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Abstract

Color images have a gamut that typically spans three dimensions. Nevertheless, several important applications,

such as the creation of grayscale images for printing and the re-coloring of images for color-deficient viewers, re-

quire a reduction of gamut dimension. This paper describes a technique for preserving visual detail while reducing

gamut dimension. The technique is derived by focusing on the problem of converting color images to grayscale.

A straightforward extension is then provided that allows re-coloring images for color-deficient viewers. Care is

taken so that the resulting images remain within the available gamut and visual artifacts are not introduced.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:

Enhancement-Filtering

1. Introduction

“Black and white” televisions and monitors have essentially

disappeared from the commercial landscape, but grayscale

printing devices abound. In its grant proposal guide [Nat04],

the US National Science Foundation warns investigators that

“For cost and technical reasons, the Foundation cannot, at

this time, reproduce proposals containing color. PIs, there-

fore, generally should not rely on colorized objects to make

their arguments.” When preparing documents for publica-

tion in any venue, authors must often convert their color

images to grayscale to comply with publisher restrictions.

The standard solution to this conversion problem is sim-

ple and robust: linearly map pixel luminance values to the

available grayscale. Although this procedure produces sat-

isfactory results in many cases, in others it does not. Au-

thors do not always have complete control over image de-

sign (e.g. photographs), and so a significant portion of the

image information content may appear in the chrominance

variations. In Figure 1 we show some examples of images of

this type. When the color images (left column) are mapped

to grayscale based on luminance (middle column), signifi-

cant information is lost. An alternative mapping to grayscale

(right column) can preserve some of the information.

The purpose of this paper is to suggest a method for con-

† Dept. of Comp. Sci., email:{rkarl,rmg,westall}@cs.clemson.edu

verting color images to grayscale in a way that, to the ex-

tent possible, preserves image information. We contend that

there are two components to information preservation:

• Preserving contrasts: Colors that are readily distinguish-

able in the original image should be represented by gray

values that are also readily distinguishable. In terms of a

perceptual color space (e.g. CIELAB), we would like the

distance between any pair of image colors to be propor-

tional to the distance between their gray values.

• Maintaining luminance consistency: Shadows, high-
lights, and color gradients provide depth cues through

luminance variations. Grayscale images in which these

cues exhibit luminance reversals, e.g. lightened shadows

or darkened highlights, can be disorienting. These effects

can be ameliorated if luminance gradients within nar-

rowly defined chrominance bands are maintained during

the translation to grayscale.

We incorporate these components into an objective function

that allows us to cast the problem in the form of a con-

strained, multi-variate optimization. We then derive a se-

quence of linear programming (LP) problems whose solu-

tions converge to the desired optimum. A straightforward

extension of the method will allow us to re-color images in

a way that preserves information for color-deficient viewers.

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
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(a) (b) (c)

Figure 1: Color to Grayscale: (a) Original image, (b) mapping luminance to grayscale, (c) proposed, alternative mapping.
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1.1. Related Work

There are several related problems that have been addressed

extensively in the literature. The goal of color quantiza-

tion [Hec82] is to preserve image detail while reducing the

number of colors in the image from n to m, where usually

n >> m. Color quantization algorithms have two compo-

nents, palette selection and mapping. Clever palette selection

is the major component and critical to the success of these

algorithms. Mapping image colors to the selected palette is

usually a simple, three-dimensional error diffusion [FS75].

In our problem, the palette is fixed (grayscale), and so the

principal benefit of any color quantization algorithm is lost.

Simple diffusion mappings to grayscale are almost always

inadequate.

Gamut mapping attempts to preserve the appearance of

an image when it is displayed on two or more devices that

have different available color gamuts. Stone et al. [SCB88]

describe several principles to be followed to create pleas-

ing gamut maps. Two are directly applicable to producing

grayscale images. First, the gray axis of the source gamut

should be transformed so that it is aligned with that of the

destination gamut. For a color-to-grayscale transformation,

this implies that we should map the gray axis of the color im-

age (luminance) to grayscale. This is precisely the standard

mapping, upon which we are trying to improve. The second

principal is that luminance contrast should be maximized.

