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Abstract. Glacier mass loss is among the clearest indicators

of atmospheric warming. The observation of these changes is

one of the major objectives of the international climate mon-

itoring strategy developed by the Global Climate Observing

System (GCOS). Long-term glacier mass balance measure-

ments are furthermore the basis for calibrating and validating

models simulating future runoff of glacierised catchments.

This is essential for Central Asia, which is one of the dri-

est continental regions of the Northern Hemisphere. In the

highly populated regions, water shortage due to decreased

glacierisation potentially leads to pronounced political insta-

bility, drastic ecological changes and endangered food se-

curity. As a consequence of the collapse of the former So-

viet Union, however, many valuable glacier monitoring sites

in the Tien Shan and Pamir Mountains were abandoned. In

recent years, multinational actors have re-established a set

of important in situ measuring sites to continue the invalu-

able long-term data series. This paper introduces the applied

monitoring strategy for selected glaciers in the Kyrgyz and

Uzbek Tien Shan and Pamir, highlights the existing and the

new measurements on these glaciers, and presents an exam-

ple for how the old and new data can be combined to estab-

lish multi-decadal mass balance time series. This is crucial

for understanding the impact of climate change on glaciers

in this region.

1 Introduction

Glacier fluctuations in mountain areas have been monitored

in various parts of the world for more than a century (Hae-

berli et al., 2007; Zemp et al., 2015), and glacier changes

are considered to be reliable indicators of worldwide at-

mospheric warming trends (IPCC, 2013). Mountain glaciers

and ice caps are important for early-detection strategies in

global climate-related observations. Hence, glaciers are one

of the “essential climate variables” (ECVs) in the Global

Climate Observing System (GCOS). Embedded in GCOS is

the Global Terrestrial Network for Glaciers (GTN-G) oper-

ated by the World Glacier Monitoring Service (WGMS), the
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US National Snow and Ice Data Center (NSIDC), and the

Global Land Ice Measurements from Space (GLIMS) initia-

tive. These institutions follow the so-called Global Hierar-

chical Observing Strategy (GHOST) (WMO, 1997b, 2010)

forming the basis for the strategic observation framework.

The main objectives of long-term glacier monitoring are

related to (1) process understanding, (2) model validation

and/or calibration, (3) change detection and (4) impact as-

sessment. Furthermore, they play a key role for assessing

climate change effects such as estimating sea-level rise, re-

gional changes in runoff and impacts of natural hazards.

In particular, countries and regions that are vulnerable to

climate change rely on a sound and continuous long-term

database providing the necessary information to cope with

future challenges in different areas such as water manage-

ment, irrigation for agriculture, disaster risk reduction and

public health.

Continuous in situ monitoring of glaciers in remote areas

is a challenging task, and maintaining the necessary measure-

ments can be both logistically and economically demanding.

Reasons include missing long-term financial and/or human

resources as well as general political instability, access to re-

mote regions, natural hazards or missing infrastructure. In

many countries with glacierised mountain ranges, continuous

observations are thus lacking. For these reasons, monitoring

strategies need to be improved, and different techniques such

as in situ measurements, remote sensing and modelling have

to be combined to generate high-quality products.

Currently, a re-establishment of historical monitoring sites

in Kyrgyzstan and Uzbekistan is jointly being developed by

different international projects including Capacity Building

and Twinning for Climate Observing Systems (CATCOS),

Central Asian Water (CAWa), Cryospheric Climate Services

for improved Adaptation (CICADA) or Contribution to High

Asia Runoff from Ice and Snow (CHARIS). In the frame of

those projects, the measurement series on selected glaciers

(see Fig. 1) in Kyrgyzstan and Uzbekistan are (re-)initiated.

The project CATCOS had two phases; the first phase was

from 2011 to 2013, which was mainly related to the tech-

nical installations; and the second phase from 2014 to 2016

was mainly used for capacity building and twinning activi-

ties. The project will be continued within the next years in

a cooperative effort between Kyrgyzstan, Uzbekistan, Ger-

many and Switzerland.

This paper aims at presenting and discussing the major

steps and methodologies developed and applied in Kyrgyzs-

tan and Uzbekistan to (re-)establish glacier monitoring at

the most important sites within the two projects CATCOS

and CAWa (Fig. 1). The described methods and experience

might be a blue print for similar cases in other parts of the

world. The key steps, around which this paper is centred, are

the (1) collection, homogenisation and securing of historical

data; and (2) the re-establishment of glacier monitoring; and

(3) capacity building and twinning.

2 Glaciers in Central Asia

Glaciers in Central Asia constitute an important water stor-

age component (e.g. Immerzeel et al., 2010; Kaser et al.,

2010; Duethmann et al., 2015), which is of particular impor-

tance for different sectors including agriculture and energy

production (Siegfried et al., 2012). With the ongoing climate

change the corresponding variations in glacier area and vol-

ume in this region are considerable. Most studies agree on the

general trend of glacier mass loss, including an acceleration

since the 1970s (e.g. Sorg et al., 2012; Farinotti et al., 2015).

Regarding seasonal changes, however, the studies disagree.

In their comprehensive review on past changes in high-

altitude areas of Central Asian headwaters, Unger-Shayesteh

et al. (2013) conclude that there is (i) a lack of reliable data,

especially for the glacio-nival zone; (ii) methodological lim-

itation in trend analysis; and (iii) a strong heterogeneity in

spatial and temporal extent of the available analyses. These

restrictions hamper a sound synthesis for the whole region

and limit the understanding of interactions between changes

in highly variable climate parameters, the cryosphere and the

hydrological response of headwater catchments. Altogether,

these shortcomings indicate the importance of high-quality

in situ measurements, which are required for a better cali-

bration and validation of local to regional-scale models for

estimating future glacier mass balance and runoff.

2.1 Tien Shan

Glaciers in the Tien Shan cover around 12 400 km2, of which

about 7400 km2 is situated in Kyrgyzstan according to the

Randolph Glacier Inventory Version 5.0 (RGIv5.0) and about

117 km2 in Uzbekistan (Arendt et al., 2015). In the Tien

Shan, only two continuous long-term glacier mass balance

series are presently available (Tuyuksu glacier in Kazakhstan

and Urumqi Glacier No. 1 in China). Two long-term mass

balance measurements in the Kyrgyz Tien Shan were dis-

continued in the 1990s (Golubin and Karabatkak). Whereas

glaciers in the western part of the Tien Shan receive winter

accumulation, glaciers in the east are summer-accumulation-

type glaciers. Furthermore, annual precipitation sums reach

a maximum in the northwest and decrease south-eastwards

(Voloshina, 1988). This shift goes along with an alteration

of the annual precipitation maximum, which is earlier in the

west and in summer in the east (Dyurgerov et al., 1994).

Kriegel et al. (2013) show a temperature change of 0.1–

0.2 ◦C per decade for the ablation period (April–September)

during 1960–2007 for the Naryn station. The same authors

indicate an unequivocal change in precipitation across a few

stations in the central Tien Shan. A decrease in snow cover

has been observed for the period from 1960 to 2007 in the

entire Tien Shan (Chen et al., 2016). Precipitation changes

seem to be less important. Higher air temperatures resulted

in positive runoff trends in spring and autumn for the Naryn

catchment, which is likely to be related to enhanced snow
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Figure 1. Map of glaciers in Central Asia, where the investigations were gradually re-established starting in 2010. Red symbols show glaciers

investigated within the CATCOS and CAWa projects, and blue symbols show glaciers that are covered by other projects such as CHARIS.

and glacier melt corresponding also to the observed annual

area shrinkage rates since the middle of the 20th century (e.g.

