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Scientific code is different from production software. Scientific code, by producing

results that are then analyzed and interpreted, participates in the elaboration of scientific

conclusions. This imposes specific constraints on the code that are often overlooked in

practice. We articulate, with a small example, five characteristics that a scientific code in

computational science should possess: re-runnable, repeatable, reproducible, reusable,

and replicable. The code should be executable (re-runnable) and produce the same result

more than once (repeatable); it should allow an investigator to reobtain the published

results (reproducible) while being easy to use, understand and modify (reusable), and it

should act as an available reference for any ambiguity in the algorithmic descriptions of

the article (replicable).

Keywords: replicability, reproducibility of results, reproducible science, reproducible research, computational

science, software development, best practices

INTRODUCTION (R0)

Replicability1 is a cornerstone of science. If an experimental result cannot be re-obtained by an
independent party, it merely becomes, at best, an observation that may inspire future research
(Mesirov, 2010; Open Science Collaboration, 2015). Replication issues have received increased
attention in recent years, with a particular focus on medicine and psychology (Iqbal et al., 2016).
One could think that computational research would mostly be shielded from such issues, since a
computer program describes precisely what it does and is easily disseminated to other researchers
without alteration.

But precisely because it is easy to believe that if a program runs once and gives the expected
results it will do so forever, crucial steps to transform working code into meaningful scientific
contributions are rarely undertaken (Schwab et al., 2000; Sandve et al., 2013; Collberg and
Proebsting, 2016). Computational research is plagued by replication problems, in part, because
it seems impervious to them. Contrary to production software who provides a service geared
toward a practical outcome, the motivation behind scientific code is to test a hypothesis. While in
some instance production software and scientific code are indistinguishable, the reasons why they
were created are different, and, therefore, so are the criteria to evaluate their success. A program

1Reproducibility and replicability are employed differently by different authors and in different domains (see for instance

the report from the U.S. National Academies of Sciences, 2016). Here, we place ourselves in the context of computational

works, where data is produced by a program. In this paper, we call a result reproducible if one can take the original source

code, re-execute it and reobtain the original result. Conversely, a result is replicable if one can create a code that matches the

algorithmic descriptions given in the published article and reobtain the original result.
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can fail as a scientific contribution in many different ways for
many different reasons. Borrowing the terms coined by Goble
(2016), for a program to contribute to science, it should be re-
runnable (R1), repeatable (R2), reproducible (R3), reusable (R4),
and replicable (R5). Let us illustrate this with a small example, a
random walk (Hughes, 1995) written in Python:

import random

x = 0

for i in xrange(10):

step = random.choice([-1,+1])

x += step

print x,

LISTING 0: Random walk (R0) raw code, archive

In the code above, the random.choice function
randomly returns either +1 or −1. The instruction “for
i in xrange(10):” executes the next three indented lines
ten times. Executed, this program would display:

-1, 0, -1, 0, -1, 0, -1, 0, 1, 2

# with the steps being -1,+1,-1,+1,-1,+1,-1,+1,+1,+1

Output

What could go wrong with such a simple program?
Well...

RE-RUNNABLE (R1)

Have you ever tried to re-run a program you wrote some years
ago? It can often be frustratingly hard. Part of the problem is
that technology is evolving at a fast pace and you cannot know
in advance how the system, the software and the libraries your
program depends on will evolve. Since you wrote the code, you
may have reinstalled or upgraded your operating system. The
compiler, interpreter or set of libraries installed may have been
replaced with newer versions. Youmay find yourself battling with
arcane issues of library compatibility—thoroughly orthogonal to
your immediate research goals—to execute again a code that
worked perfectly before. To be clear, it is impossible to write
future-proof code, and the best efforts can be stymied by the
smallest change in one of the dependencies. At the same time,
modernizing an unmaintained ten-year-old code can reveal itself
to be an arduous and expensive undertaking—and precarious,
since each change risks affecting the semantics of the program.
Rather than trying to predict the future or painstakingly dusting
off old code, an often more straightforward solution is to recreate
the old execution environment2. For this to happen however, the
dependencies in terms of systems, software, and libraries must be
made clear enough.

2To be clear, and although virtual machines are often a great help here, this is not

always possible. It is, however, always more difficult when the original execution

environment is unknown.

