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In the social sciences, networks are used to represent relationships between social actors, be

they individuals or aggregates. The structural importance of these actors is assessed in terms

of centrality indices which are commonly defined as graph invariants. Many such indices have

been proposed, but there is no unifying theory of centrality. Previous attempts at axiomatic

characterization have been focused on particular indices, and the conceptual frameworks that

have been proposed alternatively do not lend themselves to mathematical treatment.

We show that standard centrality indices, although seemingly distinct, can in fact be

expressed in a common framework based on path algebras. Since, as a consequence, all of these

indices preserve the neighbourhood-inclusion pre-order, the latter provides a conceptually clear

criterion for the definition of centrality indices.
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1 Introduction

Social network analysis [13, 27, 29, 48] is an area of applied network science [17] with a

long tradition [23]. Starting with the concept of status in studies of sociometric choice [37]

and popularized by small-group communication experiments [2, 3, 35], indices evaluating

the position of nodes in a network have become a signature form of network analysis [16].

Depending on context and terminology, such indices operationalise various substantive

concepts referred to as, e.g., centrality, status, prestige, importance, or power, by means of

graph invariants. Applications in other areas add to the list of interpretations. We here

use the term centrality as an umbrella concept to subsume the variety of indices that

capture instantiations of a broadly construed notion of structural importance.

While research on particular centrality indices – including their characterization and

computation – abounds, we are not aware of any substantial overarching results other

than empirical and experimental comparison [11, 18, 25, 28]. In the absence of agreement

even on the minimum requirements for centrality indices, this is not surprising. Attempts
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at organizing the space of centrality indices are therefore mostly conceptual in nature [10,

12, 22].

We propose a strikingly simple formal characterization of centrality: If an actor has

the same (and possibly more) ties, it can never be less central. The criterion was derived

not only to capture a shared intuition underlying common definitions of centrality, but

also to discriminate against other indices that do not. We motivate the proposal by means

of a unifying framework in which existing indices can be expressed. The framework not

only aids the proof that the indices actually satisfy the criterion, but it also suggest the

definition of further indices based on the same principles.

We start by defining some of the more commonly used centrality indices in Section 2.

Our framework is derived in Section 3 and based on path algebras with a special property

that captures the effect of indirect relations among vertices. We prove in Section 4 that

any index based on this framework favours vertices which dominate the neighbourhood

of others, and discuss some implications in Section 5.

2 Preliminaries

For ease of exposition, we consider only simple undirected and unweighted graphs

G = (V , E) on a finite set of vertices V and edges E ⊆
(
V
2

)
without loops or multiple

edges. We do note, however, that our results can be generalized to other classes including

weighted, directed, and multi-graphs. We use n = |V | and m = |E| to denote the number

of vertices and edges.

Adjacent vertices {u, v} ∈ E are called neighbours, and we denote the neighbourhood

of a vertex v ∈ V by N(v) = {u ∈ V : {u, v} ∈ E}. The closed neighbourhood is defined

as N[v] = N(v) ∪ {v}.
An (s, t)-path (or walk or trail) is an alternating sequence of vertices and edges starting

with s ∈ V and ending with t ∈ V such that each edge consists of the two vertices next to

it. If s = t, the path is closed, and if no vertex other than possibly s = t appears twice it

is called simple. A graph is connected, if every pair s, t ∈ V is connected by a path.

Again, without limitation, we consider only connected graphs so that complications

with the definition of some indices are avoided. The two graphs on nine vertices in

Figure 1 serve as running examples.

2.1 Centrality indices

A centrality index assigns non-negative real numbers to the vertices of a graph. Before

arguing which such assignments are admissible, we review a number of the more common

examples. The simplest such index is degree centrality,

cD(v) = deg(v),

where deg(v) = |N(v)| is the degree of v ∈ V .