Sorg et al., 2012). For the Small Naryn river, significant neg-

ative runoff trends were found, whereas for the Big Naryn

river a positive but not significant trend was found for Au-

gust, which is the month with the largest glacier runoff con-

tribution (Kriegel et al., 2013).

2.2 Pamir-Alay

In the Pamir, glaciers cover approximately 12 100 km2. The

subregion Pamir-Alay has a total glacier area of around

1850 km2 (both values are based on RGIv5.0). In the Pamir-

Alay, direct mass balance measurements only exist for the

Abramov glacier (Fig. 1). For the Pamir-Alay, a strong gra-

dient in the equilibrium line altitude (ELA) from west to east

is observed (Glazirin et al., 1993). This is linked to impor-

tant differences in precipitation (Suslov and Akbarov, 1973).

According to Suslov and Akbarov (1973) and Glazirin et al.

(1993), the maximum annual precipitation in the Pamir-Alay

is about 1900 mm a−1 in the western part at the border be-

tween Kyrgyzstan and Tadjikistan, and about 400 mm a−1 in

the eastern part. The seasonal precipitation regime also dif-

fers from west to east: whilst the west shows a maximum pre-

cipitation during autumn and winter, the east is characterised

by a maximum during spring and summer. Therefore, both

accumulation and ablation are region dependent, resulting in

different glacier surface mass balance gradients. This also

influences total discharge from glaciers, which is estimated

as 1.6 km3 a−1, corresponding to about 8 % of the total an-

nual runoff of all rivers in Central Asia (Suslov and Akbarov,

1973). Focusing on a region in the eastern Pamir, Khromova

et al. (2006) found a reduction in glacier area of 10 % from

1978 to 1990 and of 9 % from 1990 to 2001. Glacier front

variations with annual rates of −11.6 m a−1 for very large

glaciers, of −7.3 m a−1 for valley glaciers and of −3.3 m a−1

for smaller glaciers were observed. The high sensitivity of

glaciers to summer temperatures is assumed to be responsible

for the long-term retreat (Glazirin et al., 2002). The negative

mass budget of the glaciers in this region indicates that in-

creased winter and summer precipitation cannot compensate

for the increase in air temperature (Khromova et al., 2006).

A smaller reduction in glacier area of 3 % a−1 for the period

2000 and 2007 was observed by Narama et al. (2010) for

a region which is close to the southeastern Fergana mountain

range situated in the east of the Pamir-Alay.

3 Instrumentation, methods and data

3.1 Monitoring strategy

The applied strategy to re-establish glacier observation net-

works in Central Asia is partly based on tiers 2 and 3 of

GHOST (WMO, 1997a, b) and the experience gained in

different monitoring projects. For glacier mass balance, the

strategy is composed of several components:

1. mass balance measurements using the glaciological

method;

2. observation of the transient snow line on photographs

from terrestrial automatic cameras and/or on satellite

images during the summer months; and

3. a mass balance model driven by nearby automatic

weather station data, reanalysis data or climate model

results (see Fig. 2).
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Figure 2. Schematic view of the monitoring strategy applied for re-established measurements in Central Asia.

As an important additional element, geodetic measurements

should be integrated for calibration or validation purposes

depending on the given objectives. The combination of the

different approaches allows producing accurate mass balance

estimates with a high temporal and spatial resolution (e.g.

Zemp et al., 2013). An important advantage of the described

strategy is that all different components can be used indepen-

dently (e.g. Huss et al., 2009).

The re-establishment of the in situ glacier monitoring has

to obey certain criteria for the selection of the glaciers. These

are based on several preconditions such as field-site acces-

sibility, availability of historical data, geo-climatic distribu-

tion within mountain ranges, suitability for long-term mon-

itoring based on glaciological feasibility and the availabil-

ity of other measurements. Based on these criteria, the five

glaciers Abramov, Golubin, Batysh Sook, Glacier No. 354

and Barkrak Middle were selected within the projects CAT-

COS and CAWa (see Fig. 1 and Table 1).

3.2 Implementation

The implementation of the measurement network within the

re-establishing activities (in the following referred to as the

“new” measurement network) takes advantage of the con-

cept described above. Our approach is summarised below to

clarify the individual steps during the re-establishment of the

mass balance series:

1. Finding appropriate collaboration partners.

2. Collection of all historical mass balance data from dif-

ferent sources.

3. Based on a review of these data and expert knowledge,

the glacier selection was conducted and accordingly the

new mass balance network was designed.

Table 1. Information of observed glaciers and type of measurements

currently available from WGMS (2013) for mass balance (mb) and

frontal variation (fv), see Fig. 1 for location.

Glacier Type Period Interval Re-start

Golubin mb 32 1968 2016 2010

Golubin fv 30 1861 2016 2011

Abramov mb 36 1967 2016 2011

Abramov fv 17 1850 2016 2011

Batysh Sook mb 11 1970 2016 2010

Batysh Sook fv 17 1975 2016 2010

Glacier No. 354 mb 6 2010 2016 2010

Glacier No. 354 fv 14 1972 2016 2010

Barkrak Middle mb – – – 2016

Barkrak Middle fv 18 1970 1990 2016

4. Set-up of the new glaciological mass balance measure-

ment networks on the selected glaciers in the years

2010 (Golubin, Batysh Sook, Glacier No. 354), 2011

(Abramov) and 2016 (Barkrak Middle). In parallel,

installation of automatic snow line cameras and new

weather stations close to the glaciers in collaboration

with partners in the CAWa project from Kyrgyzstan,

Uzbekistan, Germany and Switzerland.

5. Selection of satellite images with optimal visibility of

melt-out patterns and snow lines.

6. A mass balance model was used as an extrapolation tool

to obtain from mass balance point measurements the

glacier-wide mass balance. Model validation was per-

formed using snow line measurements from the auto-

matic cameras or from satellite images. The model also

served for reconstructing mass balance for periods with

longer data gaps.
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7. Comparison of mass balance retrieved by in situ mea-

surements and geodetic measurements.

3.3 Glacier observations

3.3.1 Data from WGMS and literature

Glacier monitoring in Central Asia started more than

60 years ago. During this time, several different glaciolog-

ical programmes were established in the mountain ranges

of Kyrgyzstan, Kazakhstan, Uzbekistan and Tajikistan. We

compiled all available glacier data from the WGMS (WGMS,

2013). The total number of past glacier observations are sum-

marised in Table 2, delivering basic information related to all

existing measurements having an observation period longer

than 2 years. For 17 glaciers, mass balance measurements

exist with mean observation period lengths close to 20 years.

Thickness change measurements for 9 glaciers and repeated

front variation measurements for 62 glaciers with measure-

ment periods from 9 to 20 years are also available. Most

of the mass balance measurements were initiated between

1960 and 1970 and were discontinued in the 1990s. De-

tailed description of stake and snow pit measurements for

the Abramov glacier were retrieved from Pertziger (1996).