A re-runnable code is one that can be run again when needed,
and in particular more than the one time that was needed
to produce the results. It is important to notice that the re-
runnability of a code is not an intrinsic property. Rather, it
depends on the context, and becomes increasingly difficult as
the code ages. Therefore, to be and remain re-runnable on
the computers of other researchers, a re-runnable code should
describe—with enough details to be recreated—an execution
environment in which it is executable. As shown by Collberg and
Proebsting (2016), this is far from being either obvious or easy.

# Tested with Python 3

import random

x = 0

walk = []

for i in range(10):

step = random.choice([-1,+1])

x += step

walk.append(x)

print(walk)

LISTING 1: Re-runnable random walk (R1) raw code, archive

In our case, the R0 version of our tiny walker seems to imply
that any version of Python would be fine. This not the case: it uses
the print instruction and the xrange operator, both specific to
Python 2. The print instruction, available in Python 2 (a version
still widely used; support is scheduled to stop in 2020), has been
deprecated in Python 3 (first released in 2008, almost a decade
ago) in favor of a print function, while the xrange operator has
been replaced by the range operator in Python 3. In order to try
to future-proof the code a bit, we might as well target Python 3,
as is done in the R1 version. Incidentally, it remains compatible
with Python 2. But whichever version is chosen, the crucial step
here is to document it.

REPEATABLE (R2)

The code is running and producing the expected results. The
next step is to make sure that you can produce the same output
over successive runs of your program. In other words, the next
step is to make your program deterministic, producing repeatable
output. Repeatability is valuable. If a run of the program
produces a particularly puzzling result, repeatability allows you
to scrutinize any step of the execution of the program by re-
running it again with extraneous prints, or inside a debugger.
Repeatability is also useful to prove that the program did indeed
produce the published results. Repeatability is not always possible
or easy (Diethelm, 2012; Courtès and Wurmus, 2015). But for
sequential and deterministically parallel programs (Hines, and
Carnevale, 2008; Collange et al., 2015) not depending on analog
inputs, it often comes down to controlling the initialization of the
pseudo-random number generators (RNG).

For our program, that means setting the seed of the random
module. We may also want to save the output of the program
to a file, so that we can easily verify that consecutive runs do
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produce the same output: eyeballing differences is unreliable and
time-consuming, and therefore won’t be done systematically.

# Tested with Python 3

import random

random.seed(1) # RNG initialization

x = 0

walk = []

for i in range(10):

step = random.choice([-1,+1])

x += step

walk.append(x)

print(walk)

# Saving output to disk

with open('results-R2.txt', 'w') as fd:

fd.write(str(walk))

LISTING 2: Re-runnable, repeatable random walk (R2) raw code, archive

Setting seeds should be done carefully. Using 439 as a seed
in the previous program would result in ten consecutive +1
steps3, which—although a perfectly valid random walk—lend
itself to a gross misinterpretation of the overall dynamics of the
algorithm. Verifying that the qualitative aspects of the results
and the conclusions that are made are not tied to a specific
initialization of the pseudo-random generator is an integral part
of any scientific undertaking in computational science; this is
usually done by repeating the simulations multiple times with
different seeds.

REPRODUCIBLE (R3)

The R2 code seems fine enough, but it hides several problems
that come to light when trying to reproduce results. A result is
said to be reproducible if another researcher can take the original
code and input data, execute it, and re-obtain the same result
(Peng et al., 2006). As explained byDonoho et al. (2009), scientific
practice must expect that errors are ubiquitous, and therefore be
robust to them. Ensuring reproducibility is a fundamental step
toward this: it provides other researchers the means to verify
that the code does indeed produce the published results, and
to scrutinize the procedures it employed to produce them. As
demonstrated by Mesnard and Barba (2017), reproducibility is
hard.

For instance, the R2 programwill not produce the same results
all the time. It will, because it is repeatable, produce the same
results over repeated executions. But it will not necessarily do
so over different execution environments. The cause is to be
found in a change that occurred in the pseudo-random number
generator between Python 3.2 and Python 3.3. Executed with
Python 2.7–3.2, the code will produce the sequence −1, 0, 1,
0, −1, −2, −1, 0, −1, −2. But with Python 3.3–3.6, it will
produce −1, −2, −1, −2, −1, 0, 1, 2, 1, 0. With future versions

3With CPython 3.3–3.6. See the next section for details.

of the language, it may change still. For the R3 version, we
abandon the use of the random.choice function in favor of
the random.uniform function, whose behavior is consistent
across versions 2.7–3.6 of Python.