For grayscale images, this implies that we should normalize

the results over the target gray range. This normalization will

be an integral part of our method.

An important instance of gamut mapping is the tone map-

ping problem of displaying high dynamic range images on

low dynamic range displays [TR93]. The objective is to pre-

serve an abundance of visual information within the con-

straints of a limited gamut, and our approach to grayscale

conversion shares this goal. Nevertheless, tone mapping is

generally concerned with compression of the gamut range,

whereas we are interested in compression of gamut dimen-

sionality.

Stollnitz et al. [SOS98] examine the problem of printing

a color image with an arbitrary number of inks. For the case

of a single ink, their solution is also to use luminance, i.e.,

the standard mapping.

Several methods have been proposed for solving the gen-

eral problem of reducing an n-dimensional set of data to

m dimensions where m < n. Principal Component Analy-

sis [Jol02] (PCA) is one such method. A set of n orthogo-

nal vectors is constructed, where each points in the direction

of the highest remaining variation in the original data set.

The m vectors that capture the most variation form a basis

of the lower dimensional space. Choosing the axis of maxi-

mum variation in the color image data does provides a high

contrast grayscale image. Nevertheless, significant smaller

detail usually appears in the second principal component,

and such is lost to this technique. Further, it is difficult to

incorporate constraints on luminance consistency.

Multi-dimensional Scaling [CC94], or MDS, is an alter-

native to factor analysis for detecting meaningful underlying

dimensions in a set of multi-dimensional data points. It most

often takes the form of minimizing a quadratic function of

the set of all distances between pairs of points in the multi-

dimensional data. Because the input involves all observed

distances, the technique does not often scale well to large

data sets. For the special case of reduction to a single di-

mension (uni-dimensional scaling), Hubert et al. [HAM02]

provide an overview of several approaches. In general, these

do not scale well to large data sets, and the addition of exter-

nal constraints can be problematic. Nevertheless, as shown

in Section 2, our own approach can be characterized as a

special case of MDS.

Locally linear embedding [RS00] (LLE) takes a slightly

different approach to dimension reduction in that it assumes

each data point can be constructed as a linear combination

of its neighbors. The choice of neighborhood is crucial for

satisfactory results. As is the case for PCA, it is unclear how

to incorporate constraints into LLE.

ISOMAP [TdSL00] is a popular technique that is similar

to LLE in that it requires a neighborhood about each high

dimensional point. Here the neighborhood is used to create

a weighted graph that approximates the structure of the data.

Traditional MDS techniques are then used to create a lower

dimensional configuration from the weighted graph.

In the domains of medical imaging or remote sensing,

multiple high-dimensional images from a single source are

often obtained, e.g., a CT scan and an MRI scan of the same

region of a patient. The goal of image fusion is to create

a single image that captures the salient features of the en-

tire original data set and thereby allows visualization of data

correlations. There have been several methods proposed for

image fusion. They include PCA [SOM
∗87], linear combi-

nations of the data that maximize contrast objective func-

tions [HB96], analysis using wavelets [MLM95], and neural

network schemes with self-organizing maps [Man96]. Lu-

minance consistency is not typically a goal of image fusion

methods, and so these methods are not easily constrained.

Socolinsky [Soc00] and Socolinsky and Wolff [SW02]

construct grayscale images to match local contrast in color

images. They regard contrast as a gradient and then recover

grayscale by solving a Poisson equation. They specifically

avoid introducing global contrast to avoid artifacts when

computing sub-images or sequences of images. As a result,

their method has difficulty with certain classes of images,

such as the three color example in Figure 2. Here the contrast

between adjacent red and gray blocks matches the contrast

between adjacent gray and green blocks. A grayscale trans-

formation based solely on local contrast sends red and green

to identical gray values. Use of global contrast information

will separate the three values.

c© The Eurographics Association and Blackwell Publishing 2005.
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Figure 2: Why global contrast is necessary: original color

(left), transformation using local contrast (center), and

transformation using global contrast (right)

Gooch et al. [GOTG05] describe a technique for convert-

ing color to grayscale in which they iteratively adjust the

gray value at each pixel to minimize an objective function.

