
outcome than a direct intervention because of the
specific pathway affected by the variant, such as the effect
of kringle IV type 2 size polymorphisms on lipoprotein
(a), and the subsequent association with myocardial
infarction(5).

While statistical guidance on assessment of the validity
of IVs in Mendelian randomization is welcome (6), there is
a danger of overreliance on empirical testing at the expense
of biologic knowledge (7). The statements provided by
Glymour et al., while providing useful guidance, should
not be seen as absolute indicators of the invalidity of an IV
and should supplement rather than replace sound scientific
judgment (8).
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⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢

In their recent discussion evaluating the instrumental vari-
able assumptions in Mendelian randomization studies,
Glymour et al. (1) discussed Bonet’s instrumental inequali-
ties (2), which can be applied when the instrumental vari-
able, exposure, and outcome are all binary. In their Web
Appendix 3, they presented an example from Kivimäki et al.
(3) in which the effect of being obese (body mass index
(weight (kg)/height (m)2) ≥30) on the risk of common
mental disorders was estimated using genotypes of the
rs1421085 polymorphism in the fat mass and obesity-associ-
ated gene (FTO) as an instrumental variable. In the example,
Glymour et al. found that the instrumental inequalities were
satisfied, and they calculated bounds for the probability P(Y
(X = 0) of the exposure-free potential outcome of 3%–17%
(where Y(X = x) denotes the potential outcome (Y ), given
that an exposure (X) is set to some value x).

Further to this, we point out that Balke and Pearl (4)
derived nonparametric bounds for the average causal effect
(ACE), where the ACE is the difference between P(Y(X = 1))
and P(Y(X = 0)). We have implemented the inequality check
and the calculation of such bounds, as well as several exten-
sions to it, in a Stata command (StataCorp LP, College
Station, Texas) called bpbounds (5). The extensions allow
for an instrument with 3 levels, for data on exposure and
outcome coming from separate studies, and we illustrate the
calculations also for case-control data. For the Kivimäki
et al. data example used by Glymour et al., we find that the
bounds for the ACE are (−16%, 75%) (Table 1). Note that
such bounds are interpreted differently than confidence in-
tervals. They tell us that there exists some distribution in-
volving the unobserved confounders (between the exposure
and outcome) that yields a true ACE as small as −16%,
while another existing distribution involving the unmea-
sured confounders has a true ACE as large as 75%, with
both distributions satisfying the instrumental variable as-
sumptions and having the same observed marginal frequen-
cies for the exposure, outcome, and instrument. Since the
confounder is unobserved, it is impossible to decide where
the ACE lies in the interval from the observable data
without making further parametric assumptions such as
those made in linear models. In this particular example, cal-
culation of the bounds shows that the data alone are not es-
pecially informative for the causal effect, as the bounds are
wide and include the case of no causal effect. However, it is
important to realize that any additional analysis (based, for
example, on a linear model) only produces a precise point
estimate because of such additional assumptions. Because
such parametric assumptions are often difficult to justify,
we recommend always supplementing such analyses with
the above nonparametric bounds for the causal effect. Note
that the instrumental inequalities assuming a monotonic re-
lation between the instrument and exposure are not satisfied
in the Kivimäki et al. data example.

Importantly, checking the inequalities is not a statistical
test in the usual sense; for example, it is possible for the
instrumental variable assumptions to not be met by a specif-
ic data-generating process but the instrumental inequalities
to be satisfied (for an example of this, see section 8.3 of the
article by Palmer et al. (5)). In addition, solely calculating
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the bounds does not take into account sampling variability.
To address this, Ramsahai and Lauritzen (6) proposed a rel-
evant hypothesis test for the bounds. In related work, Rich-
ardson et al. (7) also proposed a Bayesian approach to
estimating bounds for the ACE and other causal parameters.
In conclusion, when the exposure and outcome in a

Mendelian randomization analysis are binary variables and
the instrument is a categorical variable, gross violations of
the instrumental variable assumptions, including the exclu-
sion restriction, can sometimes be detected by checking
certain inequality restrictions on the observed relative fre-
quencies. Further empirical evidence for violations of the
instrumental variable assumptions can sometimes be ob-
tained using multiple instruments and overidentification
tests (8). However, we caution researchers that it is general-
ly not possible to establish the validity of the instrumental
variable assumptions, particularly the exclusion restriction
assumption, on the basis of data and statistical tests alone.
In general, the exclusion restriction should always be justi-
fied from subject matter background knowledge—in this
example, the biochemical and behavioral mechanisms
underlying the FTO gene (9).
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We appreciate the comments of Palmer et al. (1) and
Burgess (2), as well as Palmer et al.’s provision of their
useful Stata command, bpbounds (StataCorp LP, College
Station, Texas). As Palmer et al. note (1), the assumptions
required for a valid instrumental variable (IV) cannot be
established from any data or statistical tests, but these
assumptions can sometimes be falsified. One approach to
falsification, applying the instrumental inequality tests, is
applicable with categorical IVs and phenotypes (3, 4). As
we demonstrated in Web Appendix 3 of our article (5),
these tests are straightforward to implement in Excel (Micro-
soft Corporation, Seattle, Washington) when the phenotype
is dichotomous and the instrument is either dichotomous or
trichotomous. Trichotomous instruments are particularly
common in Mendelian randomization studies. In our
example, we used FTO allele count as a trichotomous in-
strument, classified as homozygous for the common allele,
heterozygous, or homozygous for the rare allele.
A valid IV places inequality constraints on the observed

data distribution. An instrumental inequality test assesses
whether these constraints hold in the data. The ability (i.e.,
power) of the test to detect an invalid instrument increases
with the number of constraints being tested; hence, it is
optimal to test all of the inequality constraints. Pearl (6) first
derived constraints implied by a valid IV; Bonet (4) subse-
quently recognized that when either the IV or the endoge-
nous variable has more than 2 possible values, additional
inequality constraints are implied by the IV assumptions.
Bonet demonstrated how to derive and thus test all inequality
constraints; Bonet’s tests are implemented in Web Appendix
3 of our original article (5) and in the bpbounds command.
In Web Figure 1 (available at http://aje.oxfordjournals.org/),
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