Because any dependency of a program—to the most basic one,
the language itself—can change its behavior from one version to
the other, executability (R1) and determinism (R2) are necessary
but not sufficient for reproducibility. The exact execution
environment used to produce the results must also be specified—
rather than the broadest set of environments where the code
can be effectively run. In other words, assertions such as “the
results were obtained with CPython 3.6.1” are more valuable, in a
scientific context, than “the program works with Python 3.x and
above”. With the increasing complexity of computational stacks,
retrieving, and deciding what is pertinent (CPU architecture?
operating system version? endianness?) might be non-trivial. A
good rule of thumb is to includemore information than necessary
rather than not enough, and some rather than none.

Recording the execution environment is only the first step.
The R2 program uses a random seed but does not keep a trace of
it except in the code. Should the code change after the production
of the results, someone provided with the last version of the code
will not be able to know which seed was used to produce the
results, and would need to iterate through all possible random
seeds, an impossible task in practice4.

This is why result files should come alongside their context,
i.e., an exhaustive list of the parameters used as well as a precise
description of the execution environment, as the R3 code does.
The code itself is part of that context: the version of the code
must be recorded. It is common for different results or different
figures to have been generated by different versions of the code.
Ideally, all results should originate from the same (and last)
version of the code. But for long or expensive computations,
this may not be feasible. In that case, the result files should
contain the version of the code that was used to produce it. This
information can be obtained from the version control software.
This also allows, if some errors are found and corrected after
some results have been obtained, to identify which ones should
be recomputed. In R3, the code records the git revision, and
prevents execution if the repository holds uncommitted changes
when the computation starts.

Published results should obviously come from versions of the
code where every change and every file has been committed.
This includes pre-processing, post-processing, and plotting code.
Plotting code may seem mundane, but it is as vulnerable as any
other piece of the code to bugs and errors. When it comes to
checking that the reproduced data match the one published in the
article, however, figures can reveal themselves to be imprecise and
cumbersome, and sometimes plain unusable. To avoid having
to manually overlay pixelated plots, published figures should be
accompanied by their underlying data (coordinates of the plotted

4Here, with 210 possibilities for a 10-step random walk, the seed used or another

matching the generated sequence could certainly be found. For instance, 436 is the

smallest positive integer seed to reproduce the results of R0 with Python 2.7 (1,151,

3,800, 4,717 or 11,235,813 work as well). Such a search becomes intractable for a

100-step walk.
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# Copyright (c) 2017 N.P. Rougier and F.C.Y. Benureau

# Release under the BSD 2-clause license

# Tested with 64-bit CPython 3.6.2 / macOS 10.12.6

import sys, subprocess, datetime, random

def compute_walk():

x = 0

walk = []

for i in range(10):

if random.uniform(-1, +1) > 0:

x += 1

else:

x -= 1

walk.append(x)

return walk

# If repository is dirty, don't run anything

if subprocess.call(("git", "diff-index",

"--quiet", "HEAD")):

print("Repository is dirty, please commit first")

sys.exit(1)

# Get git hash if any

hash_cmd = ("git", "rev-parse", "HEAD")

revision = subprocess.check_output(hash_cmd)

# Unit test

random.seed(42)

assert compute_walk() == [1,0,-1,-2,-1,0,1,0,-1,-2]

# Random walk for 10 steps

seed = 1

random.seed(seed)

walk = compute_walk()

# Display & save results

print(walk)

results = {

"data" : walk,

"seed" : seed,

"timestamp": str(datetime.datetime.utcnow()),

"revision" : revision,

"system" : sys.version}

with open("results-R3.txt", "w") as fd:

fd.write(str(results))

LISTING 3: Re-runnable, repeatable, reproducible random walk (R3)

raw code, archive

points) in the supplementary data to allow straightforward
numeric comparisons.

Another good practice is to make the code self-verifiable. In
R3, a short unit test is provided, that allows the code to verify its
own reproducibility. Should this test fail, then there is little hope
of reproducing the results. Of course, passing the test does not
guarantee anything.

