies

∆Q = Q(k1 +1) = (N−2+wmin)wminCT (15)

Similarly, the sending rate also changes in each N control

loops. As Fig.16 shows, the aggregate rate increases in k1 +
kN period and decreases in k1+kN+1 period. Note that each

flow achieves fair bandwidth allocation ratio in the steady

state, i.e., ηi→
1
N

, thus we can obtain the following derivation

based on equation (11) and (12),

Ri(k1 + kN) = (1−wmin)ηiC+wminC

→ [1+(N−1)wmin]
C
N

Ri(k1 + kN +1) = (1−wmin)ηiC

→ (1−wmin)
C
N

Therefore, the rate oscillation ∆Ri around the fair share C
N

satisfies

∆Ri→ wminC (16)

Equation (15) and (16) indicate the oscillations of both the

queue and rate are bounded in steady state, i.e., the stability

of PCN is fine.

B External Evaluations

In this section, we will explore how PCN performs in artificial

cases, including flow scalability, adversarial traffic, multiple

bottlenecks, multiple priorities and deadlock.
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Figure 17: Flow scalability test.

B.1 Flow Scalability

Using the simple 3-dumbbell topology in §7.1, we vary the

number of flows from 4 to 64 (testbed) and 1024 (ns-3) to

test the performance of PCN under more flows. The queue

length, pause rate, link utilization and fairness are measured

and calculated, and the results are presented in Fig.17.

First, we measure the average queue occupancy and pause

rate as the number of concurrent flows increases. In PCN,

the average queue length is no more than 60KB and 100KB

in the testbed and ns-3 simulator, respectively. At the same

time, there are no PAUSE frames generated. In contrast, with

4∼ 256 flows, DCQCN’s queue length grows with the number

of flows, QCN and TIMELY keep the queue length around

50KB ∼ 100KB and 100 ∼ 200KB, respectively. But QCN,

DCQCN and TIMELY maintain a very high queue occupancy

beyond 256 flows, which indicates the end-to-end congestion

control fail to take effect. As for QCN, DCQCN and TIMELY,

PFC is rarely triggered when the number of flows is less than

256, but persistent PAUSE frames are generated.

Second, we measure the utilization of bottleneck link. PCN

achieves near 100% utilization in all case with both testbed

and ns-3 simulator. QCN, DCQCN and TIMELY have a little

under-utilization with the increase of concurrent flows, but

recover full utilization with more than 256 flows. However,

this recovery of link utilization is due to PFC rather than the

end-to-end congestion control schemes.

Finally, we calculate the Jain’s fairness index [30] using

the throughput of each flow at 500ms interval. With a large

number of flows, the fairness index of QCN, DCQCN and

TIMELY drops significantly. Because they can not prevent

PFC from persistent triggers, the inherent unfairness problem

of PFC exhibits. On the opposite, PCN achieves good fairness

in all cases.
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Figure 18: Performance of various schemes under adversarial traffic.
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Figure 19: Performance of various schemes under multi-bottleneck scenario.

B.2 Adversarial Traffic

Subsequently, we test PCN using an adversarial traffic pat-

tern. In the basic scenario in Fig.1, we set long flows F0 and

F1 transmit persistently, and burst flows from H2∼H15 to

R1 enter and exit the network at different intervals, varying

from 50µs (1 control loop) to 5000µs (100 control loops). We

simulate PCN, QCN, DCQCN and TIMELY, and measure the

throughput of the two bottlenecks (link S0→S1 and S1→R1)

and different flows. The results are drawn in Fig.18.

The first bottleneck, link S0→S1, is irrelative with the burst

flows. Fig.18(a) shows that under PCN, QCN and TIMELY,

link S0→S1 can achieve near-full utilization. But when the

burst flows becomes more frequent, DCQCN trends to loss as

high as 15% of throughput. This is because switch S1 pauses

S0 when the burst flows make P2|S1 congested, and DCQCN

conducts improper rate decrease for the victim flow F0.

The second bottleneck, link S1→R1, is frequently inter-

rupted by the burst flows. Fig.18(b) exhibits that when the flow

arrival interval shrinks, the congestion-relative flow F1 occu-

pies lower throughput but the link utilization becomes larger.