To resolve the ordering of gray values arising from original

colors of differing hues, they provide a user-controlled pa-

rameter.

Photographers often encounters difficulties when trying to

record color images on monochromatic film. The traditional

solution to this problem is to use a “contrast filter” over the

lens [Ada81]. These filters come in a variety of hues, each

of which attenuates the complementary hue of the filter. For

example, to increase the contrast between clouds and sky,

a yellow filter is often used. This attenuates the blue sky,

producing light clouds on a dark background. In general, the

choice of filter is left to the eye of the artist.

1.2. Color Vision Deficiencies

Deficiencies in color vision arise from differences in pig-

mentation of optical photoreceptors [Wan95]. Normal vi-

sion is characterized by three distinct pigmentations of the

photoreceptors (cones), which collectively allow reception

of long, medium, and short wavelengths of the visible spec-

trum. Anomalous trichromatopia is a condition in which the

pigment in one cone is not sufficiently distinct from the oth-

ers. The viewer still has three distinct spectral sensitivities,

but the separation is reduced. Dichromatopia is a condi-

tion in which the viewer has only two distinct pigments in

the cones. For both dichromatopia and anomalous trichro-

matopia, there are three subclassifications based on which

cone has the abnormal pigmentation. Deficiencies in cones

sensitive to long, medium, and short wavelengths are re-

ferred to as protanopic, deuteranopic, and tritanopic, respec-

tively. Protanopic and deuteranopic deficiencies, the most

common forms of color-deficient vision, are characterized

by difficulty distinguishing between red and green tones. Tri-

tanopic deficiencies are associated with confusion between

blue and yellow tones. Monochromatism is another form of

deficient color vision, but it is quite rare.

Significant work has been done in simulating color defi-

cient vision [MG88,Kon90, BVM97]. From studies of sub-

jects who have normal vision in one eye and color-deficient

vision in the other, it has been determined that there are

specific wavelengths that are perceived identically by those

with normal vision and those with vision deficiencies. For

protanopes and deuteranopes, these are 575nm (yellow) and

475nm (blue). For tritanopes, these are 660nm (red-orange)

and 485nm (cyan). From knowledge of these invariants,

color-deficient vision can be simulated. Colors in RGB space

are transformed into an LMS (long, medium, short) color

space that is based on cone response. Cone deficiencies are

then simulated by modifying the response of the deficient

cone. Meyer and Greenberg [MG88] find lines of “con-

fused colors” by intersecting lines of chrominance. Kondo

[Kon90] uses a series of linear transforms governed by a pa-

rameter specifying the degree of deficiency in each particular

component. Brettel et al. [BVM97] project colors in the cone

response space onto a a pair of planes that intersect along a

neutral color line and represent the gamut of the deficient

viewer.

Given the ability to simulate color-deficient views, it may

be possible to re-color images in such a way that confused

detail is restored for color-deficient observers. Reinhard et

al. [RAGS01] describe a strategy for matching color statis-

tics between two images and then transferring the color

distribution from one image to another. Although this can

be useful for compressing a full color image into a color-

deficient gamut, it does not attempt to preserve the perceived

distances between contrasting colors in the original image.

Walraven and Alferdinck [WA97] describe a color palette

editor that is coupled with simulation of a color deficient

viewer. The simulator is used to determine which pairs of

colors in the current palette would have perceived distances

below a critical threshold in a color-deficient gamut. Such

colors are marked for re-consideration in the palette design.

The editor can also select a default palette for which all col-

ors meet threshold specifications.

Daltonization [DW] is a procedure for re-coloring an im-

age for viewing by a color-deficient viewer. Here, a user

specifies parameters for stretching contrast between red and

green hues, as well as parameters for modulating blue and

yellow contrast and modulating luminance. Simulation of

a deuteranopic viewer is provided for evaluating the out-

put image. Parameter selection is not automated, although

three “default” parameter settings are offered. The results

are highly dependent upon the choices for the parameters.