It is obvious that reproducibility implies availability. As
shown in Collberg and Proebsting (2016), code is often
unavailable, or only available upon request. While the latter
may seem sufficient, changes in email address, changes in
career, retirement, a busy inbox or poor archiving practices
can make a code just as unreachable. Code and input data
and result data should be available with the published article,
as supplementary data, or through a DOI link to a scientific

repository such as Figshare, Zenodo5 or a domain specific
database, such as ModelDB for computational neuroscience.
The codes presented in this article are available in the
GitHub repository github.com/rougier/random-walk and at
doi.org/10.5281/zenodo.848217.

To recap, reproducibility implies re-runnability and
repeatability and availability, yet imposes additional conditions.
Dependencies and platforms must be described as precisely and
as specifically as possible. Parameters values, the version of the
code, and inputs should accompany the result files. The data
and scripts behind the graphs must be published. Unit tests are
a good way to embed self-diagnostics of reproducibility in the
code. Reproducibility is hard, yet tremendously necessary.

REUSABLE (R4)

Making your program reusable means it can be easily used, and
modified, by you and other people, inside and outside your lab.
Ensuring your program is reusable is advantageous for a number
of reasons.

For you, first. Because the you now and the you in 2 years
are two different persons. Details on how to use the code, its
limitations, its quirks, may be present to your mind now, but will
probably escape you in 6 months (Donoho et al., 2009). Here,
comments and documentation can make a significant difference.
Source code reflects the results of the decisions that were made
during its creation, but not the reasons behind those decisions.
In science, where the method and its justification matter as
much as the results, those reasons are precious knowledge. In
that context, a comment on how a given parameter was chosen
(optimization, experimental data, educated guess), why a library
was chosen over another (conceptual or technical reasons?) is
valuable information.

Reusability of course directly benefits other researchers from
your team and outside of it. The easier it is to use your code,
the lower the threshold is for other to study, modify and
extend it. Scientists constantly face the constraint of time: if
a model is available, documented, and can be installed, run,
and understood all in a few hours, it will be preferred over
another that would require weeks to reach the same stage. A
reproducible and reusable code offers a platform both verifiable
and easy-to-use, fostering the development of derivative works
by other researchers on solid foundations. Those derivative works
contribute to the impact of your original contribution.

Having more people examining and using your code also
means that potential errors have a higher chance to be caught.
If people start using your program, they will most likely report
bugs or malfunctions they encounter. If you’re lucky enough,
they might even propose either bug fixes or improvements, hence
improving the overall quality of your software. This process
contributes to the long-term reproducibility to the extent people
continue to use and maintain the program.

5Online code repositories such as GitHub are not scientific repositories, and may

disappear, change name, or change their access policy at any moment. Direct links

to them are not perpetual, and, when used, they should always be supplemented by

a DOI link to a scientific archive.
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# Copyright (c) 2017 N.P. Rougier and F.C.Y. Benureau

# Release under the BSD 2-clause license

# Tested with 64-bit CPython 3.6.2 / macOS 10.12.6

import sys, subprocess, datetime, random

def compute_walk(count, x0=0, step=1, seed=0):

"""Random walk

count: number of steps

x0 : initial position (default 0)

step : step size (default 1)

seed : seed for the initialization of the

random generator (default 0)

"""

random.seed(seed)

x = x0

walk = []

for i in range(count):

if random.uniform(-1, +1) > 0:

x += 1

else:

x -= 1

walk.append(x)

return walk

def compute_results(count, x0=0, step=1, seed=0):

"""Compute a walk and return it with context"""

# If repository is dirty, don't do anything

if subprocess.call(("git", "diff-index",

"--quiet", "HEAD")):

print("Repository is dirty, please commit")

sys.exit(1)

# Get git hash if any

hash_cmd = ("git", "rev-parse", "HEAD")

revision = subprocess.check_output(hash_cmd)

# Compute results

walk = compute_walk(count=count, x0=x0,

step=step, seed=seed)

return {

"data" : walk,

"parameters": {"count": count, "x0": x0,

"step": step, "seed": seed},

"timestamp" : str(datetime.datetime.utcnow()),

"revision" : revision,

"system" : sys.version}

if __name__ == "__main__":

