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Abstract

Background: When conducting multiple hypothesis tests, it is important to control the number

of false positives, or the False Discovery Rate (FDR). However, there is a tradeoff between

controlling FDR and maximizing power. Several methods have been proposed, such as the q-value

method, to estimate the proportion of true null hypothesis among the tested hypotheses, and use

this estimation in the control of FDR. These methods usually depend on the assumption that the

test statistics are independent (or only weakly correlated). However, many types of data, for

example microarray data, often contain large scale correlation structures. Our objective was to

develop methods to control the FDR while maintaining a greater level of power in highly correlated

datasets by improving the estimation of the proportion of null hypotheses.

Results: We showed that when strong correlation exists among the data, which is common in

microarray datasets, the estimation of the proportion of null hypotheses could be highly variable

resulting in a high level of variation in the FDR. Therefore, we developed a re-sampling strategy to

reduce the variation by breaking the correlations between gene expression values, then using a

conservative strategy of selecting the upper quartile of the re-sampling estimations to obtain a

strong control of FDR.

Conclusion: With simulation studies and perturbations on actual microarray datasets, our

method, compared to competing methods such as q-value, generated slightly biased estimates on

the proportion of null hypotheses but with lower mean square errors. When selecting genes with

controlling the same FDR level, our methods have on average a significantly lower false discovery

rate in exchange for a minor reduction in the power.

Background
Microarray technology has become a standard experimen-
tal method in bio-medical research. In the analysis of
microarray data, one of the most fundamental tasks is the
identification of differentially expressed genes while con-
trolling false positives and minimizing false negatives.
This is a multiple hypothesis test problem which analyzes

thousands or tens of thousands of genes simultaneously.
In these tests we often need to control the false discovery
among the rejected hypotheses under a pre-specified level
while maintaining maximal power. Thus, there is a trade
off in the control of the type-I error between rejecting true
null hypotheses (false discovery) versus accepting true
alternative hypotheses (false negative).
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Traditional Bonferroni correction procedures are designed
to control the Family Wise Error Rate (FWER), which
guards against making one or more type I errors among a
family of hypothesis tests. However, these procedures may
be excessively conservative for microarray analysis where
the number of hypotheses is very large and a substantial
fraction of the genes are differentially expressed [1]. A
more appropriate approach is to control the False Discov-
ery Rate (FDR), which is the proportion of type I errors
among all rejected hypotheses [2,3]. This approach is par-
ticularly useful in exploratory analyses, where the objec-
tive is to maximize the discovery of true positives, rather
than guarding against one or more false positive results.

A number of methods have been proposed to control the
FDR given a population of hypothesis tests. These meth-
ods usually assume that the distribution of the test statis-
tics, f, can be modeled by a mixture of two components
[4]:

f(x) = π0f0(x) + (1 - π0)f1(x)  π0 = m0/m (1)

Where f0 is the distribution of the test statistics under H0,
which by definition equals to 1 when using p-values when
tests are independent, f1 is the distribution of the test sta-
tistics under H1, m0 is the number of true H0, m is the total
number of hypotheses under consideration, and π0 is the
proportion of true H0. The methods proposed by Ben-
jamini et al [2,3] to control FDR do not estimate π0; there-
fore, they provide the strongest controls on FDR but have
the lowest power compared to other methods that do so.

In many actual applications where a considerable number
of genes are differentially expressed, assuming π0 = 1 may
be too conservative causing loss of power. Several alterna-
tive methods, such as nonparametric empirical Bayesian
pFDR criterion and its p-value equivalent called q-value
method [1,5,6], bin-wise model [7-9], local FDR method
[10], parametric beta-uniform mixture models [11-14],
the Lowest Slope estimator (LSL) [15], the Spacing LOESS
Histogram (SPLOSH) method [16], the nonparametric
MLE method [17], the moment generating function
approach [18], and the Poisson regression approach [18-
20], have all been proposed to estimate π0 by pooling test
statistics and controlling FDR based on the estimated π0.