The performance issue occurs when the flow arrival interval

is a little large (>500µs, 10 control loops). This means, their

rate increase phase is interrupted by new-arrival flows. We

can see that PCN keeps the link throughput at 30Gbps, while

QCN, DCQCN and TIMELY remains at 23Gbps, 25Gbps

and 29Gbps, respectively. That is, PCN can alleviate, but not

eliminate, the interruption from adversarial traffic.

B.3 Multiple Bottlenecks

In a multi-bottleneck scenario, the NP-ECN method of PCN’s

CP may encounter several issues. On one hand, when the first

congestion point marks ECN on all packets, the second con-

gestion point may be paused, thus some flows are the victim

but they have been marked with ECN already. On the other

hand, flows through multiple congestion points may have a

larger probability to be marked with ECN, resulting in un-

fairness. To test how PCN performs in multiple bottleneck

scenario, we conduct a series of simulations using the parking

lot topology in Fig.19(a). There are N bottlenecks and N +1

flows, where we set N = 2,4,6,8,10. F0 passes all the bottle-

necks while other flows pass only one bottleneck. We measure

the throughput of F0 and F1, and their sum is the throughput

of link1. The result is drawn in Fig.19(b). Obviously, link1

achieves the similar utilization regardless of the number of

bottlenecks. PCN can always provide more than 98% of link

utilization, while the link utilization under QCN and DCQCN
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Scheme S(P1) M(P2) L(P3) XL(P4)

PCN 0 0 0.10 171.49

QCN 0 0 0.28 110.49

DCQCN 0 0 0.26 175.02

TIMELY 0 0 1.09 210.36

Table 3: Generating rate of PFC PAUSEs for

multiple priorities.
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Figure 20: Average/99%-ile flow completion time for multiple priorities.

and TIMELY is 90%, 88% and 95%, respectively. Meanwhile,

F0 is allocated less bandwidth than F2. Actually, the band-

width allocation of PCN conforms to proportional fairness,

where F0 obtains about 1
N+1

of the capacity. QCN allocates

F0 less than the proportional fairness. DCQCN allocates F0

more than the proportional fairness, but also less than the

max-min fairness, i.e, half of the capacity.

B.4 Multiple Priorities

The switching fabric in data center typically provides multiple

priorities to improve performance, especially for minimizing

flow completion time. The principle “short flow first” has been

adopted in a series of works such as pHost [24], pFabric [14]

and PIAS [17]. However, the concurrent burst in higher prior-

ity may trigger more PAUSE in lower priority, and impact the

end-to-end congestion control schemes. To demonstrate and

confirm this fact, we configure W1 and repeat the simulation

in § 7.4, where the flows are classified into four priorities

according to their size, namely, the S size flows are in the

first priority and the XL flows are gathered in the fourth prior-

ity. The switches forward packets following the strict priority

scheduling.

The generating rate of PFC PAUSEs and FCT for different

priorities are listed in Table 3 and shown in Fig.20. For S

and M flows in these two high priorities, few PFC PAUSE

messages generate regardless of congestion control schemes.

Thus, these flows can obtain almost the same FCT under three

congestion control schemes. On the contrary, for the L and

XL flows in the two low priorities, PFC PAUSEs can not be

avoided. In this case, PCN triggers less PAUSE compared

with DCQCN and TIMELY. QCN reduces PAUSE generated

for XL flows by underutilizing available bandwidth. PCN
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Figure 21: Performance of various schemes under deadlock

scenario.

outperforms the other three schemes in speeding up the overall

flow completion time.

B.5 Deadlock Scenario

A common concern in Lossless Ethernet is that PAUSE can

lead to deadlocks [28]. To explore PCN’s effort to avoiding

deadlock, we conduct a simple simulation using the topology

illustrated in Fig.21(a). It comes from one pod in the clos

network used in § 7.4, but link L0-T3 and link L1-T0 are

failed, such that there is a cycle buffer dependency (CBD) as

the red line draws. We simulate PCN, DCQCN and TIMELY

with the W2 workload. The target load is 0.6 at ToR down-

links with in-cast ratio ranging from 1 to 15. Each scheme is

tested for 1000 times and every simulation lasts for 500ms. We

record the time when deadlock occurs, and draw the statistical

results in Fig.21(b). Among the 1000 simulations, PCN only

encounters with deadlock for 28 times, while DCQCN and

TIMELY are deadlocked for 134 and 870 times, respectively.

The advantage of PCN comes from the positive effect of

mitigating PFC triggers and stopping congestion spreading.
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