# Unit test checking reproducibility

# (will fail with Python<=3.2)

assert (compute_walk(10, 0, 1, 42) ==

[1,0,-1,-2,-1,0,1,0,-1,-2])

# Simulation parameters

count, x0, seed = 10, 0, 1

results = compute_results(count, x0=x0, seed=seed)

# Save & display results

with open("results-R4.txt", "w") as fd:

fd.write(str(results))

print(results["data"])

LISTING 4: Re-runnable, repeatable, reproducible, reusable random walk (R4)

raw code, archive

Despite all this, reusability is often overlooked, and it is
not hard to see why. Scientists are rarely trained in software
engineering, and reusability can represent an expensive endeavor

if undertaken as an afterthought, for little tangible short-term
benefits, for a codebase that might, after all, only see a single use.
And, in fact, reusability is not as indispensable a requirement
as re-runnability, repeatability, and reproducibility. Yet, some
simple measures can tremendously increase reusability, and at
the same time strengthen reproducibility and re-runnability over
the long-term.

Avoid hardcoded or magic numbers. Magic numbers are
numbers present directly in the source code, that do not have
a name and therefore can be difficult to interpret semantically.
Hardcoded values are variables that cannot be changed through
a function argument or a parameter configuration file. To be
modified, they involve editing the code, which is cumbersome
and error-prone. In the R3 code, the seed and the number of steps
are respectively hardcoded and magic.

Similarly, code behavior should not be changed by
commenting/uncommenting code (Wilson et al., 2017).
Modification of the behavior of the code, required when different
experiments examine slightly different conditions, should always
be explicitly set through parameters accessible to the end-user.
This improves reproducibility in two ways: it allows those
conditions to be recorded as parameters in the result files, and
it allows to define separate scripts to run or configuration files
to load to produce each of the figures of the published paper.
With documentation explaining which script or configuration
file corresponds to which experiment, reproducing the different
figures becomes straightforward.

Documentation is one of the most potent tools for reusability.
A proper documentation on how to install and run the software
often makes the difference whether other researchers manage to
use it or not. A comment describing what each function does,
however evident, can avoid hours of head-scratching. Great code
may need few comments. Scientists, however, are not always
brilliant developers. Of course, bad, complicated code should be
rewritten until is simple enough to explain itself. But realistically,
this is not always going to be done: there is simply not enough
incentive for it. There, a comment that explains the intentions
and reasons behind a block of code can be tremendously useful.

Reusability is not a strict requirement for scientific code.
But it has many benefits, and a few simple measures can
foster it considerably. To complement the R4 version provided
here, we provide an example repository of a re-runnable,
repeatable, reproducible and reusable random walk code. The
repository is available on GitHub github.com/benureau/r5 and at
doi.org/10.5281/zenodo.848284.

REPLICABLE (R5)

Having made a software reusable offers an additional way to
find errors, especially if your scientific contribution is popular.
Unfortunately, this is not always effective, and some recent cases
have shown that bugs can lurk in well-used open-source code,
impacting the false positive rates of fMRI studies (Eklund et al.,
2016), or the encryption of communications over the Internet
(Durumeric et al., 2014). Let’s be clear: the goal here is not
to remove all bugs and mistakes from science. The goal is to
have methods and practices in place that make possible for the
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inevitable errors that will be made to be caught and corrected
by motivated investigators. This is why, as explained by Peng
et al. (2006), the replication of important findings by multiple
independent investigators is fundamental to the accumulation of
scientific evidence.

Replicability is the implicit assumption that an article that
does not provide the source code makes: that the description it
provides of the algorithms is sufficiently precise and complete to
re-obtain the results it presents. Here, replicating implies writing
a new code matching the conceptual description of the article, in
order to reobtain the same results. Replication affords robustness
to the results because, should the original code contain an error,
a different codebase creates the possibility that this error will
not be repeated, in the same way that replicating a laboratory
experiment in a different laboratory can ferret out subtle biases.
While every published article should strive for replicability, it is
seldom obtained. In fact, absent an explicit effort to make an
algorithmic description replicable, there is little probability that
it will be.

This is because most papers strive to communicate the
main ideas behind their contribution in terms as simple
and as clear as possible, so that the reader may be able
to easily understand them. Trying to ensure replicability in
the main text adds a myriad of esoteric details that are not
conceptually significant and clutter the explanations. Therefore,
unless the writer dedicates an addendum or a section of
the supplementary information for technical details specifically
aimed at replicability, the information will not be there
because clarity and concision represent enticing incentives not
to do so.