Let A(G) be the adjacency matrix of graph G and observe that the kth power of A(G)

gives, for every pair of vertices, the number of paths of length k between them. Subgraph
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A 2 0.063 1.83 0.580 2.452
B 3 0.071 4.83 0.857 3.404
C 3 0.067 2.83 0.843 3.756
D 3 0.067 1.83 1.000 3.956
E 3 0.071 3.67 0.997 3.872
F 3 0.071 2.83 0.937 3.843
G 3 0.071 3.83 0.949 3.844
H 3 0.077 4.50 0.955 3.509
I 3 0.067 2.83 0.975 3.936
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A 1 0.067 0.00 0.204 2.501
B 2 0.071 0.00 0.374 5.615
C 3 0.077 0.20 0.529 9.687
D 4 0.083 0.20 0.695 15.671
E 4 0.083 0.20 0.695 15.671
F 5 0.091 0.45 0.813 21.024
G 5 0.090 1.25 0.761 18.679
H 6 0.100 3.25 0.839 22.331
I 8 0.125 11.45 1.000 31.334
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Figure 1. Centrality indices compared on two example graphs. The tables summarise the centrality

scores of all vertices according to standard indices, and the parallel coordinate plots in the right

compare the resulting rankings. While the indices disagree widely on the top graph, the bottom

graph yields fairly consistent rankings.

centrality [19] is defined as

cS (v) =

∞∑
k=0

A(G)kvv
k!

,

and thus the weighted sum of all closed paths containing v. The scaling reduces the

contribution of long paths but also guarantees convergence. Note that A(G)2vv = deg(v)

since there is a one-to-one correspondence between edges and closed paths of length 2.

Other generalisations of degree centrality also take indirect relations into account. The

length of a shortest (s, t)-path defines the distance, dist(s,t), between s and t. Closeness

centrality [4],

cC (v) =

(∑
t∈V

dist(v, t)

)−1

,

is then defined as the inverse of the total distance between a vertex v ∈ V and all other

vertices. The inverse is taken to maintain the interpretation that higher scores indicate

greater centrality. Alternative order-reversing transformations such as subtraction from

an upper bound have been used [14, 46] but the functional form of the transformation

will not matter here as long as it is monotonic.

A different generalisation is based on shortest paths passing through, rather than

emanating from, a vertex. Let σ(s, t) be the number of shortest (s, t)-paths, and σ(s, t|v) the

number of shortest (s, t)-paths that contain v ∈ V \ {s, t} as an inner vertex. The fraction
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δ(s, t|v) = σ(s,t|v)
σ(s,t)

is called the dependency of s and t on v, and betweenness centrality [21]

is defined as

cB(v) =
∑
s,t∈V

δ(s, t|v),

where we set δ(s, t|v) = 0 if v ∈ {s, t} for convenience.

Feedback centralities (seemingly) are not defined in terms of indirect relations but

values of neighbours. Since the adjacency matrix of a connected undirected graph is real

and symmetric, the Perron–Frobenius Lemma guarantees that the eigenvector associated

with the largest eigenvalue λ is unique up to scaling and all entries have the same sign.

We can thus define eigenvector centrality [8] as

cE(v) =
1

λ
·

∑
w∈N(v)

cE(w),

and assume that cE positive and normalized such that, say, all entries sum to 1.

These are just a few of the more common examples, and many others have been

proposed [32, 44].

2.2 Characterization and classification

Centrality indices such as those listed in the previous section are typically defined ad

hoc, either with a particular application scenario in mind or as a variation of previously

proposed indices to eliminate some perceived deficiency.

As Freeman notes, there is “no unanimity on what a centrality is, its conceptual

foundations, and proper procedure of measurement”. [22] Irritated by the growing number

of minor variations on centrality indices already in the 1970s, he organized many of them

around three key concepts. As a consequence, degree, closeness, and betweenness centrality

have since been considered prototypical. Freeman does not, however, provide a criterion

that delineates the scope of centrality, and the class of feedback centralities such as

eigenvector centrality is left out completely.

Borgatti and Everett [12] and Borgatti [10] provide classifications for centralities or-

ganised around the mathematical ingredients in their definition rather than resulting

properties. The classifications are therefore conceptual as well, and not intended to be

comprehensive.

Formal attempts at delineation and classification are generally based on axiomatiza-

tion [7,31,34,39–41,47]. Sabidussi [42] is the first to propose an axiomatic characterization

of centrality. Its key elements are invariance under graph isomorphisms and a form of

monotonicity under graph modification: A vertex receiving a new incident edge (via

operations called edge addition and edge switching) can only become more central.

