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Abstract 

Current practice for the design of an urban water system usually relies on various models that 

are often founded on a number of assumptions on how bulk water consumption is attributed to 

customer connections and outdated demand information that does not reflect present 

consumption trends; meaning infrastructure is often unnecessarily overdesigned. The recent 

advent of high resolution smart water meters  and advanced  data analytics allow for a new era 

of using the continuous ‘big data’ generated by these meter fleets to create an intelligent system 

for urban water management to overcome this problem. The aim of this research is to provide 

infrastructure planners with a detailed understanding of how granular data generated by an 

intelligent water management system (Autoflow©) can be utilised to obtain significant 

efficiencies throughout different stages of an urban water cycle, from supply, distribution, 

customer engagement, and even wastewater treatment. 

Keywords: smart metering; pattern recognition; water demand management; artificial 

intelligence; network modelling. 
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1. Introduction 

Urban water management aims to provide a safe, reliable and sustainable water supply to 

consumers. Water Demand Management (WDM) usually attracts most attention from policy 

makers and infrastructure planners. WDM aims to develop and implement strategies to manage 

supply more efficiently, as well as enact water conservation measures and drought response 

plans when needed (Liu et al., 2016). The five categories of WDM include: (1) engineering, 

i.e. installing more efficient appliances; (2) economics, i.e. effective water tariffs; (3) 

enforcement, i.e. water restrictions; (4) encouragement, i.e. rebate schemes for water efficient 

appliances: (5) and education, i.e. promoting water saving practices such as shorter showers. 

However, successful and effective identification and implementation of suitable WDM 

strategies require reliable, preferably real-time information (Sahin et al. 2015).  

There is an increasing repository of literature demonstrating the use of data collected from 

smart water meters to develop various water demand models to better understand factors 

contributing to peak demand (Willis et al. 2009b; Gurung et al. 2014a, 2016; Sahin et al. 2015, 

2017; Beal et al. 2012, Savic et al. 2014), which will help avoid the need for costly water 

distribution network augmentations. However, currently there is limited research completed 

that comprehensively showcases how smart technologies, including smart meters and advanced 

informatics techniques, can be exploited to achieve operational efficiencies and water savings 

during the whole urban water life cycle process. This study introduces Autoflow©, an 

innovative water demand analysis software tool, which has been developed to deeply analyse 

high resolution residential water demand flow patterns from smart meters. Advanced metering 

systems coupled with Autoflow© software  has the potential to provide near real-time end use 

data for both water authorities and consumers, that could significantly improve current decision 

making relating to a number of utility functions and significantly strengthen customer 

engagement practices.  Specifically, this paper delivers on the following objectives: 

1. To identify and discuss opportunities for applying smart metering systems and 

advanced data analytics tools to re-engineer some traditional urban water management 

processes within the urban water cycle.  

2. To summarise the development of a novel software tool (Autoflow©) that autonomously 

disaggregates and synthesises high resolution water data received from customer smart 

meters into useful reports that can be used by utility operators and consumers for a 

range of urban water management purposes. 
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3. To demonstrate the various applications of Autoflow© for urban water management and 

customer engagement purposes.  

2. Background 

2.1.  Current water management practices for the urban water cycle process 

Cities in industrialised countries all include the key stages of a modern urban water cycle, such 

as, water source/storage, water treatment, water distribution system, urban water use, waste 

water collection, wastewater treatment and wastewater returning to environment. In most urban 

water providers servicing these cities, water suppliers and infrastructure planners are still 

relying on coarse or outdated information for most of their planning and development, which 

leads to inefficient management. Even more worrying is that satisfactory customer engagement 

is presently viewed as delivering a water bill with scarce consumption information every month 

or quarter. 

Several studies have recently been completed that seek to better understand or improve each 

stage of the urban water cycle through the use of better water data. For example, during the 

water distribution stage, significant water and capital savings are achieved through early leak 

detection in the supply mains (Sønderlund et al. 2016; Savic et al. 2014), accurate 

determination of peak demand to optimise pumping schedules (Gurung et al. 2016b), or 

reductions in peak demand to avoid the need for costly pipe network augmentation (Gurung et 

al. 2014b; 2016a). However, greater levels of water efficiency can be realised through better 

understanding of customer demand and better engagement practices with high-consuming 

customers (Fielding et al. 2013). Recent studies indicated that significant water savings can be 

achieved when consumers are made aware of their consumption behaviours through detailed 

and targeted information dissemination (Stewart et al. 2011, Willis et al. 2011, Beal et al. 2012, 

Nguyen et al. 2013a, Liu et al. 2015, 2016; Britton et al. 2013). Detailed understanding of 

water demand (i.e. end use data) also provides wastewater system planners and operators with 

valuable information on the likely constituents of collected wastewater, which would assist 

them in moderating existing treatment plant capacity, planning of new treatment plants, and 

accurately estimating the amount of treatment chemical. The next section discusses how sensor 

networks and big data analytics will help transform certain segments of the urban water 

management process. 
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2.2.  Sensors and big data analytics transforming the urban water management process  

In recent decades, technological progress has led to advanced sensing tools being available for 

water utilities to remotely and independently control a number of critical parameters, both 

upstream and downstream of the water treatment stage, and in general for natural resources 

managers (Kennedy et al. 2009). For instance, most drinking water reservoirs have remote 

water quality sensor networks such as Vertical Profiling Systems (VPSs) that can be used for 

water column profiling capabilities; i.e. they can remotely monitor a range of parameters such 

as water temperature, pH, dissolved oxygen, turbidity, dissolved organic matter (DOM), 

cyanobacteria, etc. at different depths (Henderson et al. 2015; Bertone et al. 2015; 2016). From 

a water demand point of view, smart meters have been increasingly adopted around the world, 

and they represent a fundamental component for the development of smart cities (Lloret et al. 