Ichikawa et al. [ITK
∗

03, ITK∗04] propose an automated

method for re-coloring images that is based on a genetic al-

gorithm search. A small subset of the colors in the image

is selected and used to construct an objective function that

both maintains color distances and constrains the extent of

color remapping. The result is then interpolated across the

entire image. In this process, there is no consideration of

constraints on luminance consistency or constraints to keep

colors within a target gamut. The method also has numer-

ous parameters to adjust in order to control the quality of the

output image.

Rasche et al. [RGW05] discuss an automatic method for

both grayscale conversion and re-coloring images. They use

a subset of the image colors to find a linear transform that

c© The Eurographics Association and Blackwell Publishing 2005.
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(a) (b) (c) (d)

Figure 3: Luminance Consistency and Linear Projection Mapping (a) to (b) violates luminance consistency; shadows and

highlights appear reversed. Mapping (c) to (d) is based on a linear projection; widely differing colors are mapped to similar

gray values.

minimizes their objective function, which is designed to en-

force proportional color differences across the remapping.

For the grayscale case, the transformation involves project-

ing the colors onto a single vector. For the re-coloring case,

it involves a linear transformation in homogeneous CIELAB

coordinates. Because their method is based on linear trans-

formations, it has advantages in speed and simplicity, but it

also carries attendant limitations. In particular, it has difficul-

ties with images that exhibit smooth variation along multiple

color dimensions, and it does not offer any constraints on lu-

minance consistency. Examples of each are shown in Figure

3. In the re-coloring case, their method does not constrain

the transformed colors to the available gamut.

2. Constrained Multidimensional Scaling

We seek a mapping of color to grayscale that preserves

contrasts and maintains luminance consistency. The two

goals can be expressed in the form of a constrained, multi-

dimensional scaling problem. We first define a quadratic ob-

jective function that incorporates contrast preservation. We

briefly review the technique, known as “majorization,” that

is commonly used to optimize functions of this form. We

then add constraints that enforce luminance consistency and

observe that an approximation will allow us to express the

desired solution in terms of a sequence of linear program-

ming problems.

2.1. Majorization

As noted in Section 1, we would like our grayscale map-

ping to preserve global contrast. We express this in terms

of an objective function by requiring that differences be-

tween mapped gray values should remain proportional to

differences between the original color values. Specifically,

we seek a minimum of

s(g0,g1, ...,gn−1) =
n−2

∑
i=0

n−1

∑
j=i+1

(∣

∣gi−g j
∣

∣/δi j−K
)2

(1)

where gi is the mapped gray value corresponding to color ci,

K is the target proportionality constant, and δi j = |ci− c j|,
the distance between ci and c j in CIELAB space.

Equation 1 is referred to in the MDS literature as STRESS

[CC94]. STRESS is non-linear. It is generally solved by

a method known as "majorization", in which the objective

function is minimized by solving an iterative sequence of

unconstrained quadratic problems. The sequence of minima

will converge to a local minimum of (1).

To establish the bounds, we first expand the summands as

(|gi−g j|/δi j)
2−2K|gi−g j|/δi j+K

2
(2)

and observe that the sum of the quadratic terms can be writ-

ten succinctly

n−2

∑
i=0

n−1

∑
j=i+1

(|gi−g j|/δi j)
2 = gTQg (3)

where

Qi j =

{

−δ−2i j i �= j

∑k �=i δ
−2
ik

i= j
(4)

To bound the linear terms, we observe that for any vector y

of length n,

|gi−g j| |yi− y j| ≥ (gi−g j)(yi− y j) (5)

and so if yi �= y j ,

n−2

∑
i=0

n−1

∑
j=i+1

(|gi−g j|/δi j) ≥
n−2

∑
i=0

n−1

∑
j=i+1

(gi−g j)

δi j

(yi− y j)

|yi− y j|

(6)

We conclude that

n−2

∑
i=0

n−1

∑
j=i+1

(|gi−g j|/δi j) ≥ g
T
Ly (7)

where

Li j =

⎧

⎨

⎩

−1/(δi j|yi− y j|) i �= j, yi �= y j
0 i �= j, yi = y j
−∑k �=i Lik i= j

(8)
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We now have an upper bound for (1):

s(g0,g1, ...,gn−1) ≤ g
T
Qg−2KgTLy+((n−1)n/2)K2

(9)

which is minimized by the solution of the linear system

Qg= KLy (10)

where Q is symmetric and positive semidefinite. Thus, to

minimize (1), we can choose an initial random value for y,

and iterate: solve (10) for g, set y = g, and repeat until con-
vergence. Note that a solution of (10) with y = g is a mini-
mum of the original function (1).