Sabidussi’s axiom system is designed with the intuition of closeness in mind and thus

ends up ruling out other indices (most of which had not been proposed at the time) [33].

Similarly, subsequent axiom systems have been designed largely to characterize particular

indices in terms of their properties, with invariance under isomorphisms and monotonicity

under graph modification as recurring concepts [7].
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Neither the conceptual classifications nor the axiomatic characterizations proposed to

date establish a scope on which a general theory of centrality could be built. The only

uncontested assertion appears to be Freeman’s star property: “A person located in the

centre of a star is universally assumed to be structurally more central than any other

person in any other position in any other network of similar size”. [22]

3 Unification via path algebras

We now show that, despite their differences in rationale and definition, common centrality

indices can be cast in a unifying framework that will enable us to substantially strengthen

the requirements of the star property in the next section.

In one way or another, each centrality index evaluates vertices by aggregating their

relationships with others. These relationships can be direct (such as adjacency in degree

centrality) or indirect (such as distance in closeness centrality). We therefore break down

the definition of centrality indices into three generic steps from which any particular index

is obtained via suitable instantiations. These steps are as follows:

(1) Definition of an indirect relation via some path algebra.

(2) Definition of vertex positions via coordinates that evaluate indirect relations.

(3) Definition of centrality scores as aggregate values from positions.

We briefly discuss the underlying formalisms and then re-formulate the centrality indices

from the previous section in these terms. The unified formulation will prove useful for

general statements about centrality indices in the next section.

3.1 Indirect relations

We argue that the indirect relations on top of which centrality indices are typically built

can be obtained from certain path algebras. A comprehensive treatment of the concepts

used in the following is given, for instance, by Gondran and Minoux [24].

A semiring (S,⊕,�, 0, 1) is a set of values S including 0, 1 ∈ S together with two closed,

associative binary operations ⊕,� : S ×S → S with neutral elements 0 (called zero) and 1

(called unity), respectively. In addition, ⊕ is commutative, 0 is an absorbing element for

�, and � distributes over ⊕.

A path algebra characterizes indirect relationships between vertices s, t ∈ V of a graph

G = (V , E) by associating a value from a semiring with every (s, t)-path, and then

aggregating them. Given a graph G = (V , E) and a semiring (S,⊕,�, 0, 1), we obtain a

matrix A ∈ SV×V by choosing an element e ∈ S (called edge value) and setting

ast =

{
e if {s, t} ∈ E

0 if {s, t} � E (including s = t)

for all s, t ∈ V .

An (s, t)-path P along vertices s = v0, v1, . . . , vk−1, vk = t evaluates to the product

a(P ) =
⊙k

i=1 avi−1vi , where a(P ) = 1 if k = 0. The relationship between s and t is obtained

from a∗
st =

⊕
P a(P ), where the summation extends over all (s, t)-paths P , and a∗

st = 0
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if there is no such path. Multiplication and summation of the semiring thus capture the

result of concatenation and aggregation of paths.

The following is a convenient joint formulation in terms of matrices. Let A ∈ SV×V

be the matrix of direct relations ast as defined above and let 1 ∈ SV×V be the matrix

with 1’s on the diagonal and 0’s elsewhere. Replacing the usual addition and multiplication

with the corresponding semiring operations, we obtain a new semiring on the matrices

SV×V with zero 0 and unity 1 from the generalised matrix operations. Letting A0 = 1

and Ak = A � Ak−1 for k � 1, we obtain the closure A∗ =
⊕∞

k=0 A
k which contains the

elements a∗
st defined above. We assume that A∗ exists and is unique, i.e., our semirings are

assumed to be closed.

3.1.1 Reachability and distance

An example is the path algebra giving rise to the reachability relation in a graph

G = (V , E). Consider the semiring (S = {0, 1},⊕ = max,� = min, 0 = 0, 1 = 1). We define

ast ∈ S , s, t ∈ V , as above with edge value e = 1, so A is in fact the adjacency matrix

of G. Since two vertices in a simple undirected graph are connected by a path if and only

if they are connected by a simple path of length at most n − 1, it follows that A∗ = An−1

and a∗
st = 1 if and only if there is at least one (s, t)-path.