2016).  

On the other hand, the relentless advancements in computing capabilities have led to an 

exponential growth of data-driven modelling applications for the water resources management 

and urban water fields (Bach et al. 2014; Maier and Dandy, 2000; Maier et al. 2014; Joorabchi 

et al. 2009, Kossieris et al. 2014, Creaco et al. 2016). The ability of advanced algorithms to 

intelligently and efficiently identify patterns in large datasets has led to a range of benefits for 

water utilities through cost reductions and better management of resources. In the context of 

this study, smart metering systems coupled with big data analytics have been explored to reveal 

opportunities for operational efficiencies and customer engagement for many aspects of the 

urban water management process as presented in the next section. 

2.3.  Smart metering technology for urban water management 

Smart meters provide accurate water use information, such as high-resolution end-use or 

leakage data, which benefits water utilities and policy makers alike (Giurco et al. 2008b). A 

smart water meter configuration involves a high-resolution water meter linked to a data logger, 

which captures water use data that can be downloaded as an electronic signal and analysed 

using available technology (Britton et al. 2008; Stewart et al., 2010, Beal et al. 2016). The 

electronic signals from smart meters can also be transferred to computers or central data hubs 

via data distribution technologies (Willis et al. 2013). 

With the advent of smart metering in recent years where water consumption data could be 

recorded at high resolution, several studies have been undertaken all over the world to unpack 

various benefits for both consumers and suppliers. Large scale smart water metering systems, 
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having low resolution and only log at minute or hourly intervals, has been widely utilised for 

leak detection, peak demand identification and time-of-use tariffs (Stewart et al., 2010, Loureiro 

et al. 2014a). Moreover, low and medium resolution data can be exploited to perform urban 

scale studies aimed at assessing the environmental impacts and costs of water-related energy 

(Loureiro et al. 2014b; Escriva-Bou et al. 2015), as well as exploring heterogeneous 

consumption patterns (Cardell-Oliver et al. 2016; Cominola et al. 2015; 2016). In contrast, 

detailed end-use water consumption data requires a smart metering system, with higher 

resolution water meters, as well as data loggers that record information in 5-10 second intervals 

(Giurco et al. 2008a; Fidar et al. 2010). Through combining various pattern recognition 

techniques, Nguyen et at (2011, 2013a, 2013b, 2014, 2015) has developed an intelligent water 

management system (Autoflow©), which can connect wirelessly to smart water meters to 

autonomously disaggregate water consumption data from high resolution smart meters into a 

repository of end-use demand data. Moreover, it provides a platform for customers to closely 

monitor water usage through logging into their user-defined online account where all detailed 

descriptions of daily, weekly and monthly consumption information for different end-use 

categories are provided. The next section will discuss some specific applications and benefits 

of using a high resolution smart metering system for a range of advanced urban water 

management functions. 

3. Smart metering technology for advanced urban water management 

3.1. Traditional water supply network planning and design procedure 

Important parameters in the planning and design of the water supply network are the demand 

at the peak hour (PH) on the peak day (PD), which is the maximum day demand over a 12-

month period, and the average day (AD) demand, which is the average water consumption over 

the same 12-month period. However, traditional methods of developing such profiles and 

peaking factors, necessary to carry out water distribution network modelling, are often founded 

on a number of assumptions on how top-down bulk water consumption is attributed to customer 

connections and outdated demand information that does not reflect present consumption trends; 

meaning infrastructure is often unnecessarily overdesigned (Gurung et al. 2014a). 

3.2.  Re-engineering the water supply planning & design procedure 

Water demand varies through the day and is generally at its lowest from 12 to 4am and at its 

highest in the morning and evening; the higher of which is termed the daily peak hour demand. 

On the PD, this critical period is termed the PH, which is usually driven by seasonal influences 
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(e.g. extended dry weather causes sharp spike in outdoor demand). Information on peak 

demand patterns is required for the design of water infrastructure such as pumps, pipes and 

storage reservoirs. Reductions in peak demand can mean that potential upgrades of water 

distribution infrastructure can be delayed or capital works funding reduced (Beal and Stewart, 

2011; Cole and Stewart, 2013; Carragher et al., 2012). Thus, as current demand-modelling 

techniques often rely on outdated demand data, unnecessary infrastructure augmentations of 

pipe networks that are not yet near capacity are not uncommon. Smart water meters enable 

much better understanding of current diurnal water demand patterns, thereby ensuring that only 

those necessary pipe network capital works are initiated. 