3.3.2 Glaciological measurements

The determination of the mass balance of a glacier using

the so-called glaciological method is the standard method

used since the earliest times of mass balance measurements

(Mercanton, 1916). This robust method is widely used to de-

termine the seasonal to annual mass change of individual

glaciers. It is based on measurements of ablation at stakes,

which are drilled into the ice of the ablation area, and of snow

depth and density measured in snow pits in the accumulation

area. The advantage of this method is the direct determina-

tion of the temporal evolution of mass balance. Calculation

of the total mass change derived from point measurements,

however, can be challenging since individual stake readings

and snow pit data have to be extrapolated over the glacier,

thus resulting in considerable uncertainties (for further de-

tails, see Østrem and Brugman, 1991; Kaser et al., 2003;

Thibert et al., 2008; Cogley et al., 2011).

On the (re-)established glaciers the following measure-

ments were carried out:

– For the ablation measurements in late summer, plastic or

wooden stakes were drilled into the ice in the ablation

area to a depth related to the expected melt rate at the

corresponding altitude varying on the observed glaciers

between around 2 to 10 m. This was done with an auger

or a steam drill.

– In the accumulation area, several snow pits were dug to

determine the annual snow accumulation and its density.

Additionally, several snow depth measurements with

Table 2. Information on glaciers before the re-establishment of

the measurements was initiated based on WGMS (2013). Abbre-

viations: KG, Kyrgyzstan; KZ, Kazakstan; UZ, Uzbekistan; TJ,

Tajikistan; mb, mass balance measurements; tc, geodetic thickness

change; fv, front variations.

Country Meas. Glaciers Mean Mean Mean

observed observation start end

period date date

KG mb 7 19 1973 1994

KG tc 2 2 1977 1989

KG fv 19 9 1954 2002

KZ mb 9 19 1974 1992

KZ tc 7 2 1958 1998

KZ fv 11 16 1957 1987

UZ mb 0

UZ tc 0

UZ fv 11 20 1965 1988

TJ mb 1 3 1983 1985

TJ tc 0

TJ fv 21 11 1968 1989

steel or aluminium rods of 2 to 5 m length were per-

formed. Theses were combined with occasional ground-

penetrating radar (GPR) measurements using a fre-

quency of 800 MHz to detect snow layers of former

years. This information allows an improved extrapo-

lation of the highly variable snow distribution on the

glacier (Sold et al., 2013) and reconstructing past ac-

cumulation rates back to almost one decade (Sold et al.,

2015).

– Frontal variations in glacier length were measured at the

glacier tongue using handheld GPS and/or were digi-

tised based on satellite images.

The stake and snow pit locations aim at representing the

former transects of measurement on the glaciers to allow

comparability. The total number of new stakes and pits, how-

ever, had to be reduced substantially to keep the annual work

load on a manageable level.

3.3.3 Geodetic mass balance

Geodetic mass balance measurements are useful to infer

mass and volume changes of glaciers over decadal periods

(Ahlmann, 1924), providing considerable precision and high

spatial resolution. Digital elevation models (DEMs) derived

from different sources such as topographic maps, GPS sur-

veys, aerial photographs, satellite images, synthetic-aperture

radar or Light Detection and Ranging (LiDAR) are compared

to each other, and the elevation differences over the glacier

can be converted into the glacier’s mass change over a given

time interval (e.g. Bauder et al., 2007; Thibert and Vincent,

2009; Zemp et al., 2013). In general, multi-annual time peri-

ods are needed to reach an acceptable level of accuracy (Paul
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et al., 2013). The most important uncertainties are due to

(i) density conversion (Huss, 2013), (ii) elevation biases and

errors in the co-registration of the two DEMs (Berthier et al.,

2006; Paul, 2008; Nuth and Kääb, 2011), (iii) data gaps,

(Pieczonka et al., 2011; Bolch and Buchroithner, 2008), and

(iv) errors and artefacts in the DEMs.

Geodetic glacier volume changes focusing on Central Asia

often rely on the Shuttle Radar Topography Mission (SRTM)

as a baseline for the year 2000 (e.g. Berthier et al., 2010;

Gardelle et al., 2012, 2013; Surazakov and Aizen, 2006).

However, the quality of the SRTM DEM is affected by elec-

tromagnetic wave penetration into the snow and ice. This

can lead to major uncertainties, especially affecting eleva-

tion changes in the accumulation area, for which corrections

have to be applied (Berthier et al., 2006; Gardelle et al.,

2012, 2013; Kääb et al., 2015) These corrections, however,

are difficult to quantify as they strongly vary with local con-

ditions (Kääb et al., 2015). Other data sources for the geode-

tic method applied in Central Asia are topographic maps

or stereo imagery derived from several sensors operating

in the visible range of the spectrum, such as ASTER (Ad-

vanced Spaceborne Thermal Emission and Reflection Ra-

diometer), SPOT (Satellite pour l’observation de la Terre),

Cartosat, Corona or Hexagon data (e.g. Hagg et al., 2004;

Bolch et al., 2011, 2012; Pieczonka et al., 2013; Gardelle

et al., 2013; Pieczonka and Bolch, 2015; Bolch, 2015; Pe-

trakov et al., 2016). Furthermore, laser altimetry measure-

ments, e.g. from the ICESat satellite mission operated be-

tween 2003 and 2009, offer a possibility of mass change

computation for mountain glaciers (Kääb et al., 2012; Gard-

ner et al., 2013; Neckel et al., 2014; Farinotti et al., 2015).

Elevation differences at points along the repeated tracks are

interpolated and converted into volume and mass changes.

Due to point measurements and uncertainties associated with

interpolation, this method instead delivers robust results on

large scales and not for individual glaciers.

3.3.4 Snow line observations

The calculation of glacier-wide annual mass balance from

statistical relations using ELA and accumulation area ratio

(AAR) is well established (Braithwaite and Müller, 1980;

Braithwaite, 1984; Benn and Lehmkuhl, 2000; Kulkarni,

1992). It has been applied in many different mountain ranges

(Kulkarni, 1992; Rabatel et al., 2008; Chinn et al., 2012;

Stumm, 2011), and it is often used to relate temperature and

precipitation with mass balance (Kuhn, 1984; Ohmura et al.,

1992). Generally, ELA and the annual mass balance are well

correlated (Rabatel et al., 2005, 2012). The advantage of us-

ing ELA and AAR is their straightforward mapping using

remote sensing data (Rabatel et al., 2013). However, this ap-

proach relies on the calibration against long-term glaciolog-

ical in situ measurements. An interesting alternative is the

use of transient snow lines. Their monitoring can be used as

a good proxy for the sub-seasonal mass balance (Huss et al.,

2013). The distinction between snow-covered and snow-free

zones on a glacier can be retrieved by different means such as

analysis of repeated images taken by terrestrial cameras and

satellites, or by mapping with GPS. This information can be

used to establish and analyse snow-cover depletion curves

(e.g. Parajka et al., 2012), and, in combination with corre-

sponding model approaches, the water equivalent of the win-

ter snow cover can be directly extracted (e.g. Martinec and

Rango, 1981; Schaper et al., 1999). Repeated snow line ob-

servations during the ablation period are also used for mass

balance model validation (Kenzhebaev et al., 2017; Baran-

dun et al., 2015; Kronenberg et al., 2016).