In these methods, one of the critical steps is estimating the
proportion of null hypotheses, π0. When using p-values,
these estimations usually depend on the assumption that
f0 follows a uniform distribution. This assumption, which
is of critical importance for the methods of statistical
inference that employ pooling test statistics across genes
[21], is valid when all test hypotheses are independent
and identically distributed. Furthermore, when there are
only weak correlations, or "clumpy" correlations (a large

number of groups that have a small number of genes with
high correlation within groups but no correlation
between groups [21,22]), the uniform assumption is not
strongly violated and the method remains adequate.
However, in datasets with large scale strong correlations,
the joint distribution of the test statistics will no longer be
the product of marginal distributions, and the observed f0

will severely deviate from uniform, causing the current π0

estimation methods to become very unstable. Increased
variation and bias of π0, as well as FDR, was also observed
by Wu et al [14] in datasets with strong local correlations.

The effect of correlation on simultaneous significance
tests was previously discussed theoretically [23-25], and a
number of permutation based FDR control methods were
proposed, such as SAM [26], dChip [27], Ge et al [28],
Meinshausen et al [24] and Efron [25]. In these methods,
the distribution of f0 was modeled empirically through
permutations, which naturally considered the correlation.
However, like Benjamini et al [2,3], these methods don't
estimate π0; therefore, in datasets with a large number of
differentially expressed genes, the FDR control may be
overly conservative with a loss of power.

Therefore we proposed 2 re-sampling schemes, similar to
model averaging in bagging methods, to reduce the varia-
tion in estimating π0 in datasets with strong correlation
between gene expression values. Our methods produced a
more stable and conservative estimation of π0 and, there-
fore, provided stronger control of False Discovery Rate
with only a minor sacrifice of power.

Implementation
Creating simulated data set

To test the performance of various algorithms in estimat-
ing π0, we generated 2 types of simulated datasets. Both
datasets had strong correlation between subsets of genes
and a known proportion of true null hypotheses, to repre-
sent the log transformed microarray expression data.

Data-B

The first simulation method is similar to the method used
in Qiu et al [21] and Wu et al [14]. Assume n samples and
m genes, with n/2 samples per class. The m genes were
divided into K blocks with each block consisting of m/K
genes. Assume independence between blocks and con-
stant correlation coefficient between genes within each
block. For block l and sample j, we first created a block
center vector

blj = dl·xj + δlj, l = 1,...,K, j = 1,...,n (2)

where dl was the mean difference between groups, it
equals to 0 (for simulating non-differentially expressed
genes) with probability π0, or was generated from beta
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distribution with parameter (4, 20) otherwise; xj was a
group indicator; and δlj was i.i.d. N(0,1) to represent sam-
ple specific noise. Then the expression value of gene i in
sample j in that block, Ylji, was generated by

Ylji = ρ·blj + (1 - ρ)·elji, i = 1,...,m/K (3)

where ρ was the correlation constant which takes value
between [0,1] determining the correlation coefficient
between genes within the block, and elji was i.i.d. N(0,1).
The K blocks of genes were generated independently of
each other and then pooled to form the whole dataset. We
call this type of dataset which contains blocks of highly
correlated genes Data-B in our experiments.

Data-M

The above Data-B model is over-simplified in many
aspects, and is still a "clumpy" structure, although the
clumpiness can be pronounced. To mimic more realistic
situations, we generated a second type of simulated data
based on an actual human breast cancer microarray data-
set [29] obtained with Affymetrix U133 plus 2.0 microar-
rays. The dataset contains 65 estrogen receptor positive
(ER+) cases and 46 estrogen receptor negative (ER-) cases.
The data were normalized by the GCRMA algo-
rithm[30,31], and the gene (probe-set) expression levels
were log2-transformed. According to published literatures
[32,33], the ER status is one of the most predominant par-
titioning factors for molecular classification of breast can-
cer. We therefore took some of the genes differentially
expressed between the two classes as "truly H1" genes. We
selected 8778 genes with differences in mean of log trans-
formed expression levels between the two classes greater
than 0.58 (equivalent to a 1.5 fold change). From these
genes, each time we randomly chose 1000 to form our
simulated dataset and then randomly picked π0 propor-
tion of the 1000 genes to establish H0 genes by scrambling
these genes together between samples. Thus, we obtained
a simulated dataset with a known number of null hypoth-
eses while the correlations among both the differentially
and non-differentially expressed genes were maintained.
We call this type of dataset Data-M in our experiments
[34].

Estimating π0 by re-sampling strategy

To get a better estimation of π0 in datasets with strong cor-
relations, we proposed 2 re-sampling methods to replace
the original π0 estimation step in q-value method which
estimates π0 directly from the p-value distribution [6].