For shortest-path distances, we modify the reachability semiring by extending S =

N0 ∪ {∞} and substituting ⊕ = min, � = + (the usual addition), and 0 = ∞. Then,

concatenation yields the number of edges in a combined path whereas aggregation gives

the minimum number of edges in either path, so that avw = 1 = e for {v, w} ∈ E gives rise

to A∗ = An−1, again, with a∗
st = dist(s, t).

3.1.2 Shortest-path counts

The semiring that will be used for the derivation of betweenness centrality, the geodetic

semiring, is due to Batagelj [1]. Let S = (N0 ∪ {∞}) × N0, 0 = (∞, 0) and 1 = (0, 1). For

(a, b), (c, d) ∈ S , let

(a, b) � (c, d) = (a + c, b · d)

(a, b) ⊕ (c, d) =

⎛
⎝min{a, c},

⎧⎨
⎩

b if a < c

b + d if a = c

d if a > c

⎫⎬
⎭

⎞
⎠ .

Setting avw = (1, 1) = e for {v, w} ∈ E, we obtain the closure A∗ = An−1 with a∗
st =

(dist(s, t), σ(s, t)), where σ(s, t) is the number of shortest (s, t)-paths. Note that n − 1 is an

upper bound on the length of a shortest path, and that 0 is indeed absorbing.

3.1.3 Walk counts

The final group of path algebras we are considering is designed for walk-based centrality

indices such as subgraph centrality, Katz status [30], and, as it turns out, eigenvector

centrality. For s, t ∈ V and k ∈ N0, let ωst,k denote the number of (s, t)-walks with
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exactly k edges, and ω
(k)
st =

∑k
i=0 ωst,k the number of (s, t)-walks with at most k edges.

We represent sequences (ωk)k∈N0
by their generating functions Ω(β) =

∑∞
k=0 ωk · βk . A

generating function [43] is a formal power series that converges to a limit function for

sufficiently small β ∈ (−r, r) and is divergent for |β| > r. The actual radius of convergence

0 � r � 1 depends on the growth of the elements in the sequence ω.

Let 0 and 1 be the generating functions associated with the infinite sequences (0, 0, . . . )

and (1, 0, 0, . . .). Then, the usual addition and multiplication of functions yield a semiring

on the set of generating functions restricted to non-negative arguments β � 0. Since these

operations correspond to element-wise addition and convolution of the sequences, the

path algebra we obtain by setting e to the generating function of (0, 1, 0, 0, . . .) has the

walk-generating functions as its closure A∗ = (Ωst(β))s,t∈V . The joint convergence radius

is 1
λ
, where λ is the largest eigenvalue of the adjacency matrix.

For reasons discussed below, we will rather be interested in the sequences (ω(k)
st )k∈N0

,

s, t ∈ V , of the number of (s, t)-walks up to length k. The generating function of these

prefix sums of walk counts is obtained simply from scaling 1
1−β

· Ω(β). We define the

corresponding path algebra by substituting 1 = (1, 1, . . .) and e = (0, 1, 1, . . .) and adjusting

multiplication to (1 −β) times the product of the two generating functions (otherwise, the

product would represent the prefix sums of prefix sums).

A variant for fast-growing sequences and with a larger convergence radius are exponen-

tial generating functions ωst(β) =
∑∞

k=0
ωst,k

k!
βk . Semiring and path algebra for exponential

walk-generating functions are constructed as before and with the same sequences defining

zero, unity, and the edge value. The joint convergence radius for the exponential generat-

ing functions of the closure, though, is infinite. This is the semiring underlying subgraph

centrality and total communicability [5].

3.2 Positions

To obtain a centrality index from a path algebra, we next transform the elements of

the semiring (which characterize indirect relationships) into non-negative real numbers

xst ∈ R�0 for all s, t ∈ V . These will serve to define the relational position of a vertex

v ∈ V as a vector

pos(v) = (xvt)t∈V .