The annual course of the snow line, and the related snow-

covered area fraction, was recently used in combination with

a backward modelling approach to determine sub-seasonal

mass balance values (Hulth et al., 2013; Huss et al., 2013).

The approach by Huss et al. (2013) uses transient snow line

observations and meteorological information in combination

with a mass balance model. Remote monitoring for glaciers

with limited accessibility is thus possible. It also offers an

important backup that helps to achieve a better coverage with

mass balance estimates and thus to reduce future data gaps.

In the framework of the CATCOS project, we installed

six terrestrial cameras (Mobotix, M15 and M25) for snow

line observation: two cameras at the Abramov glacier, two

cameras at the Golubin glacier, one camera at Glacier No.

354 and one camera at the Barkrak Middle glacier. Every

day, eight pictures are taken, transferred to a nearby CAWa

meteorological station, and sent via satellite connection to

a database (Schöne et al., 2013). For Glacier No. 354 (Kyr-

gyzstan) and the Barkrak Middle glacier (Uzbekistan), data

are stored locally and downloaded once a year.

3.3.5 Meteorological measurements

Meteorological data constitute an important component of

a complete glacier monitoring approach as a required input

to mass balance models. There has been an extensive net-

work of continuous long-term meteorological time series of

air temperature and precipitation in Central Asian countries

during the Soviet Union times (Aizen et al., 1995b). How-

ever, this network thinned out considerably during the recent

past (Unger-Shayesteh et al., 2013).

Some new meteorological stations were installed in the

close vicinity of the Abramov glacier in 2011 and the Gol-

ubin glacier in 2013 by the CAWa project (Schöne et al.,

2013). These two stations were equipped with standard me-

teorological and ground sensors (see detailed description in

Schöne et al., 2013). Data access is open and facilitated

by GeoForschungsZentrum (GFZ) in Potsdam and CAIAG

in Kyrgyzstan (http://sdss.caiag.kg). Meteorological infor-

mation for the glaciers Batysh Sook and Glacier No. 354

is retrieved from the nearby Tien Shan meteorological sta-

tion (3660 m a.s.l.). This station has been operational since

1930 but was relocated in 1997. This causes a shift in the
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data, hampering its use for long-term studies. Data are avail-

able from the National Hydrometeorological Service of Kyr-

gyzstan. A small meteorological station was installed in the

glacier forefield of the Barkrak Middle glacier in 2016 by the

CATCOS project.

The access to several historical meteorological time series

is, for example, provided by the Northern Eurasia Earth Sci-

ence Partnership Initiative (NEESPI). Datasets such as re-

analysis products – e.g. NCEP–NCAR R1 (US National Cen-

ters for Environmental Prediction–US National Center for

Atmospheric Research), ERA-Interim (European Centre for

Medium-Range Weather Forecasts Reanalysis) or MERRA

(Modern-Era Retrospective Analysis for Research and Ap-

plications) can be used to fill data gaps and to extend data

records back in time (e.g. Salzmann et al., 2013; Schär et al.,

2004; Schienmann et al., 2008; Schmidli et al., 2001).

3.3.6 Establishing multi-decadal mass balance series

The combination of the methods described in the above chap-

ters allows fully exploiting the richness of the available data.

Our approach is visualised schematically in Fig. 2, and an

example is shown in Fig. 4. Establishing multi-decadal mass

balance series for data-scarce regions or time periods re-

quires various data sources to be combined in an optimal

way. The methodology that has been presented already in dif-

ferent studies (e.g. Barandun et al., 2015; Kronenberg et al.,

2016; Kenzhebaev et al., 2017) is shortly summarised here-

after.

The core of the establishment of long-term mass balance

series is made up of in situ data (stake and snow pit mea-

surements and meteorological information, such as precipi-

tation and temperature), a mass balance model, and remote

sensing products such as optical satellite sensors and terres-

trial cameras. The model used can either be a simple degree

day or a more sophisticated energy balance model, which is

able to produce sub-seasonal mass balance as an output (e.g.

Machguth et al., 2006; Huss et al., 2008, 2009). Depending

on the objective of the application, different investigations

are possible with the ingredients of the strategy presented in

Fig. 2. In Barandun et al. (2015, for details), for example,

we reanalysed mass balance data from the period 1968–1994

and calculated glacier-wide balances for the years without

measurements to establish a continuous series covering the

period 1968–2014 using a spatially distributed simple energy

balance model (Fig. 4). The model was calibrated with sea-

sonal mass balance data and was subsequently used to re-

construct the mass balance for the period with no measure-

ments. Model validation was performed by using snow line

observations derived from optical satellite images and, when

available, also from images of an automatic camera. In a fi-

nal step, the resulting mass balance values covering several

years or decades were compared to the geodetic glacier vol-

ume change determined based on the comparison of digital

elevation models (Barandun et al., 2015).

4 Investigations at individual monitoring sites

In the recent past, results of glacier monitoring activities

in Central Asia (except Kazhakstan and China) are mainly

based on remote sensing techniques with a focus on geode-

tic area and volume change assessments (see Table 4) or

front variation measurements (Aizen et al., 2007; Konovalov

and Desinov, 2007; Niederer et al., 2007; Haritashya et al.,

2009; Kääb et al., 2015; Narama et al., 2010; Hagg et al.,

2013; Kriegel et al., 2013; Gardelle et al., 2013; Gardner

et al., 2013; Ozmonov et al., 2013; Pieczonka et al., 2013;

Khromova et al., 2014; Bolch, 2015; Pieczonka and Bolch,

2015; Farinotti et al., 2015; Petrakov et al., 2016). Between

1994 and 1998, most of the in situ glacier observation pro-

grammes were discontinued. The re-initiation of in situ mon-

itoring activities on five selected glaciers – Abramov, Golu-

bin, Batysh Sook, Glacier No. 354 and Barkrak Middle – now

continues the historical measurement series and is described

in the following sections, with the main findings emerging

from the current and historical monitoring. At some other

glaciers, such as Karabatkak or Sary-Tor, a re-establishment

programme was also developed under the auspices of the

Kyrgyz Institute of Water Problem and Hydropower Engi-

neering together with the Moscow State University within

the project CHARIS financed by USAID.

4.1 Abramov glacier, Kyrgyzstan

The Abramov glacier is a valley-type glacier and is located

in the northern slope of Pamir-Alay (Kyrgyzstan) within the

basin of the Vakhsh River, which is one of the largest trib-

utaries of the Amu Darya river (Fig. 1). The glacier drains

into the Koksu River, which has a hydrological catchment

area of 58 km2 with a glacierisation of roughly 51 % (Hagg

et al., 2006). Abramov has a surface area of about 24 km2 (in

2013) and a volume of 2.54 km3 (Huss and Farinotti, 2012).

The glacier is exposed to the north and ranges from about

3600 to 5000 ma.s.l.

