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Abstract

We present a re-evaluation of previous experimental data
for five different colour constancy algorithms, based on ex-
periments on real and synthetic images. Our work is motiv-
ated by the observation that previous analysis of algorithm
performance is flawed because it uses inappropriate statist-
ical measures of performance. We discuss these flaws in de-
tail and suggest more appropriate statistical tests. We show
that using these tests conclusions as to the relative perform-
ance of algorithms are significantly changed as compared
to the original analysis of the data. In particular we con-
clude that the performance of two algorithms: Gamut Map-
ping and Color by Correlation is statistically equivalent and
significantly better than the three other algorithms tested
(Max-RGB and two versions of Grey-world).

1. Introduction

Thecolour constancy problem: estimating the colour of
the scene illuminant in an image and correcting the image
to account for its effect, is an important problem in com-
puter vision. There is a long history of colour constancy
research and many algorithms have been published which
solve the problem with varying degrees of success. In this
paper we set out to re-evaluate the performance of some of
these existing methods [8, 3, 6, 4] because, as we will show,
previous algorithm evaluation [1, 2] is flawed. To this end
we propose appropriate methods for judging algorithm per-
formance and re-evaluate algorithms with respect to these
performance measures.

The colour constancy problem can be simply stated as
how, given an image of a scene taken under a single, ar-
bitrary, unknown scene illuminant can we recover an es-
timate of that scene light? For the purposes of this work
we assume that an image consists of a collection ofRGB
triplets representing a camera’s response to light from a dis-
crete set of sample spatial locations in a scene. Colour con-

stancy algorithms vary in how they define “an estimate of
the scene illuminant” but in this work we will focus on the
degree to which algorithms are able to recover an estim-
ate of the scene illuminantwhite-point. That is, theRGB
value which represents the camera’s response to a maxim-
ally and uniformly reflective surface viewed under the scene
illuminant. We measure the accuracy of a colour constancy
algorithm by measuring the error between an algorithms es-
timate of the white-point (̂po

w
) and the actual scene illumin-

ant white-point:po
w

.
Of course, algorithm accuracy varies from image to im-

age and to obtain a robust estimate of algorithm perform-
ance we look at this error measure “averaged” over lots of
different images. It is the shortcomings of this assessment
of algorithm accuracy which we aim to address in this pa-
per. In the next section we review previous methods of al-
gorithm assessment and show that they suffer from a num-
ber of weaknesses. We then introduce statistical measures
which are more appropriate for judging the relative per-
formance of algorithms. In Section 3 we re-evaluate the
performance of a number of existing colour constancy al-
gorithms using the proposed methods using a previous ex-
perimental paradigm [1, 2]. We conclude the paper in Sec-
tion 4 with a brief summary.

2. Evaluating Colour Constancy Algorithms

First we define our measure of algorithm accuracy. The
illuminant white-point and an algorithm’s estimate of it are
RGB triplets: points in a 3-d space so one way to measure
their difference is by the Euclidean distance between them:

‖po
w
− p̂o

w
‖ (1)

In estimating the scene illuminant however, accurately es-
timating the overall intensity of the illumination is of less
importance than estimating its “colour”. Thus, algorithms
are most commonly assessed using an intensity independent
error measure. Here (in common with previous work [1, 2])



we use the angle between the twoRGB as our error meas-
ure:

eAng = acos
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(2)

This error measure tells us the accuracy of a particular al-
gorithm’s performance and allow us to easily compare the
relative performance of two or more algorithms on a single
image. More generally we are interested in comparing al-
gorithm performance over a large set of images and it is
in this regard that current analysis of algorithm perform-
ance is lacking. When assessing performance over large
sets of images authors typically compare algorithms using a
single summary statistic such as the mean [4] (or root mean
square [1]) angular error averaged over a set of images. If
the mean error for algorithm A is found to be lower than the
mean error for algorithm B then the conclusion is drawn that
algorithm A is better than algorithm B. There are two poten-
tial problems with this assessment. First, a single summary
statistic such as the mean does not always adequately sum-
marise the underlying distribution. Second, the fact that one
algorithm has a lower mean value than another is not suffi-
cient information to draw the conclusion that one algorithm
is better than the other.

The most thorough evaluation of colour constancy al-
gorithms to-date has been given by Barnardet al [1, 2].
As part of their evaluation they looked at the distribution
of the magnitude of chromaticity errors. That is, they calcu-
latedro

w − r̂o
w wherero

w andr̂o
w are the actual and estimated

r chromaticity value for the scene illuminant white-point.
They found the distribution of these errors to be approxim-
ately normally distributed with a mean of zero. On this evid-
ence they concluded that an appropriate error measure for
assessing algorithm performance was the root mean square
(RMS) error of a given error measure (e.g. angular error)
since when an error measure is normally distributed with
a mean of zero RMS error gives an estimate of the stand-
ard deviation of the error statistic. However, the fact that
ro
w− r̂o

w is normally distributed does not imply that other er-
ror measures are also normally distributed and in the event
that they are not, RMS error is not necessarily an appropri-
ate measure.