But even when those details are present, the best efforts may
fall short because an oversight, a typo or a difference between
what is evident for the writer and for the reader (Mesnard and
Barba, 2017). Minute changes in the numerical estimation of
a common first-order differential equation can have significant
impact (Crook et al., 2013). Hence, a reproducible code plays an
important role alongside its article: it is a objective catalog of all
the implementation details.

A researcher seeking to replicate published results might first
consider only the article. If she fails to replicate the results, she
will consult the original code, and with it be able to pinpoint
why her code and the code of the authors differ in behavior.
Because a mistake on their part? Hers? Or a difference in a
seemingly innocuous implementation detail? A fine analysis of
why a particular algorithmic description is lacking or ambiguous
or why a minor implementation decision is in fact crucial
to obtain the published results is of great scientific value.
Such an analysis can only be done with access to both the
article and the code. With only the article, the researcher will
often be unable to understand why she failed to replicate the
results, and will naturally be inclined to only report replication
successes.

Replicability, therefore, does not negate the necessity of
reproducibility. In fact, it often relies on it. To illustrate this, let
us consider what could be the description of the random walker,
as it would be written in an article describing it:

The model uses the Mersene Twister generator
initialized with the seed 1. At each iteration, a uniform
number between −1 (included) and +1 (excluded) is
drawn and the sign of the result is used for generating
a positive or negative step.

This description, while somewhat precise, forgoes—as it is
common—the initialization of the variables (here the starting
value of the walk: 0), and the technical details about which
implementation of the RNG is used.

It may look innocuous. After all, the Python documentation,
states that “Python uses the Mersenne Twister as the core
generator. It produces 53-bit precision floats and has a period
of 2∗∗19937-1”. Someone trying to replicate the work however
might choose to use the RNG from the NumPy library. The
NumPy library is extensively used in the science community,
and it provides an implementation of the Mersene Twister
generator too. Unfortunately, the way the seed is interpreted by
the two implementations is different, yielding different random
sequences.

# Copyright (c) 2017 N.P. Rougier and F.C.Y. Benureau

# Release under the BSD 2-clause license

# 64-bit CPython 3.6.2 / NumPy 1.12.0 / macOS 10.12.6

import random

import numpy as np

def _rng(seed):

"""Return a numpy random number generator

initialized with seed as it would be with

a python random generator.

"""

rng = random.Random()

rng.seed(seed)

_, keys, _ = rng.getstate()

rng = np.random.RandomState()

state = rng.get_state()

rng.set_state((state[0], keys[:-1], state[2],

state[3], state[4]))

return rng

def walk(n, seed):

"""Random walk for n steps"""

rng = _rng(seed)

steps = 2 * (rng.uniform(-1, +1, n) > 0) - 1

return steps.cumsum().tolist()

if __name__ == "__main__":

# Unit test

assert (walk(n=10, seed=42) ==

[1,0,-1,-2,-1,0,1,0,-1,-2])

# Random walk for 10 steps, with seed=1

seed = 1

path = walk(n=10, seed=seed)

# Save & display results

results = {"data": path, "seed": seed}

with open("results-R5.txt", "w") as fd:

fd.write(str(results))

print(path)

LISTING 5: Replicated random walk (R5) raw code, archive

Frontiers in Neuroinformatics | www.frontiersin.org 6 January 2018 | Volume 11 | Article 69

https://docs.python.org/3.6/library/random.html
http://www.numpy.org/
https://raw.githubusercontent.com/rougier/random-walk/frontiers/random-walk-R5.py
https://doi.org/10.5281/zenodo.848217
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Benureau and Rougier Re-run, Repeat, Reproduce, Reuse, Replicate

Here we are able to replicate exactly6 the behavior of the pure-
Python randomwalker by setting the internal state of the NumPy
RNG appropriately, but only because we have access to specific
technical details of the original code (the use of the random
module of the standard Python library of CPython 3.6.1), or to
the code itself.