 

Gurung et al. (2014a, 2014b, 2016a, 2016b) recently demonstrated the implications and 

benefits of using high resolution smart meters to categorise flow data into the various water 

end use categories across the daily diurnal demand pattern, and how this information can be 

used for better water infrastructure planning. In these studies, a water supply zone located in 

Southeast Queensland region was selected, which included 800 selected household, a reservoir, 

nine storage tanks, and reticulation (<200 mm) and trunk mains (≥200 mm) totalling 790 km 

in length. The studies utilised high resolution water consumption of single residential 

households [0.014 litres per pulse (L/pulse); 5 second intervals]. The data was collected 

fortnightly over seven periods between 2010 and 2012. Stock efficiency ratings of the various 

indoor household water appliances were also recorded to determine their potential water saving 

capabilities. The disaggregated end-use data from these studies provided evidenced-based 

research to demonstrate that: (1) water efficient appliances significantly reduce peak demand; 

(2) smart meter data can be utilised to improve water service delivery infrastructure planning 

and design; and (3) smart meters facilitate the introduction of novel water pricing approaches 

for reducing peak demand, such as a Time of Use Tariff (TOUT). The following section details 

these applications of smart meter data. 

3.3. Smart meters enabling better management of peak demand 

3.3.1. Utilisation of water efficient appliances 

Gurung et al. (2014a) proposed a method of using up-to-date smart water meter data to define 

individual end-use’s consumption patterns as a foundation for developing household water 

demand patterns. Gurung et al. (2014a) revealed that the peak demand of each end-use category 

was significantly affected by the efficiency rating of the associated appliance stock (e.g. toilet 
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water efficiency rating). This finding is very important to water infrastructure network asset 

custodians that are required to maintain a specified level of service (i.e. flow and pressure) to 

customers during peak demand conditions. Hence, the utilisation of very efficient water devices 

in new high density developments within a water supply zone nearing capacity could 

potentially defer or reduce the requirement for system augmentation and the associated capital 

costs. Recurrent costs (e.g. maintenance and operation) could also be reduced through lower 

pressures in the pipelines meaning less pipe failures and extended asset life, while energy costs 

could be reduced from running smaller pumps and through treating and transferring lower 

volumes of water. 

3.3.2. Smart meters end use data for enhanced water service infrastructure planning  

Gurung et al. (2014b) provided empirical evidence to support the implementation of smart 

water meters for improving current water demand forecasting and network modelling practices. 

This study utilised a data-driven, bottom-up end use approach that derived a superior set of 

diurnal demand patterns and peaking factors that was then used for network modelling and 

subsequent planning and operational purposes.  

The study determined that the modelled PD consumption developed using smart meter data 

was 12% lower than that used by the water utility, for the same area. This is in line with current 

consumption trends, whereby water demand generally has reduced over the years, with a 

reduction in peak demand also apparent from another study (Beal and Stewart, 2011). 

3.3.3. Smart meters enabling demand-based pricing 

Demand-based pricing is a useful strategy for influencing/changing customers’ water use habits 

over the medium to long-term (Sahin et al., 2017). Gurung et al. (2016a) suggested that with 

the presence of a smart water meter in each household, a TOUT could either be implemented 

to impose penalty charges for exceeding a consumption threshold over a specific period of the 

day (Cole and Stewart, 2013) or to provide monthly incentives for lowering peak hour 

consumption (House and House, 2012). The implementation of TOUT could be further 

supported with the development of a real-time web-portal visualisation tool, which would 

inform customers on exactly where their water is being consumed at what time (e.g. Stewart et 

al., 2010). Pricing, incentives and informative tools are all strategies that motivate consumers 

to reduce or shift their demand during peak periods (House and House, 2012; Beal et al. 2016, 

Harou et al. 2014, Rizzoli et al. 2014). In summary, various opportunities for water and capital 
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savings could be realised when high resolution water consumption data is available for 

analysis. The next section introduces Autoflow©, a smart water management system that can 

autonomously disaggregate high-resolution consumption data into a repository of end-use 

consumption within each residential demand category. This software can be utilised to facilitate 

the water-saving initiatives presented in this section. 

4. Development of Autoflow© water end use analysis software tool 

With the availability of smart metering technology, high resolution data can be collected (i.e. 

0.01 L every second). However, the challenge of usefully analysing this huge amount of data 

autonomously, remains. There are currently two approaches to the water end use classification 

problem: (1) simple decision tree methods based on three physical features of each event, 

namely volume, duration and flow-rate (e.g. Trace Wizard and Identiflow); and (2) sensor 

devices placed on individual water end use appliances supported by data mining techniques 

(e.g. Hydro Sense). However, these approaches have certain limitations (i.e. user intrusive or 

low accuracy) that prevent them from being widely implemented (Trace Wizard, 2003; 

Froehlich et al. 2009, 2011).  Nguyen et al. (2015) recently introduced an advanced water end 

use disaggregation software called Autoflow© that overcomes these limitations through 

applying a hybrid combination of pattern recognition algorithms and data mining techniques 

to learn distinct flow signature patterns for each end use category. This software can actively 

monitor water consumption and provide real-time information about what, when, where and 

how water is consumed.   