Annual mean air temperature at the equilibrium line of

the glacier (around 4260 m a.s.l.) is −6.5 to −8 ◦C (Kam-

nyansky, 2001). Average annual precipitation measured at

3837 ma.s.l. is about 750 mm (Glazirin et al., 1993). The

glacier is assumed to have a temperate accumulation zone

with cold ice near the surface in the ablation area, even

though slightly negative temperatures were reported in the

accumulation area by Kislov et al. (1977).

A research station at the Abramov glacier was built in

1967 by the Central Asian Hydrometeorological Institute

(SANIGMI) in Tashkent, guaranteeing the continuous col-

lection of glaciological and meteorological observations. The

station was destroyed in the late 1990s during politically un-

stable times (Fig. 3). With the station, other valuable equip-

ment and the measurement network were also lost.

Continuous and detailed mass balance measurements ex-

ist from 1968 to 1994 (Pertziger, 1996), whereas from
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Figure 3. (a) Abramov research station in the year 1993 (photo:

NSIDC); (b) ruins of the Abramov research station in 2011 (photo:

M. Hoelzle).

1994 to 1998 seasonal mass balance values are available

from WGMS (2001). Several publications have assessed the

long-term mass balance of the Abramov glacier. Compar-

ing the results of these studies, differences on the order

of ±0.3 mw.e.a−1 (from 1974–1994) are revealed (Suslov

and Krenke, 1980; Glazirin et al., 1993; Kamnyansky, 2001;

Pertziger, 1996; WGMS, 2001; Dyurgerov, 2002; Barandun

et al., 2015). Therefore, the data series were homogenised

(Barandun et al., 2015). The historic mass balance mea-

surements on the Abramov glacier only show few posi-

tive years with mass balances exceeding +0.3 mw.e.a−1,

such as 1968–1969, 1971–1972, 1986–1987, 1991–1992

and 1992–1993. Rasmussen (2013) calculated the Abramov

glacier’s mass balance sensitivity to air temperature change

as −0.47 mw.e.a−1 ◦C−1 using a positive degree-day model

driven with NCEP–NCAR Reanalysis data, indicating the

highest sensitivity of all studied glaciers in Central Asia.

The mass balance was reconstructed according to the

method described in Sect. 3.3.6 and for the time period

for which no direct measurements were available (Baran-

dun et al., 2015). Such reconstructions of past mass bal-

ance time series are important to (a) fill data gaps, (b) com-

Table 3. Glaciological mass balance for Abramov, Golubin, Batysh

Sook and Glacier No. 354 after the re-establishment of the measure-

ments, calculated for the hydrological year using a mass balance

model.

Glacier Year Area ELA Ba

(km2) (m a.s.l.) (m w.e. a−1)

Abramov 2011/2012 24.06 4265 −0.795 ± 0.30

Abramov 2012/2013 24.01 4225 −0.436 ± 0.34

Abramov 2013/2014 24.01 4245 −0.730 ± 0.10

Abramov 2014/2015 23.94 4115 +0.171 ± 0.30

Abramov 2015/2016 23.93 4185 −0.274 ± 0.30

Golubin 2010/2011 5.47 3775 +0.029 ± 0.2

Golubin 2011/2012 5.47 3875 −0.318 ± 0.2

Golubin 2012/2013 5.45 3835 −0.251 ± 0.2

Golubin 2013/2014 5.45 4325 −0.665 ± 0.2

Golubin 2014/2015 5.44 4315 −0.565 ± 0.2

Golubin 2015/2016 5.44 3745 +0.130 ± 0.2

Batysh Sook 2010/2011 1.13 4255 −0.375 ± 0.17

Batysh Sook 2011/2012 1.13 4265 −0.476 ± 0.15

Batysh Sook 2012/2013 1.12 4255 −0.368 ± 0.16

Batysh Sook 2013/2014 1.11 4265 −0.463 ± 0.16

Batysh Sook 2014/2015 1.11 4305 −0.822 ± 0.15

Batysh Sook 2015/2016 1.11 4265 −0.424 ± 0.14

Glacier No. 354 2010/2011 6.47 4195 −0.41 ± 0.24

Glacier No. 354 2011/2012 6.44 4205 −0.46 ± 0.26

Glacier No. 354 2012/2013 6.42 4225 −0.55 ± 0.25

Glacier No. 354 2013/2014 6.41 4275 −0.64 ± 0.22

Glacier No. 354 2014/2015 6.41 4365 −0.84 ± 0.24

Glacier No. 354 2015/2016 6.40 4155 −0.23 ± 0.24

pare past variabilities with current ones, (c) detect changes

in glacier sensitivity, and (d) interpret present and future im-

pacts of glacier change. An example of such a reconstruc-

tion is shown in Fig. 4 for the Abramov glacier (Barandun

et al., 2015), where mass balance data was homogenised for

the period 1968–1998 and 2012–2015 and reconstructed for

the period 1999–2011 using a calibrated distributed mass

balance model. The results of the reconstruction were val-

idated using snow lines digitised from the Landsat images.

The mean mass balance for the time period 1998–2011 is

−0.51±0.17 mw.e.a−1, and it is −0.44±0.10 mw.e.a−1 for

1968–2014 (Barandun et al., 2015).

Maximal discharge of the Abramov glacier has been mea-

sured in the month of August, with around 14 m3 s−1 dur-

ing the first observation years starting in 1967 until the be-

ginning of the 1970s (Yemelyanov, 1973). Following Hagg

et al. (2007) the discharge patterns will change according to

different climate scenarios indicating an increase in annual

runoff, and, furthermore, the seasonal peak runoff will shift

towards May to June, and a decrease will likely occur in Au-

gust. Compared to the very high sensitivity of glacial runoff

to air temperature, precipitation changes appear to be of sec-

ondary importance (Hagg et al., 2007).

A new and fully automated meteorological station was in-

stalled in August 2011 at the Abramov glacier at an alti-
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Figure 4. Reconstructed mass balance data for the Abramov glacier according to Barandun et al. (2015).

Table 4. Observed geodetic mass balance for Abramov, Golubin, Batysh Sook and Glacier No. 354. Bglac.-rec. refers to a study by Barandun

et al. (2015), where the mass balance was reconstructed based on a calibrated model (see Sect. 3.3.6).

Glacier Method Source Period Ba

(m w.e. a−1)

Abramov Bglac.-rec. Barandun et al. (2015) 2000–2011 −0.51 ± 0.15

Abramov Bgeod. Gardelle et al. (2013) 2000–2011 −0.03 ± 0.14

Golubin Bgeod. Bolch (2015) 1964–1999 −0.46 ± 0.24

Golubin Bgeod. Bolch (2015) 1999–2012 −0.28 ± 0.97

Glacier No. 354 Bgeod. Pieczonka and Bolch (2015) 1975–1999 −0.79 ± 0.25

Glacier No. 354 Bgeod. Kronenberg et al. (2016) 2003–2012 −0.48 ± 0.07

tude of 4100 ma.s.l. within a distance of about 1 km from

the glacier. The station records GPS position, air tempera-

ture, relative humidity, atmospheric pressure, precipitation,

wind speed and direction, and shortwave incoming and out-

going radiation, as well as longwave incoming and outgoing

radiation, soil water content and soil temperatures (Schöne

et al., 2013). The historical and re-established mass balance

networks are shown in Fig. 5. Field data were analysed by

using a distributed mass balance model for extrapolating the

point measurements to the entire glacier (Huss et al., 2009;

Barandun et al., 2015), and the results are presented in Ta-

ble 3. Since 2011, five field campaigns were conducted on

the Abramov glacier, allowing the calculation of glacier-wide

mass balance (see Fig. 6). Annual mass balance 2012–2016,

i.e. after the re-establishing of the monitoring programme,

was negative, with a mean of 0.41 m w.e. a−1 (Table 3). The

observed cumulative glacier frontal retreat since 1850 sums

up to more than 2 km (see Table 5, Fig. 7).