Since we here restrict our attention to unweighted undirected graphs, this is but a special

case of a recently introduced notion of position that applies to multiplex relations and any

number of attributes on the vertices and edges [15]. We will come back to this in the final

section but would like to point out already that the restricted type of position considered

here constitutes what has been referred to as nodal statistic elsewhere [6]. From position

vectors, centrality scores are obtained by an index-specific summarization defined in the

next section.

The closure obtained from the path algebra on the shortest-path semiring (N0 ∪
{∞},min,+,∞, 0) already contains the shortest-path distances dist(s, t) = a∗

st. Since these

are the quantities used in the definition of closeness centrality, the identity transform

xst = dist(s, t), s, t ∈ V , suffices.
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For betweenness centrality, however, we transform the closure (dist, σ) of the path

algebra obtained from the geodetic semiring into dependencies

δ(s, v) =
∑
t∈V

{
σ(s,v)·σ(v,t)

σ(s,t)
if dist(s, t) = dist(s, v) + dist(v, t)

0 otherwise.
(3.1)

for all s, v ∈ V . We let xvs = δ(s, v) and thus transpose the matrix of dependencies to

obtain positions from its columns. In other words, the degree to which s depends on v

defines how much v is in the role of a broker for s, and betweenness centrality is the

degree to which v is a broker for everyone else.

Values from walk-generating functions are obtained by providing an argument 0 � β <

r within the radius of convergence. Katz’ status is based directly on prefix sums xvt =
1

1−β
Ωvt(β), where β is known as the attenuation parameter, and subgraph centrality and

communicability [5] are based on the exponential walk-generating functions xvt = ωvt(β)

which converge for any choice of β � 0.

Eigenvector centrality is generally defined as a feedback measure in which the centrality

of a vertex depends on the centrality of its neighbours. An equivalent formulation,

however, is the limit of the share of all walks of length k that start at the vertex. We

can obtain values proportional to the desired shares limk→∞
ωvt,k

λk
from the walk-generating

functions as limk→∞
Ωvt(

1
λ
)

k
and therefore also from prefix sums limk→∞

λ
(λ−1)k2 Ωvt(

1
λ
).

In all these cases, we obtain for every vertex v ∈ V a vector pos(v) ∈ RV
�0 of non-

negative real numbers describing the relationships of that vertex with every vertex in

the graph. The final step is to find a single number describing the structural importance

manifest in a position.

3.3 Centrality scores

For a specific type of relation, the position of a vertex quantifies all its relationships.

Depending on interpretation, however, these relationships may combine in different ways.

Closeness centrality, for instance, was defined as the inverse of the sum over all position

entries,
∑

t∈V dist(v, t). Eccentricity centrality [26], on the other hand, is a centrality defined

as the inverse of the maximum entry, maxt∈V dist(v, t), rather than the sum.

Betweenness centrality is again defined as a sum, although of dependencies,
∑

s∈V δ(s, v).

Since walk-generating functions in the path algebras defined above sum over all walks of

any length, Katz’ status [30] is obtained as
∑

t∈V
1

1−β
·Ωvt(β). While the sum over exponen-

tial walk-generating functions,
∑

t∈V ωvt(β), is known as total communicability, subgraph

centrality is obtained via projection to position entry ωvv(β) rather than summation.

Any combination of a closed semiring, transformation into coordinates, and summar-

isation might define a centrality index; we thus do not only unify existing indices but

provide a cornucopia for new ones. While other summarisations are conceivable, the

most commonly used are sum, extremum, and projection, possibly followed by an order-

reversing transformation such as taking the inverse or subtracting from an upper bound

in cases where the interpretation of more or less central is the reverse of the ordering of

the aggregate quantities.
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Figure 2. Dominance relation among vertices in example graphs from Figure 1. A directed edge

indicates that the target dominates the source vertex. While no two vertices are comparable in the

almost regular graph, the neighbourhood-inclusion pre-order is almost complete in the other.

The rationale for breaking down the definition of centrality indices into exactly these

steps will become more apparent in the next section, where we derive a general statement

about all centrality indices defined in this way.

4 Preservation of neighbourhood inclusion

Our goal is to show that the following criterion expresses the essence of centrality. Note

that it effectively introduces requirements that tighten the star property.