 

Developed using a database of nearly 200,000 samples collected from residential households 

located in cities in Australia, Autoflow© allows individual consumers to log into their user-

defined water consumption web page to view their daily, weekly, and monthly consumption 

tables, as well as charts on their water demand across major end-use categories (e.g. leaks, 

clothes washer, shower, irrigation). This software also benefits water service providers by 

rapidly providing water end-use reports of any desired property or suburbs, thereby 

empowering them to: (i) develop more targeted conservation programs in water scarcity 

periods; (ii) improve water demand forecasting; and (iii) optimise pipe network modelling. The 

overall analysis process in Autoflow© can be separated into two distinct analysis stages: (1) 

Hidden Markov Model (HMM), Dynamic Time Warping (DTW) algorithm, Artificial Neural 

Network (ANN) and event probability techniques applied for autonomous water end use 
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classification; and (2) Dynamic Harmonic Regression (DHR), Kalman Filter and Fixed Interval 

Smooth algorithm for short term water demand forecasting. Further, the system enables water 

utilities to intervene as soon as an exception alarm is raised for end-uses, such as major water 

leaks. The analytical report generated by the system helps water service providers to identify 

the water consumption patterns of different types of consumers. The following sections detail 

how the residential consumption dataset was collected, pattern recognition techniques were 

applied, and how the short-term demand forecasting technique was developed. This present 

paper is more focused on the development of the latter short-term demand forecasting 

technique. 

4.1.  Data collection for pattern recognition training and testing  

To collect approximately 200,000 different consumption patterns as mentioned prior, smart 

water meter data utilised for the development of the model was sourced from 1000 residential 

households fitted with a smart meter and data logger, which were located in Melbourne and the 

urban south-east corner of the State of Queensland, Australia. Text files containing 0.014 

L/pulse water consumption data for every five second logging interval for each sample 

household was collected. Three separate water end use analysis reads occurred during the 

study. The first read was conducted in winter 2010 from 14th to the 28th June. The second read 

was taken in the summer 2010-11 between 1st December 2010 and 21st February 2011. The 

final two-week period of analysis occurred in winter 2011, from the 1st to the 15th June. It was 

important to obtain a dataset for this study that included the entire spectrum of events across 

seasonal periods (i.e. irrigation). During this data collection process, household water appliance 

stock audits and self-reported water diaries were used to help determine household 

demographic characteristics, the water use stock present within the home, the efficiency of the 

water use stock, and the water use activities and behaviours of each household. At the time of 

the house visit to conduct the water audit, a water diary was left with the participant to fill out 

over a 14 day period. During the visit, the researchers talked through each question with the 

residents and walked around the home looking at, and recording, the water stock, and enquiring 

about the use of each device. The residents were asked to elaborate on any interesting 

comments or their thoughts on water use in their home, or in general. A range of information 

was recorded during the audit, including typical volume, typical flow rate, make, model and 

water rating of each appliance in the house. Additionally, residents were also asked to record 
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all water consumption activities, including starting and ending time, and category of each 

consumption.  

 

This process resulted in a database of water use fixtures, fittings and behaviours within the 

sample. The data were collected through the water audit was used to determine: the fixtures 

and fittings within the homes, the relative efficiency of fixtures, the perceived time of day and 

the duration of use, and the water usage patterns and behaviours unique to each household. The 

data enabled the creation of a repository of characteristic residential water end-use category 

templates for each home, which was subsequently used for machine learning processing 

described in the next section. 

4.2. Machine learning techniques applied in Autoflow© 

The core task in Autoflow© development was to explore smart algorithms that are able to 

categorise an unknown event pattern (Figure 1) collected from a customers’ smart meter to its 

appropriate end use category. To achieve this goal, Hidden Markov Model (HMM), Artificial 

Neural Network (ANN) and Dynamic Time Warping (DTW) algorithms have been applied as 

explained below. 

 

 

Figure 1. Example of an unknown event 
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4.2.1. Hidden Markov Model  

HMM is a stochastic finite state automation defined by the parameter   = (π,a,b), where π is 

an initial state probability, a is state transition probability and b is an observation probability, 

defined by a finite multivariate Gaussian mixture. In this study, HMM was utilised as an initial 

classifier to provide classification likelihood for each unknown event based on its shape 

pattern. However, the weakness of this technique is that HMM does not adequately classify 

end use categories that are highly dependent on user behaviour such as showering; such end 

uses are highly variable meaning that they sometimes having features that closely resemble 

those in other categories.  To illustrate this issue, Figure 2 shows that three different end use 

event categories (i.e. shower, bathtub and irrigation) can possess similar flowrate patterns (i.e. 

how the flow rate rises and drops). Although having significant difference in flowrate, duration 

and volume, the HMM classification process on these samples have resulted in very close 

likelihood values, which makes the classification process less accurate.  As a result, an 

additional technique that can inspect the physical features of these events is required to help 

differentiate between them. 