2.2. Constrained Majorization

Maintaining luminance consistency within narrow chromi-

nance bands will require that we add constraints of the form

gi ≥ g j to our optimization of (1). In terms of majorization,

this implies that (10) will no longer (necessarily) have a so-

lution, and we must approximate. We do this by introducing

n additional variables, vi, used to represent per-component

error in (10). We then express our goal in terms of the linear

programming problem

minimize ∑i vi (11)

subject to g j−gk ≥ 0, ( j,k) ∈ D

−g j ≥−100 all j

vi+Qig≥ KLiy,

vi−Qig≥−KLiy

where Qi and Li are the ith rows of Q and L, and D is the

set of indices of those colors with order-constrained lumi-

nance values. Note that the second constraint arises from the

maximum value, 100, for any gray level in CIELAB space,

and that a constraint, vi ≥ 0, is implicit in the final pair of

constraints. All gray levels are non-negative.

3. Implementation

Several implementation details must yet be addressed. These

include selection of the target proportionality constant, K,

luminance constraint selection, and handling images with

large numbers of colors.

Proportionality constant: There are at least two reason-

able choices for the target proportionality constant, K. The

most obvious is K = 100/cmax, where cmax denotes the max-
imum CIELAB distance between any pair of colors in the

original image, and, as noted earlier, 100 is the maximum

distance between gray values in CIELAB space. A second

choice, which tends to heighten contrast, is to weight gray

value differences equally with color differences, i.e., K = 1.
We provide comparisons in Section 5. In an ideal solution,

the set of ratios, |gi−g j|/|ci− c j|, would have mean K and

variance 0.

Constraints: To preserve luminance consistency, we

must choose constraints so that colors with similar chromi-

nance are mapped to a grayscale order that matches their

luminance order. For this, we need a threshold, ε, on the dif-

ference

∆i j =

√

(

a∗i −a
∗
j

)2

+
(

b∗i −b
∗
j

)2

(12)

in CIELAB color space. If ∆i j ≤ ε, the pair of colors are

deemed similar and a constraint is added. If the luminance

of ci is less than that of c j , the constraint, gi ≤ g j, is added.
The threshold, ε, should be the lowest value that still avoids

introduction of the luminance-reversal artifacts such as light-

ened shadows or darkened highlights. In practice, it appears

that values of ε between 10 and 20 generally produce visu-

ally pleasing images. This step can introduce a large number

of redundant constraints, and we eliminate those that are im-

plied by transitivity.

Handling large numbers of colors: Images of interest

often have hundreds of thousands of colors. The execution-

time performance of MDS does not scale well to such large

data sets. To attempt to work around this deficiency, sev-

eral proposals for “sparse MDS” have been put forth. One

method is to choose a subset of the total points to be “land-

mark points”, which carry increased weight in determin-

ing the mapping. In one approach to the use of such land-

mark points, the system is solved by considering only those

pairs of points for which at least one member of the pair

is a landmark point. This approach is used by Gansner et

al. [GKN04] for drawing large graphs. In another, two-pass

approach, a dense MDS is carried out only on the landmark

points, and then the remaining points are mapped based

on the results of the dense MDS. This technique is used

by Kruskal and Hart [KH66] and de Silva and Tenenbaum

[dST03].

We use color quantization to select 256 colors as land-

mark points and then employ a two-pass approach. After

mapping the landmark points, we then wish to map the re-

maining points to minimize

t(g0,g1, ...,gn−1) =
n−1

∑
i=0

255

∑
j=0

(

|gi− g̃ j|/δi j−K
)2

(13)

where gi is a gray value to be determined, g̃ j is the gray

value already determined for the jth landmark color, and δi j

is the CIELAB distance from ci to the j
th landmark color.