But there are still more subtle problems with the description
given above. If we look more closely at it, we can realize that
nothing is said about the specific case of 0 when generating a
step. Do we have to consider 0 to be a positive or a negative step?
Without further information and without the original code, it is
up to the reader to decide. Likewise, the description is ambiguous
regarding the first element of the walk. Is the initialization value
included (it was not in our codes so far)? This slight difference
might affect the statistics of short runs.

All these ambiguities in the description of an algorithm pile
up; some are inconsequential (the 0 case has null probability),
but some may affect the results in important ways. They are
mostly inconspicuous to the reader and oftentimes, to the writer
as well. In fact, the best way to ferret out the ambiguities, big and
small, of an article is to replicate it. This is one of the reasons
why the ReScience journal (Rougier et al., 2017) was created (the
second author, Nicolas Rougier, is one of the editor-in-chief of
ReScience). This open-access journal, run by volunteers, targets
computational research and encourages the explicit replication
of already published research, promoting new and open-source
implementations in order to ensure that the original research is
reproducible.

Code is a key part of a submission to the ReScience journal.
During the review process, reviewers run the submitted code,
may criticize its quality and its ease-of-use, and verify the
reproduciblity of the replication. The Journal of Open Source
Software (Smith et al., 2017) functions similarly: testing the code
is a fundamental part of the review process.

CONCLUSION

Throughout the evolution of a small random walk example
implemented in Python, we illustrated some of the issues that
may plague scientific code. The code may be correct and of
good quality, and still possess many problems that reduce its
contribution to the scientific discourse. To make these problems
explicit, we articulated five characteristics that a code should
possess to be a useful part of a scientific publication: it should be
re-runnable, repeatable, reproducible, reusable, and replicable.

Running old code on tomorrow’s computer and software
stacksmay not be possible. But recreating the old code’s execution
environment may be: to ensure the long-term re-runnability of a
code, its execution environment must be documented. For our

6Striving, as we do here, for a perfect quantitative match may seem unnecessary.

Yet, in replication projects, in particular in computational research, quantitative

comparisons are a simple and effective way to verify that the behavior has been

reproduced. Moreover, they are particularly helpful to track exactly where the code

of a tentative replication fails to reproduce the published results. For a discussion

about statistical ways to assess replication see the report of the U.S. National

Academies of Sciences (2016).

example, a single comment went a long way to transform the R0

code into the R1 (re-runnable) one.
Science is built on verifying the results of others. This is

harder to do if each execution of the code produce a different
result. While for complex concurrent workflows this may not be
possible, in all instances where it is feasible the code should be
repeatable. This allows future researchers to examine exactly how
a specific result was produced. Most of the time, what is needed
is to set or record the initial state of the pseudo-random number
generator, as what done in the R2 (repeatable) version.

Even more care is needed to make a code reproducible.
The exact execution environment, code and parameters used
must be recorded and embedded in the results files, as the
R3 (reproducible) version does. Furthermore, the code must
be made available as supplementary data with the whole
computational workflow, from preprocessing steps to plotting
scripts.

Making code reusable is a stretch goal that can yield
tremendous benefits for you, your team, and other researchers.
Taken into account during development rather than as an
afterthought, simple measures can avoid hours of head-
scratching for others, and for yourself—in a few years.
Documentation is paramount here, even if it is a single comment
per function, as it was done in the R4 (reusable) version.

Finally, there is the belief that an article should suffice by itself:
the descriptions of the algorithms present in the paper should
suffice to reobtain (to replicate) the published results. For well-
written papers that precisely dissociate conceptually significant
aspects from irrelevant implementation details, that may be. But
scientific practice should not assume the best of cases. Science
assumes that errors can crop up everywhere. Every paper is
a mistake or a forgotten parameter away from irreplicability.
Replication efforts use the paper first, and then the reproducible
code that comes along with it whenever the paper falls short of
being precise enough.

In conclusion, the R3 (reproducible) form should be accepted
as the minimum scientific standard (Wilson et al., 2017).
This means this should be actually checked by reviewers and
publishers when code is part of a work worth being published.
It’s hardly the case today.

Compared to psychology or biology, the replication issues
of computational works have reasonable and efficient solutions.
But making sure that these solutions are adopted will not be
solved by articles such as this one. Just like in other fields, we
have to modify the incentives for the researchers to publish by
adopting exigences, enforced domain-wide, on what constitutes
an acceptable scientific computational work.
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