The first method, termed SampS, re-samples without
replacement 2/3 of the samples from each class, calculates
p-values for each gene, and then estimates the π0 from the
p-values. For each dataset, we performed this procedure

100 times and used the upper quartile to replace the π0

estimated by the q-value method.

The second method, termed SampG, re-samples without
replacement 2/3 of the values from each class for each
gene independently, calculates the p-values for each gene,
and then estimates the π0. We also performed this proce-
dure 100 times for each dataset and used the upper quar-
tile to replace the π0 estimated by the q-value method.

After each re-sampling step, we have to feed the p-values
into a π0 estimator. This estimator could be the π0 estima-
tion by q-value method, the mgf method [18], or any
other unbiased π0 estimators. In this paper, we tried to use
both q-value and mgf as the plug-in estimator, and called
them SampS.q and SampG.q when using q-value as the
plug-in estimator, or SampS.m and SampG.m when using
mgf as the plug-in estimator.

Results
Variation of the π0 estimation when genes are correlated

To evaluate the impact of correlation structure in large
datasets on the estimation of the proportion of true null
hypotheses (π0), we first evaluated current methods on a
published microarray dataset [29]. This dataset consists of
65 estrogen receptor positive (ER+) and 46 estrogen recep-
tor negative (ER-) breast cancers. The gene expression lev-
els were normalized by the GCRMA algorithm [30,31]
and log2 transformed. Expression values were filtered to
eliminate low expressing genes with mean expression
below 5 and constant expressing genes with coefficient of
variation below 0.1. A total of 9,993 genes passed this fil-
tering criterion. We bootstrapped 200 datasets from this
microarray data and used the q-value [6] and twilight [9]
methods to estimate the proportion of null hypotheses.
The π0 estimates were similar by the 2 methods on each
bootstrapped data set; however, both methods showed a
large range of π0 among the bootstrapped datasets that
varied from 0.36 to 0.83 (Figure 1).

To further investigate the influence of gene correlation on
the estimation of π0, we generated simulated dataset Data-
B which contained blocks of highly correlated genes, but
all genes were non-differentially expressed. In our simula-
tion we set the correlation constant ρ equal to 0.5, and cre-
ated datasets containing 100, 1,000 or 10,000 genes with
1, 10, 100 or 1,000 genes per block. After calculating the
p-value for each gene, we calculated the coefficient of var-
iation (CV) of the bar heights in the histogram of p-values
by splitting the p-values into 20 bins between [0, 1] with
the width of each bin being 0.05. Figure 2(a) shows the
histogram of p-values in one of the simulations having
10,000 genes all independent with each other, and Figure
2(b) shows the histogram of p-values in another simula-
tion having 10,000 genes with 1,000 genes per block.
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Comparing Figure 2(a) and 2(b) we can see that with
highly correlated genes, the distribution of p-value devi-
ated significantly from uniform, although none of the
genes were differentially expressed. We created 100 simu-
lations for each type of data, calculated their CV of the bar
height in the p-value histogram, and plotted the box plots
of the CVs in Figure 3.

In this simulated study, since all genes were non-differen-
tially expressed, the p-values should follow a uniform dis-
tribution, and the histogram of p-values should be flat if
genes were independent of each other. When the number
of correlated genes in each block was small, for example,
1 (independent) or 10 (weak correlation) genes per block,
the distribution of p-values approximated a uniform dis-
tribution and the CV of the histogram of p-values were
close to expected under the independent assumption.
However, the CV of the histogram of p-values increased
significantly with the growth of correlation structure. In
other words, although none of the genes were differen-
tially expressed, the distribution of p-value deviated
increasingly from a uniform distribution when large
groups of genes were correlated. We also calculated the CV
of the histogram of p-values in our microarray dataset by
randomly permuting the class labels, which makes all
genes non-differentially expressed but still correlated, as
well as randomly permuting all expression values across
genes and samples which makes genes non-differentially

expressed and also independent. The results of 100 per-
mutations showed a dramatically higher CV for the p-
value histogram of datasets with only class labels per-
muted but with gene-gene correlations intact (Figure 4).

Comparing Figure 2, Figure 3 and Figure 4, it is apparent
that increased correlation among genes greatly increased
the deviation of p-value distribution from uniform. There-
fore, strong correlation structures will increase the varia-
tion in estimated π0. And inevitably subsequent statistical
inferences and false discovery control procedures would
be influenced by this unstable π0 estimation.