This minimization has a form similar to (1), except that the

g̃ j values are known. Expanding (13) as before, we have a

bound:

n−1

∑
i=0

255

∑
j=0

(

|gi− g̃ j|/δi j−K
)2

≤ gTHg−2KgT J+R (14)

where

Hi j =

{

∑
255

k=0 δ−2
i,k

i= j

0 otherwise
(15)

c© The Eurographics Association and Blackwell Publishing 2005.
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Colors Solving Interpolating

Berries 1,415,424 22.4 sec 1260.4 sec

Candy 367,136 34.8 sec 365.0 sec

Flower 338,010 22.5 sec 307.5 sec

Grid 43 0.041 sec -

Table 1: Timing: Results for the grayscale images shown in

Figure 1. In each case except the “Grid” image, the solu-

tion was two-phase, with an initial MDS over 256 landmark

colors followed by an interpolation step. The “Grid” image

was solved for all colors without interpolation.

Ji =
255

∑
j=0

(

g̃ j

Kδ2i j
+

(yi− g̃ j)

δi j|yi− g̃ j|

)

(16)

R is a constant, and vector y is to be used, as before, in itera-

tion. Since H is diagonal, the right side of inequality 14 has

a minimum value

gi =
KJi

Hii
(17)

To maintain luminance consistency, we must use constraints

when interpolating the results. We find upper and lower

bounds on each interpolated value by thresholding the dif-

ference in chrominance between ci and all the landmark col-

ors. If ∆i j ≤ ε, g̃ j is a candidate for either an upper or lower

bound on gi, depending on the luminance order between ci
and the jth landmark color. The interpolated solution is then

gi =min

(

max

(

KJi

Hii
, gli

)

, gui

)

(18)

where gli and g
u
i are the lower and upper bounds of gi.

4. Results

Our method is easily implemented using any of a large col-

lection of linear programming libraries. We used the CLP

solver that is part of the COIN-OR collection of optimization

software (http://www.coin-or.org). Timing results for the im-

ages shown in Figure 1 are given in Table 1. For the first

three images we used the two-phase approach described in

the previous section and quantized the original image to 256

colors. The MDS solution for the quantized set was then in-

terpolated over the original image data using (18). The fourth

image (blocks of constant color), contained relatively few

colors, and so the mapping was computed directly. In each

case the proportionality constant, K, was 100/cmax

5. Evaluation

To evaluate the effectiveness of our grayscale transforma-

tion, we performed a small experiment to measure viewer

preference. The color images from the first three rows of

Figure 1, as well as those from Figure 4, were used. All im-

ages were converted to grayscale by three methods, the stan-

dard mapping of luminance to gray, our method with K = 1,

Figure 4: Additional Images: Images used, along with the

first three images in Figure 1, for experimental evaluation.

and our method with K = 100/cmax. A sequence of moni-

tor pages, each containing a color image and a pair of cor-

responding grayscale images, was presented to each of 17

study participants. All participants were graduate students

with some background in either computer graphics, image

processing, or design. An exhaustive paired comparison was

used for each of the six images. Each participant was in-

structed to choose the grayscale image that best represented

the visual detail of the color original. We used Thurstone’s

Law of Comparative Judgment [Tor67] to arrange the paired

preferences for each image in a linear scale. A 95% con-

fidence interval was computed, as discussed by Braun et

al. [BFA96]. There were no unanimous decisions, and so no

special handling of such cases was necessary for the scaling.

To determine the overall scales for the techniques, we

would ordinarily average the scale values across all images,

but there is a logical partition in our data. The grayscale im-

ages produced from the color images of Figure 4 were all

visibly similar, but those produced from the color images

of Figure 1 were appreciably different from one another.

To avoid skewed results, we averaged separately across the

scale values of the images in each group. The results for

the “similar” grayscale images can be seen in Figure 5 (a).

Here, there was no significant difference among any of the

three methods we tested. This is not surprising, given the vi-

sual similarity of the grayscale images. Figure 5 (b) shows

the results for the images from Figure 1. Here, the standard

mapping of luminance to grayscale and our mapping with

K = 1 did not show any significant difference, but our map-
ping with K = 100/cmax was significantly preferred. Figure
5 (c) shows the results of handling all images together.