4.2 Golubin glacier, Kyrgyzstan

The Golubin glacier is situated in the Ala-Archa catchment

located in the Kyrgyz Ala-Too range in the northern Tien

Shan in Kyrgyzstan (Fig. 1). The catchment belongs to the

larger Chu River basin, which drains into the Kazakh steppe.

The Ala-Archa catchment contains 48 glaciers. Bolch (2015)

reports a total glaciated area in Ala-Archa of 40.5 ± 0.5 km2

in 1964 and 33.3±0.8 km2 in 2010. The Golubin glacier cov-

ers an area of 5.5 km2, based on a satellite image of 2002,

has a volume of 0.348 km3 (Huss and Farinotti, 2012) and

spans over an altitudinal range of 3300 to 4400 ma.s.l. The

continental-type glacier has a northern aspect in the accumu-

lation area and a northwestern aspect in the ablation area.

The climate in the Ala-Archa region is characterised by

limited annual precipitation of around 700 mm a−1 mainly

during April to June (48 %) (Aizen et al., 2006). Mean

annual air temperature in the ablation area of the glacier

(3450 ma.s.l.) is about 1.5 ◦C, calculated with a lapse rate of

0.72 ◦C per 100 m from Baitik station (Aizen et al., 1995a).
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Figure 5. Historical (c) and new (d) mass balance network on the Abramov glacier (Kyrgyzstan) with corresponding (overview) map (a) and

snow line camera picture (b).

Glaciological investigations on the Golubin glacier started

in 1958 and continued until 1994, when the monitoring pro-

gramme was stopped (see Table 1). Between 1958 and 1973,

the mass balance was predominantly positive and mainly

negative afterwards (Aizen, 1988). Using imagery of several

satellites Bolch (2015) determined the geodetic mass change

for the periods 1964 to 1999 and 1999 to 2010. A mass bal-

ance of −0.46 ± 0.24 mw.e.a−1 for the first period and of

−0.28 ± 0.97 m w.e.a−1 for the second period was detected.

For the entire Ala-Archa catchment, a glacier area change of

−5.1 % from 1943 to 1977 and of −10.6 % between 1977

and 2003 was observed (Aizen et al., 2006, 2007). The mass

balance sensitivity to temperature change was determined by

Rasmussen (2013) as −0.17 mw.e.a ◦C−1, which is substan-

tially lower than for the Abramov glacier.

In summer 2010, mass balance and length change mea-

surements were re-initiated. In Fig. 8 the former and the

new measurement networks are presented. Complete infor-

mation is available for 6 years now. During this time, the

length change measurements were performed by GPS and by

analysis of satellite images. The recent observations of the

glacier tongue could be connected to earlier measurements

by Aizen et al. (2006, 2007) (Fig. 7). The glaciological mea-

surements were analysed by using a distributed mass balance

model (Huss et al., 2009) (Table 3, Fig. 6). The meteoro-

logical station, installed in 2013, is situated at an altitude of

3300 ma.s.l. at a distance of 500 m away from the Golubin

glacier (Schöne et al., 2013). Two further climate stations,

Alplager and Baitik, are located in the Ala-Archa catch-

ment at the altitudes of 2340 and 1580 ma.s.l., respectively.

The re-initiated mass balance measurements since 2010 indi-

cate mostly negative mass changes. In the hydrological years

2010/2011 (from 1 October 2010 until 30 September 2011)

and 2015/2016, a positive mass balance was measured (Ta-

ble 3). The observed cumulative glacier frontal retreat since

1861 sums up to around 1.3 km (see Table 5 and Fig. 7).
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Figure 7. Cumulative front variation measurements for glaciers in Central Asia.

4.3 Batysh Sook glacier, Kyrgyzstan

The Batysh Sook glacier (also named Suyok (Suek) Zapad-

niy or Glacier No. 419 in earlier studies; WGMS, 1993; Hagg

et al., 2013; Kenzhebaev et al., 2017) is located in the Sook

range in the central Tien Shan in Kyrgyzstan. The range is

comprised of 44 glaciers with a total area of 30.9 km2 and

volume of 1.2 km3 in 2007 (Hagg et al., 2013). The Batysh

Sook glacier (Fig. 1) belongs to the Naryn catchment, which

is a major tributary of the Syr Darya river. The small glacier

covered an area of around 1.2 km2 in 2005 and covers an

altitudinal range of 3950 to 4450 ma.s.l., with an estimated

volume of around 0.033 km3
± 6.5 % in 2010 (Hagg et al.,

2013). The glacier is assumed to be composed of a temperate

accumulation zone and a cold ablation area.

According to the Tien Shan meteorological station situated

at a distance of around 32 km, the mean annual temperature

is −6.0 ◦C. July is the month with the highest temperatures

(4.4 ◦C), and January has a mean temperature of −21.7 ◦C

(1997 to 2014) (Kutuzov and Shahgedanova, 2009). Mean

annual precipitation is 360 mm (1997 to 2014), of which up

to 75 % was recorded during the summer months (May to

September).

Batysh Sook was already monitored during short periods

in 1970/1971, 1983/1984 and from 1988 to 1991 (see Ta-

ble 2, WGMS, 1993). Hagg et al. (2013) calculated an area

loss of around 19.8 % and a corresponding volume loss of

12.1 % for all glaciers within the Sook range for the time pe-

riod 1956 to 2007.
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Table 5. Length change 1L measurements for Abramov, Golubin, Batysh Sook and Glacier No. 354 based on GPS surveys, satellite images

and maps.

Abramov Golubin Batysh Sook Glacier No. 354

Period 1L (m) Period 1L (m) Period 1L (m) Period 1L (m)

1850–1900 −572 1861–1883 −131 1975–1977 −25 1972–1977 −89

1900–1936 −232 1883–1905 −100 1977–1994 −47 1977–1998 −148

1936–1954 −169 1905–1927 −110 1994–1998 −24 1998–1999 −47

1954–1964 −125 1927–1949 −125 1998–1999 −22 1999–2001 −35

1964–1973 −70 1949–1955 −72 1999–2001 −27 2001–2002 −39

1973–1980 −92 1955–1962 −42 2001–2002 −18 2002–2006 −33

1980–1986 −52 1962–1967 −22 2002–2006 −27 2006–2007 −23

1986–1992 −193 1967–1972 −17 2006–2007 −15 2007–2009 −27

1992–2000 −201 1972–1975 −47 2007–2008 −14 2009–2010 −18

2000–2007 −102 1975–1976 −26 2008–2009 −18 2010–2011 −25

2007–2008 −27 1976–1977 −6 2009–2010 −23 2011–2013 −36

2008–2009 −39 1977–1978 −30 2010–2011 −20 2013–2014 −22

2009–2010 −69 1978–1989 −39 2011–2012 −15 2014–2015 −45

2010–2012 −22 1989–1992 −65 2012–2013 −6 2015–2016 −76

2012–2013 −32 1992–1993 −7 2013–2014 −9

2013–2014 −27 1993–1994 −8 2014–2015 −9

2014–2016 −38 1994–1995 −7 2015–2016 −3

1995–1996 −20

1996–1997 −16

1997–2000 −71

2000–2001 −34

2001–2002 −37

2002–2006 −79

2006–2008 −27

2008–2011 −22

2011–2012 −12

2012–2013 −38

2013–2014 −32

2014–2015 −25

2015–2016 −27

Since 2010, several stakes and some snow pits have been

measured on an annual basis on the Batysh Sook glacier.