Definition 1 (Neighbourhood inclusion) Let G = (V , E) be a simple undirected graph and

u, v ∈ V . The relation

u � v if N(u) ⊆ N[v]

indicates that the neighbourhood of v includes that of u. We say that u is dominated by v.

Neighbourhood inclusion defines a pre-order, i.e., a reflexive and transitive binary

relation, on the vertices of a graph. It is sometimes referred to as the vicinal pre-

order [20]. The closed neighbourhood N[v] is used to ensure that the relation covers the

case {u, v} ∈ E. Figure 2 depicts the neighbourhood-inclusion pre-orders for the example

graphs from Figure 1.

In the previous section, we argued that the definition of centrality indices can be

decomposed into three steps. A matrix representing the adjacencies (direct relationships)

of a graph is first transformed into a closure matrix representing indirect relationships,

then into position vectors quantifying the indirect relationships for each vertex, and finally

into centrality scores summarising these position vectors in a single value.

We want to show that the neighbourhood-inclusion pre-order is preserved by centrality

indices, and do so by showing that it is preserved in each of the three defining steps.

Therefore, we need pre-orders also on semirings and positions. The canonical pre-order
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associated with a semiring (S,⊕,�, 0, 1) is given by

a � b if a ⊕ c = b for some c ∈ S.

For positions x, y ∈ Rn
�0, we define

x � y if xi � yi for all i = 1, . . . , n

as a special case of positional dominance [15]. Depending on the indirect relation

from which positions are derived, the relation may actually be modified as follows:

When comparing the positions of two vertices u, v ∈ V , the comparison of reflex-

ive entries pos(u)u and pos(v)v with pos(u)v and pos(v)u may not be meaningful, so

that, for instance, the latter are pitted against each other or all four entries are

ignored.

A simple property of semirings captures the central intuition behind centrality indices,

namely that moving an actor away from another by an additional indirection can only

reduce the value of their relationship. We say that an edge value

e is decreasing, if e � a � a for all a ∈ S.

A path algebra that is constructed from a semiring using a decreasing edge value is called

decreasing as well.

All centrality indices discussed above are based on decreasing path algebras. Note

that the usual order of the integers is reversed in the shortest-path semiring (N0 ∪
{∞},min,+,∞, 0): If a � b as integers, then a � b in the semiring of shortest-path

distances because a ⊕ c = min{a, c} = b for the choice c = b.

While the semiring of walk-generating functions does not give rise to a decreasing path

algebra, the semiring based on prefix sums does for β � 0. This observation captures the

intuition shared by all walk-based centrality indices that having fewer long walks can

be compensated for by additional short ones. The alternating contributions of walks for

β < 0 defy this idea.

Our technical result can now be stated as follows.

Theorem 2 Let G = (V , E) be a simple undirected graph, and c : V → R�0 a central-

ity index that is obtained from a decreasing path algebra via monotone quantification and

summarization of positions. Then, for all u, v ∈ V ,

u � v =⇒ c(u) � c(v) .

In other words, all standard centrality indices share the property that if a vertex v

dominates a vertex u, then v is at least as central as u. Since this matches the intuition that

it does not hurt to have more direct relationships it suggests to consider neighbourhood

inclusion as the defining property of centrality.

The proof of the theorem rests on the following lemma which states that neighbourhood

inclusion is preserved in the semiring pre-order.
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Lemma 3 Let G = (V , E) be a simple undirected graph and A∗ the closure of a decreasing

path algebra on G. For every pair of vertices u, v ∈ V ,

N(u) ⊆ N[v] =⇒

⎧⎪⎪⎨
⎪⎪⎩

a∗
ut � a∗

vt ∀t ∈ V \ {u}
∧ a∗

uu � a∗
vu ⊕ 1

∧ a∗
uu � a∗

vv.