Improving the π0 estimation by re-sampling strategies

To improve the estimation of π0 in datasets with strong
correlations, we proposed two methods, termed SampS
and SampG, to replace the original π0 estimation step in
the q-value method. In the SampS algorithm, we used a
model averaging strategy. We repeatedly sampled 2/3 of
the data from each class without replacement, calculated
the p-values for genes, estimated π0 from the p-value dis-
tribution and finally used the upper quartile of the re-
sampling estimations in the subsequent statistical infer-
ences. In the SampG algorithm, we further broke down
the correlations between genes and stabilized the π0 esti-
mation. In this algorithm, we repeatedly sampled without
replacement 2/3 of the expression values from each class
independently for each gene, calculated their p-values,
estimate π0, and then used the upper quartile of the re-
sampling estimations in subsequent analysis. For the
choice of the plug-in π0 estimator, we tried to use both q-
value [6] and moment generating function [18] methods,
and called them SampG.q, SampS.q and SampG.m,
SampS.m, respectively.

To test the variation in π0 estimation induced by strong
correlation structures, and the performance of our pro-
posed SampS and SampG methods, we created simulated
datasets Data-B and Data-M, with true π0 being 0.9, 0.8,
0.7, 0.6, and the correlation constant ρ being 0.3, 0.5 and
0.7, respectively. We created 100 datasets for each combi-
nation of these control parameters. In Data-B, we created
1000 genes forming 10 blocks with 100 genes per block to
simulate large scale correlation between genes. In Data-M
we randomly selected 1000 genes with differences in the
mean of log transformed expression levels greater than
0.58, then randomly scrambled 90%, 80%, 70% or 60%
of them to create datasets with known proportion of true
null hypothesis and strong gene-gene correlations. We
applied the SampS and SampG strategies to estimate π0 for
each of the simulated datasets, and compared our results
to a number of other methods.

The π0 estimation methods we used and their correspond-
ing R functions are:

Estimating the π0 in an actual microarray data setFigure 1
Estimating the π0 in an actual microarray data set. 
Box plot of π0 estimated by q-value and twilight methods on 
200 bootstrap breast cancer datasets.
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1. The Lowest Slope estimator (LSL) [15] with parameter
determined via bootstrap (bootstrap) [5]; function
fdr.estimate.eta0

2. q-value method with tuning parameter chosen by
smoother method (Qvalue) [6]; function qvalue

3. The Spacing LOESS Histogram (SPLOSH) [16]; func-
tion splosh

4. The beta-uniform mixture model (BUM) [12]; function
bum.mle

Histogram of p-values in simulated data sets where all genes were non-differentially expressedFigure 2
Histogram of p-values in simulated data sets where all genes were non-differentially expressed. (a) dataset having 
10,000 genes, all independent with each other (b) dataset having 10,000 genes, with 1,000 genes per block.

Box plot of the CV of p-value histogram under different correlation structuresFigure 3
Box plot of the CV of p-value histogram under different correlation structures. (a) datasets having 100 genes, with 
1 or 10 genes per block. (b) datasets having 1000 genes, with 1, 10 or 100 genes per block. (c) datasets having 10000 genes, 
with 1, 10, 100 or 1000 genes per block. The histogram was calculated by splitting p-values into 20 bins between [0, 1] with the 
width of each bin being 0.05. The horizontal lines represent the expected CV when genes are independent.
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5. The nonparametric MLE method (convest)[17]; func-
tion convest

6. The Poisson regression approach (PRE) [18-20]; func-
tion p0.mom

7. The moment generating function (mgf) [18]; function
p0.mom

8. The Lowest Slope estimator (LSL) [15] with parameter
determined adaptively (adaptive) [35]; function fdr.esti-
mate.eta0

9. SampG method, with q-value plug in, 2nd quartile
(SampG.q Q2)

10. SampG method, with q-value plug in, 3rd quartile
(SampG.q Q3)

11. SampS method, with q-value plug in, 2nd quartile
(SampS.q Q2)

12. SampS method, with q-value plug in, 3rd quartile
(SampS.q Q3)

13. SampG method, with mgf plug in, 2nd quartile
(SampG.m Q2)

14. SampG method, with mgf plug in, 3rd quartile
(SampG.m Q3)

15. SampS method, with mgf plug in, 2nd quartile
(SampS.m Q2)

16. SampS method, with mgf plug in, 3rd quartile
(SampS.m Q3)

The π0 estimations were shown as boxplots in Figure 5,
and the Mean Square Error (MSE) were listed in Table 1.