The left-hand plot of Figure 1 shows the distribution
of angular errors for a typical colour constancy algorithm
(theMax-RGBalgorithm) for 1000 randomly generated im-
ages each containing 8 surfaces. It is clear from this his-
togram plot that the angular error is not normally distrib-
uted. This fact is emphasised by the right-hand plot which
plots quantiles of a standard normal distribution against the
quantiles of the angular errors for the 1000 images. If the er-
rors were normally distributed the points on this plot would
fall along a straight line. This example illustrates the typ-
ical case for the algorithms we have tested on both real and
synthetic images. On this evidence we should conclude that
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Figure 1. Left: Typical Distribution of An-
gular Error in white-point estimation. Right:
Quantiles of this error distribution plotted
against quantiles of a standard Normal dis-
tribution.

angular error is not normally distributed so that RMS error
does not give an estimate of the standard deviation of the er-
ror measure.

So, if we want to look at a single summary statistic for
this error distribution which should we choose? The mean
error is often reported as a summary statistic however, for
the type of distribution under investigation this statistic is
not appropriate. It is well known [7] that the mean is a poor
summary statistic for non-symmetric distributions: the dis-
tributions we are investigating are skewed as the example in
Figure 1 illustrates. In these situations the median is a more
reliable estimate of central tendency [7].

However, the median does not tell us everything about
the distribution of errors. A more informative measure is
the sample median together with a confidence interval for
the statistic. In the case we are studying care must be taken
when calculating a confidence interval because the under-
lying error distributions are not well modelled by stand-
ard statistical distributions. An appropriate method in this
case is that of re-sampling [7]. In this method we take our
1000 error measures as an approximation of the underly-
ing population distribution. We then re-sample this distri-
bution many times. Each time we re-sample we obtain a
new sample distribution whose median value we can cal-
culate. This provides us with a set of estimates of the me-
dian statistic. Ap% confidence interval for the median can
be obtained from thep/2 and(1−p/2) quantiles of this dis-
tribution.

An alternative to single summary statistic comparisons
of algorithms is to somehow compare the whole error dis-
tribution of two algorithms. Since the underlying error dis-
tributions cannot be well modelled by a standard distribu-
tion we require a test which requires us to make no assump-
tions about the underlying error distributions. An appropri-
ate test in this case is the Wilcoxon Sign Test [7]. LetA and



B be random variables representing the angular error in al-
gorithm A and B’s estimate of the scene illuminant. The
Wilcoxon Test is used to test the hypothesis that the random
variablesA andB are such thatp = P (A > B) = 0.5.
That is, we hypothesise that algorithm A and B have the
same performance. To test the hypothesisH0 : p = 0.5
we consider independent pairs(A1, B1) . . . (AN , BN ) of
errors forN different images. We denote byW the num-
ber of images for whichAi > Bi. WhenH0 is trueW is
binomially distributed (b(N, 0.5)) and the Wilcoxon test is
based on this statistic. We can define an alternative hypo-
thesisH1 : p < 0.5 which if true implies that errors for al-
gorithmA are lower than those for algorithmB. We accept
or reject the null hypothesis at a given significance levelα
if the probability of observing the results we observe is less
than or equal toα. The value ofα we choose defines the er-
ror rate we accept when reject the null hypothesis. E.g. if we
accept an error rate of 1% (we wrongly reject the null hy-
pothesis in 1% of cases) we would chooseα = 0.01.

3. Colour Constancy Experiments

To re-evaluate algorithm performance in the light of the
tests proposed above we analyse the performance of five al-
gorithms on a set of synthetic and real image experiments
following Barnardet al [1, 2]. The algorithms tested are
Max-RGB Mx, Grey-world (GW), Database Grey-world
(DB), a version of the Gamut Mapping algorithm (GM) and
a version of Colour by Correlation (CM). The first three
algorithms are implemented exactly as described in [1].
We used a linear programming implementation [5] of the
Gamut Mapping algorithm which has been shown [5] to
give near identical performance to the version tested in [1].
The version ofCM we tested is also very similar to that
tested in [1]. These five algorithms cover the major al-
gorithm groups tested in the original work.

3.1. Synthetic Image Experiments

In the synthetic image experiment images are synthes-
ised by first selectingn reflectances randomly from a collec-
tion of 1995 measured reflectance functions intended to be
broadly representative of the world. The scene illuminant is
selected randomly from a set of 287 measured illuminants.
These reflectance functions and illuminant SPD are used to-
gether with the spectral sensitivities of a SONY DXC-900
digital video camera to generate synthetic sensor responses.