 

 

Figure 2. Similar samples extracted from three different end-use categories 
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4.2.2. Artificial Neural Network  

To overcome the above mentioned issue, ANN was employed. A feed-forward network with 

back-propagation training algorithm was selected as the main tool to learn a typical pattern of 

each category in terms of physical characteristics, including (i) volume; (ii) duration; (iii) 

maximum flow-rate; (iv) most frequent flow-rate; (v) frequency of most frequent flow-rate; 

(vi) magnitude of initial flow-rate rise; (vii) magnitude of  flow-rate drop at the end of event; 

(viii) gradient of initial flow-rate rise; and (ix) gradient of  flow-rate drop at the end of event. 

Features (vi) to (ix) are defined below and are also illustrated in Figure 1: 

 

(vi) Magnitude of initial flow-rate rise (Δf1) is defined as the flow-rate rise at the initial 

phase of the event when the consumer starts using water.  

(vii) Magnitude of flow-rate drop at the end of event (Δf2) is the flow-rate drop at the end 

phase of the event when the valve is shut.  

(viii) Gradient of initial flow-rate rise (g1) is determined by dividing Δf1 by the time it takes 

to reach this flow-rate (Δt1).    𝑔1 = 𝛥𝑓1/𝛥𝑡1             (1) 

(ix) Gradient of flow-rate drop at the end of event (g2) is determined by dividing Δf2 by the 

time it takes for the flow to revert to zero (Δt2).          𝑔2 = 𝛥𝑓2/𝛥𝑡2         (2) 

 

 

 

Figure 3. ANN model for water end use classification 
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Once the required features of all events have been obtained, the ANN training process using 

the back-propagation algorithm can be started following the network presented in Figure 3. 

The output of this process is an ANN model that is able to turn any unclassified event into one 

of the seven end-use categories, namely shower, faucet, clothes washer, dishwasher, toilet, 

bathtub, and irrigation. Classification likelihood obtained from this process for each event was 

then combined with that from HMM model to provide the final likelihood for decision making. 

 

4.2.3. Dynamic Time Warping algorithm 

The last applied mathematical tool was the DTW algorithm, which is a popular method for 

measuring the similarity between two time series of different lengths. The sequences are 

extended or shortened in the time dimension to determine a measure of their similarity 

independent of certain non-linear variations in the time dimension (Myers and Rabiner, 1981). 

DTW played an important role in the water end use pattern recognition process since it was 

utilised for the task of searching for linked cycles of water use related to one particular end-use 

event for mechanised end-use events (e.g. clothes washer and dishwasher) that were 

misclassified by HMM and ANN. In essence, clothes washers and dishwashers have patterns 

of cycles of water use associated with a particular customer ‘wash’ selection, which can be 

recognised using DTW. 

 

4.3.  Water end-use disaggregation model development 

 

Figure 4. Water end-use disaggregation process 
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With the available database, the disaggregation process of water end use events from the raw 

data was developed. As mentioned previously, single events are defined as those which occur 

in isolation (e.g. toilet flushing only), while combined events have simultaneous occurrences 

of water usage (e.g. a shower occurring while someone else is using a tap). Combined events 

are more challenging to disaggregate into discrete single events. As the very first step of the 

classification process (Figure 4), the HMM algorithm is used to recognise if an event can be 

clearly allocated to a particular single event category or is most likely a combined event.  

Remaining events from this process are placed into two groups, namely, unclassified single 

events and combined events. In the case of unclassified single events, a combination of HMM, 

ANN and DTW was then employed to assign them to appropriate end use categories. The next 

important task involves the combined event classification, which is one of the most 

complicated problems in the field of pattern matching. To address this question, a combination 

of DTW, HMM, ANN, Data filtering and Time-of-day probability techniques has been 

employed. Presented in the next sections is a summary of single and combined event analysis 

models. 

 

4.3.1. Single event analysis 

 

 

Figure 5. Single event classification procedures 

As shown in Figure 5, to enable a classification process using ANN, distinct physical features, 

explained in Section 4.2.2, from each event have to be initially extracted and used as the main 

input for the classification process. The likelihood estimation of each event using HMM and 

ANN is then conducted, which allows the final decision to be made. At the end of this step, 
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most unclassified single events will be assigned to appropriate categories. However, even after 

these procedures are completed, there are often a small number of misclassified events due to 

their complicated patterns or highly similar patterns to other end use categories making it 

difficult to assign them. To capture the majority of these unclassified events a further analysis 

procedure was developed, which essentially searched for wash-cycle patterns evident in the 

mechanised end use categories (e.g. clothes washer). The searching process starts with 

selecting clothes washer and dishwasher prototypes from the already classified events of these 

two categories. With the availability of the representative clothes washer and dishwasher 

samples, the searching can be performed by looking for any event that has similar shape to 

these prototypes using DTW.  

 

4.3.2. Combined event analysis 

The overall procedure for combined event disaggregation is detailed in Nguyen et al. (2013b). 

Therefore, only a brief summary of the techniques applied for this module is presented herein 

(Figure 6). 