In Fig. 9 the old and the new measurement networks are

presented. The mass balance is analysed using a distributed

mass balance model (Huss et al., 2009). The results indi-

cate a continuous negative mass balance of about −0.4 to

−0.8 mw.e.a−1 since 2011/2012 (Table 3). The observed cu-

mulative glacier frontal retreat since 1975 sums up to around

0.32 km (see Table 5 and Fig. 7).

A reconstruction of past mass balances for the period

2004 to 2010 was performed by Kenzhebaev et al. (2017)

using a calibrated distributed temperature index mass bal-

ance model. For the reconstructed period an average an-

nual mass balance of −0.39 ± 0.26 mw.e.a−1 was found.

For the direct measured period 2011 to 2016, three dif-

ferent methods were applied. The first method, the profile

method, revealed a mass loss of −0.41 ± 0.28 mw.e.a−1;

the second method, the contour line, resulted in a negative

mean mass balance of −0.34±0.20 mw.e.a−1; and the third

method, based on model extrapolation, calculated a value of

−0.43 ± 0.16 mw.e.a−1.

4.4 Glacier No. 354, Kyrgyzstan

Glacier No. 354 is situated in the southern part of the Ak-

shiirak glacierised massif, inner Tien Shan in Kyrgyzstan

(Fig. 1). According to Aizen et al. (2006), the range contains

178 glaciers (87 % of them are valley-type glaciers) covering

an area of 371 km2. The Akshiirak glaciers on the eastern and

southern part of the mountain range drain into the Saridjaz

river, a tributary of the Tarim River via the Aksu River, and

the runoff of the glaciers on the western part contributes to

the flow of the Naryn River. The glacier had a surface area of

6.41 km2 in 2014 (Kronenberg et al., 2016). The accumula-

tion area is composed of three basins, and the glacier tongue

is directed to the northwest. The glacier covers an altitudinal

range of around 3750 to 4650 ma.s.l. Hagg et al. (2013) per-

formed GPR measurements on the glacier tongue and used
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Figure 8. Historical (c) and new (d) mass balance network on the Golubin glacier (Kyrgyzstan) with corresponding (overview) map (a) and

snow line camera picture (b).

a simplified ice mechanical approach to determine the total

volume of this glacier to be 0.272 ± 0.022 km3. Pieczonka

and Bolch (2015) quantified the geodetic mass balance for

Glacier No. 354 (Bordu-Yushny in their study) from 1975 to

1999 as −0.79 ± 0.25 mw.e.a−1.

The Akshiirak range is closely situated to the Sook range,

and the closest meteorological station is again the Tien Shan

station (14 km distance). The climate is similar to the one of

the Batysh Sook glacier.

Glacier No. 354 was selected to replace the previously

monitored the Sary-Tor glacier due to current access restric-

tions because of mining activities. Sary-Tor has mass bal-

ance observations based on the glaciological method for the

period of 1985 to 1989 (Dyurgerov et al., 1994), and its

mass balance was reconstructed for the period 1930 to 1988

by Ushnurtsev (1991). Mass balance measurements were re-

initiated in 2013 by a team of Russian and Kyrgyz scientists.

The front variations of Sary-Tor indicate a retreat of 70 m

from 1932 to 1943, no changes from 1943 to the mid-1970s,

and a retreat of 220 m from 1977 to 1995 and of 90 m from

1995 to 2003 (Aizen et al., 2007).

Kronenberg et al. (2016) presented a reconstruction of the

seasonal mass balance of Glacier No. 354 from 2003 to 2010.

This reconstruction is based on an analysis of the annual

measurements of stakes and snow pits of the years 2010 to

2014 (Fig. 10). The glaciological data were used to calibrate
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Figure 9. Historical (c) and new (d) mass balance network on the Batysh Sook glacier (Kyrgyzstan) with corresponding (overview) map (a)

and picture (b).

a distributed mass balance model, which was then used to

reconstruct the seasonal mass balances since 2003. In ad-

dition, winter accumulation measurements were performed

in spring 2014 and also used for model calibration. Further-

more, the geodetic volume change was determined based

on two high-resolution satellite stereo images acquired in

2003 and 2012 and used to validate the modelled cumulative

glacier-wide mass balance. For the period 2003 to 2012, an

annual mass balance of −0.40 ± 0.10 mw.e.a−1 was mod-

elled. This result corresponds well with the geodetic mass

balance of −0.48 ± 0.07 mw.e.a−1 for the same period (see

Tables 3 and 4, Kronenberg et al., 2016). The observed cu-

mulative glacier frontal retreat since 1972 sums up to around

0.66 km (see Table 5 and Fig. 7).

4.5 Barkrak Middle, Uzbekistan

The Barkrak Middle glacier is located in the Oygaing valley

in the Pskem catchment in the western Tien Shan, Uzbek-

istan (Fig. 1). The Pskem River drains into Chirchik River,

a tributary of the Syr Darya river. The area of the glaciers

in the Pskem River basin including the Oygaing and the up-
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Figure 10. Mass balance network (c) on Glacier No. 354 (Kyrgyzstan) with corresponding (overview) map (a) and snow line camera (b).

per Maydan valley (located in Kazakhstan) was 93.6 km2 in

the year 2007 (Semakova et al., 2016). The area of Barkrak

Middle is 2.18 km2 (Semakova et al., 2016) and the volume

is 0.087 km3 (Huss and Farinotti, 2012).

Between 1960 and 2010, the glacierised area decreased by

23 % in the Pskem River catchment, and, more specifically,

a 16.8 % decrease in glacier area was observed from 1980 to

2001 in the basin of the Oygaing river, where the Barkrak

Middle glacier is located (Semakova et al., 2016). For the

Barkrak Middle glacier, observation data of length change

exist from 1971 to 1990, with a total cumulative retreat of

249 m (see Fig. 7).

In 2016, a new mass balance network with a total of 11

stakes was established (Fig. 11). In addition, a meteorologi-

cal station in the glacier forefield and an automatic snow line

camera were installed (Fig. 11).

5 Summary of glacier length and mass changes in

Central Asia

The measurements performed on various glaciers in Central

Asia show an overall mass loss over the last five decades.