The n sensor response triplets form the input to the
five tested algorithms each of which returns an estimate of
the scene illuminant white-point. Algorithm performance is
measured for images with number of surfacesn = 2, 4, 8, 16,
32, or 64 and for each value ofn 1000 images are generated.
Algorithm accuracy is measured using angular error defined

in Eqn (2) above. The left-hand plot of Figure 2 shows the

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

Log2 Number of Surfaces in Image

R
M

S
 A

ng
ul

ar
 E

rr
or

MxRGB
GW   
DB GW
LP GM
CbyC 

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

Log2 Number of Surfaces in Image

M
ed

ia
n 

A
ng

ul
ar

 E
rr

or

MxRGB
GW   
DB GW
LP GM
CbyC 

Figure 2. RMS (left) and Median (with 95%
confidence intervals, right) angular error as a
function of the number of surfaces in an im-
age.

performance of the five algorithms as was reported in the
original work: it shows RMS angular error as a function of
the log (base 2) of the number of surfaces in an image. The
right-hand plot shows results in terms of median error to-
gether with 95% confidence intervals (vertical bars) calcu-
lated using the re-sampling technique [7]. While the overall
trends in these two plots are similar, if we assess algorithm
performance based on only one of these summary statistics
we will draw different conclusions depending on whether
we look at RMS or median error. For small numbers of sur-
faces (up to 8), both plots suggest thatCM performs best.
Based on the RMS plot we might order the remaining al-
gorithms,Mx, GW, DB, andGM in order of improving per-
formance. However, if we look at median error statistics the
picture is less clear: for example judged by median error
Mx andGWare equal when we have 8 surfaces in an image.
If we include95% confidence intervals for the median in
our assessment then the conclusions we draw change again:
in this case,CM is still best for small numbers of surfaces,
however, we cannot separate GW and Mx until we have at
least sixteen surfaces in an image. Adding confidence inter-

Mx GW DB GM CM
Mx + - - -
GW - - - -
DB + + -
GM + + -
CM + + + +

Table 1. Results of Wilcoxon’s Sign Test for
all pairs of the five algorithms. See main text
for interpretation of the table.



vals to a summary statistic provides more information than
just the statistic and is a first step to determining the stat-
istical significance of the results. To formally determine the
statistical significance of the results we applied Wilcoxon’s
sign test to the error distributions. Table 1 summaries the
results based on the errors for 6000 images: i.e. for 1000 im-
ages with 2, 4, . . . 64 surfaces. The table shows results for
the99% confidence level (α = 0.01). A plus sign (+) in the
ith row andjth column of the table means that algorithm
i is statistically better than algorithmj when judged ac-
cording to the Wilcoxon test. A minus (−) implies that it is
worse while if the box is empty the two algorithms are stat-
istically the same. On the basis of the results in Table 1 we
would conclude that overall,CM is the best algorithm (bet-
ter than all other algorithms),GM andDB are equally good
and better thanMx andGWand thatMx is significantly bet-
ter thanGW.

3.2. Real Image Experiments

We conducted a second experiment on 321 real images
which follows the procedure detailed in [2]. As noted by
Barnardet al [2] image pre-processing has a significant ef-
fect on algorithm performance. The results we report here
are based on a pre-processing scheme which involves seg-
menting images according to the method outlined by Barn-
ardet al in [2]. In the case ofCM we found that significant
improvement is obtained if we consider only “bright” seg-
ments of the image where a “bright” segment is considered
to be any segment with an intensity greater than the 70th
quantile of all image segments (ordered by intensity). Also,
if multiple segments have the sameRGB value, that value
is counted multiple times: this differs from what was pro-
posed in the original algorithm [4] in which eachRGB is
counted only once. Table 2 summarises the results for the

RMS Median Mx GW DB GM CM
Error Errror

Mx 8.77 4.02 + - -
GW 14.32 8.85 - - - -
DB 12.25 6.58 + - -
GM 5.46 2.92 + + +
CM 9.93 2.93 + + +

Table 2. Algorithm performance (real im-
ages).

real image experiments. If we judge algorithms according to
RMS error (column 1) we would rank the algorithms:GM,
Mx, CM, DB, GWin order of decreasing performance. How-

ever, when judged according to median error (column 2) the
ranking changes. In this caseCM is better thanMx and very
similar toGM. Columns 3-7 summarise the results of Wil-
coxon’s sign test. According to this testCM and GM are
equivalent and both are better than the three remaining al-
gorithms. Of those three algorithms,Mx andDB are equi-
valent and both are better thanGW. Once again, the stat-
istical tests proposed in this paper significantly change the
conclusions we draw about algorithm performance. Most
significantly, previous analysis would suggest thatCM per-
forms worse on real images than it does on synthetic im-
ages. Our analysis offers less support for this view. Rather
we should conclude thatCM is significantly better than all
algorithms apart fromGM to which it is equivalent. This is
similar to the trend observed on synthetic images.

4. Conclusions

The most important point raised by the re-evaluation of
previous colour constancy experiments discussed above is
that the relative performance of algorithms changes consid-
erably depending on the criteria by which they are judged.
The Wilcoxon test of statistical significance we have ap-
plied is strong in the sense that it makes minimal assump-
tions about the underlying error distributions. In summary
we recommend that the future evaluation of colour con-
stancy algorithms should follow the guidelines set out in
this paper or at least pay attention to the underlying distri-
butions of the error statistics used for evaluation and apply
appropriate statistical tests.
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