 

 

Figure 6. Combined event classification procedures 

The established HMM-ANN-DTW hybrid model for single event recognition also plays a 

major role for combined event disaggregation along with other pre-determined criteria. The 

whole combined event analysis process is separated into two main stages: (1) Sub-event 

analysis; and (2) Base-event analysis. In the first stage of analysis, a separation process 

employing the modified gradient vector filtering method is applied to disaggregate the 
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uncategorised combined event into one base sample and several sub samples, where the term 

“sample” is used to refer to the products obtained from the separation process before the 

classification. Once these samples are assigned to their proper categories, they are called 

“events”. The HMM, DTW and ANN method are applied to the sub samples to determine 

whether they are actual complete single events or just parts of other events within the combined 

event.  

A base event, as previously defined, is the longest single event within the combined event. 

However, in the second stage of the analysis, the classification of the base sample, achieved 

after the initial separation process, often remains problematic; that is, the decision needs to be 

made whether this event is now a single event or another combined event. This uncertainty 

arises because it is just the remaining product after small or spiky sections are taken away from 

the original combined event. To tackle this issue, the subjected base sample is dissected into 

many smaller parts, using the same gradient vector filtering technique, for further analysis. The 

outcome of the second stage analysis, following the HMM and ANN classification process, is 

a classified a single base event, with the potential for other classified sub events, where they 

exist. 

 

4.3.3. Model verification 

 

Table 1. Model verification  

Category 
No. of samples 

for training 

No. of samples 

for testing 

Achieved 

accuracy (%) 

Shower 14,903 3,000 93.8 

Faucet 21,985 3,000 90.8 

Clothes washer 15,211 3,000 91.7 

Dishwasher 13,342 3,000 96.0 

Toilet 15,222 3,000 94.4 

Bathtub 1,080 500 88.1 

Irrigation 1,020 500 85.9 

All categories 82,763 16,000 92.9 
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The overall verification process is presented below where 16,000 samples (20% reserved data) 

were used to illustrate the accuracy achieved. End use event classification accuracy was 

calculated by dividing the number of correctly classified events for each end use category by 

the total number of events within the testing sample for each end use category (Table 1). For 

example, for the classification of shower events, the number of testing samples was 3,000 and 

the number of events correctly identified was 2843, which resulted in an accuracy of 93.8 %. 

 

4.4. Autoflow© populated water demand forecasting model development 

The next important task was to develop water demand forecasting functionality for Autoflow©. 

Given that the collected hourly water consumption data from a sample of 100 homes in a 

surveyed suburb displays a periodic pattern (Figure 7), a state-space model was required that 

combines both stochastic and regression models. Seasonality, temperature effect and residual 

were modelled as stochastic processes.  

 

 

Figure 7. Collected hourly water consumption data for suburban area (N=100 homes) 

 

The model is considered as an observation equation of a discrete time. Stochastic state models 

and the associated state equations were used to model each of the components in Gauss- 

Markov (GM) terms. The forecasting model in Autoflow© has the form of:  
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where y(t) is the forecasted hourly water consumption data (L/hr) at time t; S(t) is a seasonal 

component that directly reflects the periodic pattern of the data; F(t) is the function that 

describes the influence of daily temperature (℃) on periodic pattern of the data; and e(t) is the 

noise component used to model the random changes in water consumption due to water 

consumption behaviours.  

To account for the nonstationary characteristics of this time series data, all components in Eq. 

(3) were characterised by stochastic, time dependant parameters (Young, 1998; Young and 

Pedregal 1999a). In this model, the most important component is the seasonal term S(t) that 

determines the periodic pattern of the water consumption data signal, and is defined as:             𝑆(𝑡) = ∑ {𝑎𝑖,𝑡 cos(ω𝑖𝑡) + 𝑏𝑖,𝑡 sin(ω𝑖𝑡)}𝑅𝑖=1       (4) 

where 𝑎𝑖,𝑡 and 𝑏𝑖,𝑡 are stochastic parameters and wi, (i=1,2,…R) are the fundamental and 

harmonic frequencies associated with the seasonality in the series. 

F(t) is characterised by the following deterministic transfer function:              𝐹(𝑡) = 𝐵(𝑧−1)𝐴(𝑧−1) 𝑢(𝑡 − δ)          (5) 

Where u is the input temperature and δ is the time lag, 𝐴(𝑧−1) and 𝐵(𝑧−1) are the polynomials 

in the backward shift operator (𝑧−1)  that define the transfer characteristics between the 

temperature and the water consumption, and have the following form of: 

 𝐴(𝑧−1) = 1 + 𝑎1(𝑧−1) + 𝑎2(𝑧−2) … + 𝑎𝑛(𝑧−𝑛)               (6a)               𝐵(𝑧−1) = 1 + 𝑏1(𝑧−1) + 𝑏2(𝑧−2) … + 𝑏𝑛(𝑧−𝑛)               (6b) 

Given that the relationship between weather conditions and residential water consumption is 

determinable, the first order of the transfer function was recommended. In terms of state-space 

form, (t) can be presented as:  

 𝑥𝑓(𝑡) = 𝐹𝑓𝑥𝑓(𝑡 − 1) +  𝐹𝑓φ𝑓(𝑡 − 1)                (7a) 𝐹(𝑡) = 𝐻𝑓𝑥𝑓(𝑡)                   (7b) 

where  𝐹𝑓 = 1 , 𝐺𝑓 = 1 and 𝐻𝑓 = 1 when the first order transfer function was adopted (Harvey 

1989).    
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With the availability of observation and state-space equations of all components, the 

aggregation of all subsystem matrices into a standard state space format can be undertaken as 

presented in Eq. (8).  