There are some individual years with positive mass balances

within all decades (Figs. 6, 12, Table 4). However, the posi-

tive mass balances are mostly observed during the beginning

of the measurements starting in 1967 until the beginning of

the 1970s. Long-term trends based on the glaciological, as

well as on the geodetic, method indicate a mean negative

mass balance in the range of −0.3 to −0.8 mw.e.a−1. Most

negative mass balances were observed at Abramov, Kara-

batkak, Tuyuksu and Urumqi (WGMS, 2013), whereas Gol-

ubin and Batysh Sook exhibited smaller mass loss. This ob-

servation is in line with the mass balance sensitivities of the

glaciers in Central Asia as inferred by Rasmussen (2013).

The observed cumulative mass balance determined by the

glaciological method is supported by several remote sensing
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Figure 11. Mass balance network (c) on Barkrak Middle (Uzbekistan) with corresponding (overview) map (a) and picture (b).
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studies underlining the findings (Aizen et al., 1995b; Bolch

et al., 2011, 2012; Pieczonka et al., 2013; Gardelle et al.,

2013; Pieczonka and Bolch, 2015; Bolch, 2015; Kronenberg

et al., 2016).

The network of glaciological and geodetic measurements

in the Tien Shan mountains has been strongly improved by

the re-establishment of the monitoring programmes start-

ing in 2010. In the Pamir Mountains, however, glacier mass

balance measurements are still sparse as only the Abramov

glacier in the most northwestern part is monitored. This

glacier is not representative of the entire Pamir, which also

contains glaciers at much higher altitudes that respond differ-
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ently to atmospheric warming (e.g. Kääb et al., 2015, 2012;

Gardner et al., 2013; Gardelle et al., 2013).

Length changes are an important element of glacier mon-

itoring. Direct measurements extend back into the 19th cen-

tury in several mountain ranges, and some reconstructions

based on geomorphological dating extend back to the 16th

century (Zemp et al., 2015). In general, the cumulative front

variation measurements for the investigated glaciers in Cen-

tral Asia reveal a long-term glacier retreat (see Table 3,

Fig. 7). Here we used a simple parameterisation scheme de-

veloped by Haeberli and Hoelzle (1995) and used by Hoel-

zle et al. (2003) to convert curves of cumulative glacier ad-

vance and retreat into time series of temporally averaged

mass balance by applying a continuity model developed

by Nye (1960) to infer mean mass balance changes over

longer time periods. This approach considers step changes

after a full dynamic response and new equilibrium of the

glacier based on the assumption that a mass balance change

leads to a corresponding glacier length change depend-

ing only on the original length of the glacier and its an-

nual mass balance (ablation) at the glacier terminus. Cal-

culating these values for Abramov (for the period 1850–

2016) results in –0.35 mw.e.a−1, for Golubin (1861–2016)

around −0.2 mw.e.a−1, and for Batysh Sook (1975–2016)

and Glacier No. 354 (1972–2016) around −0.35 mw.e.a−1.

6 Discussion

We demonstrate that a valuable glaciological dataset is

available for the Central Asian mountains, particularly for

the Tien Shan, despite different historical backgrounds and

changing methodological aspects. New monitoring networks

in combination with historical measurements will generate

highly valuable baseline data for future research, climate

change observations, assessment of climate change impacts

and related adaptation measures, including water resource

management. Continuous long-term support and coopera-

tion among several countries and institutions is required to

keep the successfully re-established measurements alive. The

newly developed strategy and its implementation to connect

in situ measurements with remote sensing and numerical

modelling techniques (see Fig. 2) will allow the establish-

ment of an efficient glacier monitoring programme. This will

guarantee an optimum between available human capacity and

efforts, sustainable financial coverage and data quality, of-

fering a feasible way to perform long-term monitoring. Our

approach, implemented in Kyrgyzstan and Uzbekistan, has

to be proven during the next years and should be further de-

veloped. Over the last years, it delivered promising results,

although there are still many improvements possible. One of

the most urgent needs is capacity building, i.e. the education

of young local scientists being able to continue the monitor-

ing programme independently (Nussbaumer et al., 2017).

Our approach also reveals that, on a scientific basis, an

in-depth re-evaluation of long-term geodetic mass changes

on all selected glaciers is absolutely necessary. Most geode-

tic measurements (e.g. for Glacier No. 354, Urumqi Glacier

No. 1 and Tuyuksu) match well with the glaciological mass

balances (Fig. 12). All these measurements show almost per-

sistently negative mass balances since the mid-20th century.

At the Abramov glacier, however, considerable differences

between geodetic and reconstructed glaciological measure-

ments were found (Fig. 12 and Table 4). For the period 2000

to 2011, Barandun et al. (2015) determined a negative value

of −0.51 ± 0.17 mw.e.a−1, whereas Gardelle et al. (2013)

reported a mass balance of −0.03 ± 0.14 mw.e.a−1 for the

same period. The geodetic measurements are subject to con-

siderable uncertainties that are, for example, related to the

underestimated penetration of the radar signals into snow

and firn in the accumulation areas during the acquisition of

the SRTM mission in the year 2000 (Paul et al., 2013). This

has been confirmed by other studies using ICESat measure-

ments in the same region (Kääb et al., 2015, 2012; Gardner

et al., 2013) and by ground-penetrating radar measurement

in the accumulation area of the Abramov glacier (Barandun

et al., 2015). This shows the need for further analysis of ex-

isting aerial and satellite data in order to create additional

high-accuracy elevation models. Another problem encoun-

tered during the homogenisation process of the mass balance

time series was a considerable inconsistency, which is mainly

related to different interpretations of the former stake net-

works or to missing measurements.

Glacier frontal variations complement the mass balance

measurements. They show a continuous retreating trend for

the last decades and century. The inferred estimates of mass

change calculated based on the length change measurements

are in quite good accordance with the mass balance measure-

ments.

7 Conclusions

This paper demonstrates the richness of the historical dataset

from the long-term glacier measurements available in Cen-

tral Asia and particularly in Kyrgyzstan, and it introduces

the (re-)established glacier measurement network highlight-

ing the importance of capacity building to make the efforts

sustainable. In connection with the new glacier monitoring

strategy and its current implementation, the long-term in situ

data are fundamental to understanding the relevant processes

and the impact of climate change on glaciers in the Tien

Shan and the Pamir-Alay and the impacts for the people liv-

ing nearby as well as in far distances downstream. Therefore,

the cryospheric ECV “glacier” is an important variable, for

which sustainable long-term monitoring has to be ensured

not only in industrial countries but also in developing coun-

tries. Without the long-term measurements, questions such as

the future behaviour of glaciers, their possible disappearance
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and the impacts for society cannot be answered comprehen-

sively. Only well-validated and well-calibrated models based

on sound process understanding and high-quality data will

ensure projections with an acceptable level of uncertainty.

These models and their outputs are the only tools for esti-

mating future runoff evolution in one of the driest continen-

tal regions of the Northern Hemisphere, where future water

shortage due to decreased glacierisation has the potential to

lead to pronounced political instability and drastic ecologi-

cal changes, and it might even endanger future food security

in a highly populated region. This highlights the importance

of in situ monitoring networks of all ECVs within national

and international climate services and their use together with

remote sensing and numerical models.
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