Proof Let u � v ∈ V , i.e., N(u) ⊆ N[v]. Consider first any t ∈ V \ {u}. By definition,

a∗
ut =

⊕
P a(P ) where the sum extends over all (u, t)-paths and a(P ) =

⊙
e∈P a(e) where

the product is over all edges in P . We define an injective mapping of (u, t)-paths P to

(v, t)-paths Q with a(P ) � a(Q). If a (u, t)-path P starts with an edge {u, w} ∈ E such

that w � v, neighbourhood inclusion guarantees that there is a unique path Q starting

with {v, w} ∈ E and continuing like P . Since auw = e = avw by definition, a(P ) = a(Q). If,

however, w = v, then the continuation Q of P is a (v, t)-path itself, and because the edge

value e is decreasing, a(P ) = auv �a(Q) = e�a(Q) � a(Q), so the value of the (v, t)-path Q

is at least as large as that of P . We have thus replaced every (u, t)-path in the definition of

a∗
ut with a corresponding (v, t)-path of at least the same value, and there may be further

(v, t)-paths starting with edges to some w ∈ N(v) \ N(u). It follows that a∗
vt = a∗

ut ⊕ c for

some c ∈ S and hence a∗
ut � a∗

vt.

Now consider the case of (u, u)-paths. The trivial (u, u)-path without edges has value

1 by definition. All other (u, u)-paths start with an edge {u, w} and can be matched by

(v, u)-paths as above by replacing or omitting this edge, which implies a∗
uu � a∗

vu ⊕ 1.

Since the trivial (u, u)-path can be matched with the corresponding (v, v)-path, and all

other (u, u)-paths can be matched with (v, v)-paths by substituting the first and last edge,

we also have a∗
uu � a∗

vv . �

The theorem now follows from the assumed monotonicity of quantification and sum-

marisation. Recall that monotonicity of positional dominance is generally established

via special treatment of the four entries involving the two reflexive relationships. In

some cases, monotonicity of positional dominance is then a consequence of symmetry

a∗
uv = a∗

vu.

The longest-path algebra based on semiring (N0,max,+, 0, 0) and edge value e = 1 is

an example of a path algebra that is not decreasing and does not preserve neighbourhood

inclusion. This is, however, a desired outcome as it is consistent with the idea that a vertex

should not be more central, if it is farther away from others. Note that an index based

on longest paths also violates the star property.

Similarly, prefix sums of walk-generating functions are not decreasing for β < 0. This

provides a formal argument for the intuition that Bonacich’s power index [9] captures

properties that are indeed different from those built into centrality indices.

To assert that the theorem applies to common centrality indices, we only have to verify

that both quantification and summarisation are monotone as well, i.e., the canonical

pre-order of the semiring is preserved in positional dominance which in turn is preserved

in the centrality ranking.
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The identity and values of generating functions for non-negative parameters, clearly,

are monotone transforms.

Of the common indices, betweenness centrality might be the one for which preser-

vation of the neighbourhood-inclusion pre-order is least expected. For the dyadic de-

pendencies derived from the geodetic semiring first observe that N(u) ⊆ N[v] implies

(dist(u, t), σ(u, t)) � (dist(v, t), σ(v, t)) for all t ∈ V by Lemma 3. Since distances and paths

are symmetric in undirected graphs, (dist(s, u), σ(s, u)) � (dist(s, v), σ(s, v)) for all s ∈ V . For

any given s ∈ V , consider now the sums in equation (3.1) defining δ(s, u) and δ(s, v), and

fix any t ∈ V . If dist(s, t) = dist(s, u) + dist(u, t), then dist(s, t) = dist(s, v) + dist(v, t) as well

because the semiring order implies that both distances involving v are at most as large as

those involving u. The semiring order also implies σ(s, u) � σ(s, v) and σ(u, t) � σ(v, t), so

that each t ∈ V contributes at least as much to δ(s, v) as it does to δ(s, u).

To summarise positions in a single value, standard centrality indices use summation,

selection of an extremum, or projection to a component. If no single component of a

position is less than another’s, then so is the summary.

An instructive boundary case is alter-based centrality [38], which is defined as

cA(v) =
∑

w∈N(v) deg(w) but can be re-written in terms of walks of length two,

cA(v) =
∑

t∈V ωvt,2. Quantification of the walk-generating function (β = 1, projection

to k = 2) and summarisation (sum over all t ∈ V ) are so restrictive that they compensate

for the fact that the path algebra is not decreasing. However, the index does not even

distinguish the centre of a star from the peripheral vertices.