 State-space equation:  𝑋(𝑡) = 𝐹𝑥(𝑡 − 1) +  𝐺φ(𝑡 − 1)                 (8a) 

Observation equation:  𝑦𝑡 = 𝐻𝑋(𝑡) +  𝐺φ(𝑡 − 1)                   (8b) 

Where, the state vector X (t) is composed of all state variables from the seasonal and external 

temperature input model. The white noise vector φ(t) is defined by the white noise disturbance 

input of the constituent model. In order to have a good approximation of the collected water 

consumption data y(t) from the state-space model, the key task is lying at an accurate estimation 

of the time variable parameters X(t) which can be done using Kalman Filtering accompanied 

by the optimal smoothing procedures as described in (Kalman, 1960 and Young & Ng, 1989).   

With the availability of (t) obtained from the previous step, forecasting of future water 

consumption can be performed straightforwardly by the applying the state-space 

filtering/smoothing algorithm. The f-step-ahead forecasts of the aggregate state vector (t) in 

Eq. (8) are obtained at any point in the time series by using Eq. (9a):   �̂�(𝑡 + 𝑓|𝑡) = 𝐹𝑓�̂�(𝑡)                   (9a) 

Where (f) denotes the forecasting period. The associated forecast of (t) is provided by Eq. (9b):  �̂�(𝑡 + 𝑓|𝑡) = 𝐻�̂�(𝑡 + 𝑓|𝑡)                  (9b) 

The water demand forecast model of hourly demand can be coupled with Autoflow© analytical 

procedures in order to disaggregate this hourly demand into water end use components, as 

described in the below steps: 

(i) Perform an automated water end-use analysis using Autoflow© for the previous two 

weeks of smart meter data, in order to create the hourly end use breakdown of 

residential water consumption for each day of the week. 

(ii)  With the disaggregated volume of all events obtained from step (i), determine the 

volume distribution for each category through Eq. (10), which is a (m by 24) matrix 
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P, where m is the number of end-use component and volumei,j is the total volume of 

category i collected at time j of the day.  

 𝑃𝑖,𝑗 = 𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑗∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑗𝑚𝑖=1    i = 1, 2,…,  and  j = 1,2,…,24            (10)  

(iii) Allocate this volume distribution on the predicted 24-hour demand ahead. Eq. (10) 

can be interpreted as: if i = 1 corresponds to shower category, P1,1 will represent the 

percentage of shower volume in comparison with the total volume collected, for 

instance, at 1 am during the last two weeks. For example, if P1,1 = 15%, and the 

predicted water consumption at 1 am of the next day is 100 litres, then the predicted 

shower at 1 am is 15 litres. By doing this, predicted volumes of all categories can 

be determined as presented in Figure 8. Readers should note that Figure 8 displays 

the next day disaggregated demand prediction for a sample of 100 homes fitted with 

smart water meter. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Disaggregation of forecasted total water consumption for 100 homes 

 

5. Applications of Autoflow© 

5.1. Water service provider urban water management and Customer engagement 
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Developed using a combination of several complex pattern recognition and demand forecasting  

techniques, Autoflow© facilitates water demand disaggregation into end use categories, short-

term water demand forecasting at an end-use level, and water end use appliance stock 

efficiency identification for individual or clusters of smart metered household. The following 

sections detail the benefits of these applications for water service providers. 

5.1.1. Water end-use disaggregation function 

The primary function of the Autoflow© software is to autonomously disaggregate high 

resolution data collected from smart waters into a repository of end-use categories. In addition 

to the benefits of having water end-use data as described in Section 3, a water service provider 

can utilise Autoflow© for real time monitoring of water consumption in a particular service 

area, or detecting leakage in the water supply network by comparing consumed water for a 

particular supply zone with the total supplied water for that zone. 

5.1.2. Water demand forecasting process 

Based on the analysis of high-resolution data collected from the previous two week period, 

Autoflow© is able to perform a short-term end use demand forecast for the next day. This 

information will assist water supply infrastructure engineers and demand management planners 

in their roles. Specifically, Autoflow© greatly enhances the ability of water service providers 

to plan for future peak demand events and to put in place strategies to proactively management 

them. Such targeted information coupled with incentives (i.e. discounts, rewards, etc.) for 

reducing peak demand, has the potential to defer infrastructure upgrade augmentations (e.g. 

Gurung et al. 2014a), reduce pumping requirements and associated electricity costs (Dejan, 

2011), reduce pipe bursts and network leakage (Girard and Stewart, 2007), and extend the pipe 

network asset life cycle. 

 

5.2.Customer engagement 

Autoflow© provides water service providers with an opportunity to closely engage with their 

customers. Once the system is in place customers will gain significant benefits, including: (1) 

smart application to view real-time water consumption as well as other statistical reports, 

including comparisons with other households with similar demographic patterns, detailed end 

use disaggregation, or recommendations to help reduce consumption; (3) be immediately 

alerted when  water demand is uncharacteristic (e.g. water leak in home); (4) be informed about 
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the current efficiency status of water appliances and devices; (5) trade unused resource for 

profits (Figure 9). 