6. Re-coloring for Color-Deficient Observers

We can use also Equation 1 to create a false color image that

will preserve image information that might be lost if the orig-

c© The Eurographics Association and Blackwell Publishing 2005.
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Figure 5: Experimental results: Scalings resulting from paired-choice experiment. (a) Scales from images in Figure 4, (b) scales

from the first three images in Figure 1, and (c) scales from all data. The vertical scale is dimensional-less with arbitrary origin.

inal color image were viewed by a color-deficient observer.

The objective here is not to create an image that contains

the same level of detail for all viewers, that is, for observers

with normal vision and those with various color deficien-

cies. Rather, it is to create multiple versions of the image,

each tailored to the visual characteristics of the viewer.

We wish to useMDS tomap three-dimensional image col-

ors to the two-dimensional surface of colors distinguishable

by each class of color-deficient observer. In CIELAB color

space, the surface of distinguishable colors, as simulated by

Brettel et al. [BVM97], is not flat. This suggests a need to

parameterize the surface and map the computed configura-

tion with this parameterization. Nevertheless, this surface

has low curvature, and we can approximate using a plane

containing the luminance axis. We have found normals of the

approximating planes to be (0.00,0.99,0.14) for the protan
and deuteran cases and (0.0,−0.58,0.81) for the tritan case.

We simultaneously eliminate the need for constraints on

luminance and reduce the problem to one-dimensional by

setting output luminance to input luminance. Nevertheless,

we will need to constrain the gi values to the available gamut,

and the chromaticity range is a function of luminance. We

compute the bounds of the gamut, along the approximat-

ing plane, at the luminance value of each input color. These

boundaries then form the upper and lower bound constraints,

gui and g
l
i , This results in the linear program

minimize ∑i vi (19)

subject to vi+Qig ≥ KLiy,

vi−Qig ≥−KLiy

gli ≤ gi ≤ g
u
i

Figures 6 and 7 show the results of our re-coloring

method. In each case the proportionality constant, K, was

1. The similarity of each of the re-colored images to the sim-

ulated, color-deficient view of that image demonstrates the

validity of our planar approximation of the color-deficient

gamut. Timing results recorded on a 2.4 Ghz PC are shown

in Table 2.

Colors Solving Interpolating

Berries 1,415,424 24.5 sec 723.1 sec

Flower 338,010 25.7 sec 164.7 sec

Balls 416,880 20.0 sec 253.4 sec

Table 2: Timing: Results for the re-colored images shown in

Figures 6 and 7. The method was applied to a quantized set

of 256 colors and then interpolated over the image colors.

7. Conclusion

We have suggested a technique for mapping color images

to grayscale images in a way that preserves image informa-

tion and preserves important luminance gradients. We have

also shown that a simple extension of this technique can be

used to re-color images for viewing by color-deficient ob-

servers. In each case, the solutions are approximate minima

of a STRESS function that are found by iteratively solving a

sequence of linear programming problems.

Controlled assessment of our grayscale mapping results

by a group of 17 human subjects has revealed that, for some

images, our technique performs noworse than the traditional

method, and, for other images, our technique performs much

better that the traditional method, provided we use a propor-

tionality constant of K = 100/cmax.

The ability to easily interpolate a solution for a small set

of colors over an arbitrary set of colors is important for se-

quences of images as well as sub-images. To avoid flickering

artifacts, some sense of temporal coherence must be main-

tained, and the interpolation mechanism allows for a variety

of strategies. We are currently evaluating a number of tech-

niques related to this problem.
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(a) (b) (c)

Figure 6: Re-coloring two images from Figure 1: (a) Simulated protanope (first row) and deuteranope (second row) views, (b)

our re-coloring, and (c) simulated protanope (first row) and deuteranope (second row) views of (b).

Figure 7: Tritanopic deficiencies: (left to right) original color image, image as seen by a simulated tritanopic viewer, image

recolored for a tritanopic viewer, and the recolored image as seen by a simulated tritanopic viewer.
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