A degenerate case of monotonicity is the entropy of a position vector as used in an

index called path-transfer centrality [45]. Since the position vector is normalised to sum

to 1, the transformation is not monotone and no position dominates another unless they

are equal.

5 Discussion

We argued that common centrality indices share one intuition: A vertex that is more

connected to more others in more direct ways may not wind up being considered less

central.

As a formalisation of this intuition, we proposed decreasing path algebras and showed

that indices monotone in the indirect relations obtained from such algebras preserve the

neighbourhood-inclusion pre-order.

In recent independent work [6], monotonicity and additivity are identified as properties

shared by many centrality indices. These are properties of the transformations that turn

positions (nodal statistics in their terminology) into numbers. We argued, however, that the

essence of centrality is in the appropriate definition of positions while taking monotonicity

for granted and dismissing additivity as a requirement.

Figure 2 seems to indicate that neighbourhood inclusion is a weak requirement. In the

almost regular example graph in the top row of Figure 1, no two vertices are comparable.

On the other hand, this is precisely the reason why we see subtle differences in structural

position detected by the various centrality indices.

Moreover, from the other example graph we may get the impression that the criterion is

rather strong as there are many pairs of vertices comparable by neighbourhood inclusion,
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so that the ranking obtained from any centrality index is largely pre-determined. Even

more extreme are star graphs where every pair of vertices is comparable by neighbourhood

inclusion with the centre dominating all others, which are equivalent. Consistent with

Freeman’s star property, no centrality index preserving the neighbourhood-inclusion pre-

order may rank a peripheral vertex above the centre.

The class of graph for which the neighbourhood-inclusion pre-order is complete is

much larger than the class of star graphs, though, and it is known under various names

including threshold graphs [36]. They can be seen as prototypical core-periphery graphs

in which neighbourhood-inclusion ranks vertices from the core down to the periphery. By

definition, no two centrality indices that respect neighbourhood inclusion contradict each

other on a threshold graph. This leads us to propose the following.

Proposition 4 A vertex index is a centrality if and only if it preserves the neighbourhood-

inclusion pre-order.

Our criterion thus generalizes the star property, and incompleteness of the

neighbourhood-inclusion pre-order, or distance from a threshold graph, becomes an

indicator of the degree to which differences in centrality indices can be attributed to their

particular definition.

We hinted at two indices for which neighbourhood inclusion is not preserved, one based

on longest paths and the other Bonacich’s β-centrality [9] with negative β. This actually

is a desired outcome because there is an apparent mismatch with the above centrality

intuition.

With regard to other axiomatic approaches to the characterization of centrality, we

would like to point out that an inherent criterion such as neighbourhood inclusion is non-

quantitative, relatively easy to test, and eliminates a number of the technical difficulties

incurred previously. Axioms requiring an index to be monotone under edge addition or

edge switching lead to complicated proofs and necessitate that a class of graphs on which

an index is defined be closed under these operations. The comparison of vertices by

neighbourhood inclusion subsumes these graph modifications in the same graph.

The unification achieved via decreasing path algebras also leads to generalisation.

We can systematically construct new indices by specifying semiring elements, semiring

operations for concatenation and aggregation of paths, and an edge value that can be

shown to be decreasing.

While we restricted our attention to connected simple undirected graphs, the ideas gen-

eralise rather straightforwardly to other classes of graphs. Moreover, via generalisation of

neighbourhood inclusion to positional dominance of indirect relations [15], our approach

extends to multi-layer networks of any kind. In fact, we did not include the common

requirement of automorphism invariance in the centrality proposition to allow for more

general notions of homogeneity based, for instance, on attribute data.
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[28] Junker, B. H., Koschützki, D. & Schreiber, F. (2006) Exploration of biological network

centralities with CentiBiN. BMC Bioinformatics 7(219).

[29] Kadushin, C. (2011) Understanding Social Networks: Theories, Concepts, and Findings. Oxford

University Press, New York, NY.

[30] Katz, L. (1953) A new status index derived from sociometric analysis. Psychometrika 18(1),

39–43.



Centrality in social networks 985

[31] Kitti, M. (2016) Axioms for centrality scoring with principal eigenvectors. Soc. Choice Welf.

46(3), 639–653.
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