 

 

Figure 9. Autoflow© - Customer version user interface 

5.3. Wastewater treatment process 

5.3.1. Wastewater treatment plant planners and operators 

Understanding how water was used by customers is vital for planning and managing 

wastewater treatment processes. Autoflow© provides detailed understanding of the current and 

forecasted end use demand of residential customers (e.g. shower, tap, clothes washer) at 

different times of the day.  Knowing the extent of outdoor consumption used mainly for 

irrigation purposes is helpful for understanding the amount of wastewater entering the 

sewerage system from each household. Detailed information of wastewater released from an 

area will provide infrastructure planner with strong evidence during the design and planning of 

new adjacent development zones. The planner would have a more accurate estimate of the 

actual capacity of the current sewerage system, from which a decision on having a system 

upgrade or using the existing sewerage pipe network could be made. Finally, understanding 

the volume of water and typical chemical constituents of each end use category (e.g. clothes 

washing wastewater properties) at particular times of the day can be used for more proactive 

wastewater treatment plant operations management. 

5.3.2.  Equitable wastewater billing 
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Most cities charge residential customers with a simple fixed wastewater charge or a simplistic 

volumetric wastewater charge based on their water consumption. Autoflow© provides end use 

data for each household, which allows water service providers to consider more sophisticated 

wastewater tariffs that better reflect the true cost of treating a particular households’ 

wastewater. Such cost-reflective tariffs could be based on the volume of water entering the 

sewerage system (i.e. exclude irrigation end use) and the characteristics of wastewater from 

each household. The characteristics of an individual households’ wastewater could be 

estimated using the water end use data obtained from Autoflow© and the typical chemical 

constituents of those end use categories (e.g. wastewater from dishwasher requires more 

treatment than bath wastewater). 

6. Conclusion 

While the rate of diffusion has been slower than initial expectations, it is inevitable that water utilities 

will embrace digital technologies to more efficiently and effectively manage their assets, while 

significantly enhancing their level of engagement with customers. This study has explained how 

these goals could be achieved through describing the applications of collecting high resolution 

end use data from smart metering technologies coupled with the herein described Autoflow© 

software for most stages of the urban water management process. Such a system once in place 

will result in significant benefits for utilities and customers. From the utility perspective, water 

and capital cost savings can be extracted from better leak detection, network infrastructure 

upgrade deferral as a result of reduced peak demand, optimised pumping schedules, and 

improved wastewater operations management. In terms of the customer, continuously updated 

and highly detailed water end use data provided through web and phone applications would 

significantly enhance their awareness of consumption trends, providing them with the impetus 

to manage their demand  

The prototype Autoflow© software architecture and applications have been outlined in this 

paper. Current work is being undertaken to embed Autoflow© into smart water meter so that 

all analyses can be performed on board to save to energy used to transmit high resolution data 

into web server for analysis. Self-learning algorithm is also being developed to allow each 

meter with embedded Autoflow© to learn and adapt to each customer water consumption habit, 

which will help significantly the overall software performance.  

7. Future work 
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Within a decade, technology has rapidly become more sophisticated, from needing separate hardware 

and software to collect, store, transfer and analyse a gigabyte of data, to now having one piece of 

technology that combines hardware, software and firmware to provide near-real time, tailored reports 

to utilities and customers as explained in the previous section. Initial success in water end-use 

disaggregation has allowed the research team to make another step to explore a completely new 

area, the potential for a digital multi-utility service provider. The overall concept here is that a 

multi-utility service provider will be able to concurrently collect a customers’ medium-high 

resolution water, electricity and gas demand data and provide user-friendly platforms to feed 

this information back to customers and supply/distribution utility organisations. The primary 

benefit to a multi-utility digital retailer is access to intelligently processed and synthesised 

customer ‘big data’. From such data, digital multi-utilities can for example create innovative 

tariff structures, manage peak demand, unpack the water-energy nexus, and derive innovative 

tailored resource conservation products and rebates. The scale of customers served, multi-

utility services offered, and data-driven value-adding to the entire utility 

generation/supply/distribution grid system, means that the utility can optimise the management 

of the system being used, potentially providing extensive financial capital and operational 

benefits, and the customers can benefit from significantly lower overall utility bills.  

 

 

Figure 10. Proposed Water-Energy-Gas analysis model 

To establish such a system, the core and most challenging part is to develop the classification 

model to analyse the concurrently collected water-energy-gas consumption data from smart 

meters. The architecture and methodology for autonomously categorising this complicated data 

have been conceptualised by the researchers (Figure 10), and future work seeks to develop 

mathematical platform for each analysis module in this system. Once the overall system has 
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been completed, a resource trading platform will be developed that allows customer to prepay 

for their future water, energy or gas consumption, and trade (i.e. buy/sell) any unused resource 

with other customers in the network. Such system will significantly enhance Water-Energy-

Gas consumption saving as customers are now aware that the more resource saved, the more 

they have for trading to earn profits. 
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