Table 1 listed the MSE of π0 estimations by various meth-
ods. To better understand the methods tested, we listed
both the 2nd and 3rd quartiles of the SampS and SampG
methods compared to other methods. Later, we used only
the 3rd quartile to provide strong control of FDR. From
Figure 5 and Table 1 we can see that the bootstrap, Qvalue
and SPLOSH methods are very sensitive to correlation and
have higher MSE, especially the SPLOSH methods tend to
under-estimate higher π0 but over-estimate lower π0; the
BUM, convest and PRE methods tend to under-estimate π0

in most of the simulated data sets with strong correla-
tions, which is not favorable in FDR controls; the adaptive
method tends to over-estimate π0 when the correlation is
not very strong, which is also observed by [18] with inde-
pendent and weak correlated data, but it worked better on
cases with strong correlations when the MSE were the least
among all tested methods; mgf method is generally the
second best among the above, with relatively small bias
and variation among all simulated cases. In terms of
SampS and SampG methods, both the 2nd and 3rd quartile
outperformed the corresponding plug-in estimator, due
to smoothed variation by model averaging, and SampG
performs better than SampS with smaller MSE because
SampG breaks down correlation between genes whereas
SampS does not. And since mgf outperforms the q-value
method, the SampG and SampS with the mgf plug-in also
outperforms SampG and SampS with the q-value plug-in.

We then selected genes with FDR controlled under 0.05
level based on the π0 estimated by our method, calculated
the actual false discovery rate and power, and compared
our results to that of FDR controlling method proposed by
Benjamini et al. with correlations considered (BY; func-
tion p.adjust with method "BY") [3], the permutation
based FDR controlling method (howmany; function
howmany_dependent) [24], and q-value method [6]. The
boxplot of actual false discovery rate and power on the 4

Box plot of the CV of p-value histogram of permuted micro-array datasetsFigure 4
Box plot of the CV of p-value histogram of permuted 
microarray datasets. PermLab: Breast cancer dataset with 
class labels randomly permuted. By randomly permuting class 
labels, all genes become non-differentially expressed but the 
gene-gene correlation intact. PermAll: Randomly permuting 
all expression values between the 111 samples and 9993 
genes. By randomly permuting expression values all genes 
become non-differentially expressed and independent with 
each other. The 2 types of permutations were performed 
100 times each, and the p-values were split into 20 bins 
between [0, 1] with the width of each bin being 0.05. The 
horizontal line represents the expected CV when genes are 
independent.
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Boxplot of π0 estimated by various methods on the simulated data setsFigure 5
Boxplot of π0 estimated by various methods on the simulated data sets. The methods are (from left to right in each 
figure): LSL, Qvalue, SPLOSH, BUM, convest, PRE, mgf, adaptive, SampG.q Q2, SampG.q Q3, SampS.q Q2, SampS.q Q3, 
SampG.m Q2, SampG.m Q3, SampS.m Q2, and SampS.m Q3. A-D: Data-B with ρ = 0.3 and π0 varies from 0.9 to 0.6. E-H: 
Data-B with ρ = 0.5 and π0 varies from 0.9 to 0.6. I-L: Data-B with ρ = 0.7 and π0 varies from 0.9 to 0.6. M-P: Data-M with π0 

varies from 0.9 to 0.6. Horizontal lines represent the true π0 in each simulated case.
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types of Data-M simulations were shown in Figure 6.
From Figure 6 it can be seen that both the BY and how-
many methods provided strong control of FDR, their
actual FDR level was much lower than 0.05, and their
power to detect true alternatives were much lower than
methods where the proportion of true null hypotheses
was estimated and used in the FDR control. Comparing
the q-value method and our proposed SampS and SampG
method, for majority of the cases the actual FDR level
were still controlled below 0.05 level, although some out-
liers exist with actual FDR up to 0.4~0.6, due to the unsta-
ble pi_0 estimations. The SampS and SampG methods,
especially when using mgf as the plug-in π0 estimator,
tend to have lower FDR on those outlier cases compared
to q-value method. The differences in power between q-
value method and our proposed methods were very
minor, compared to the difference between q-value and
BY method. We also tested on the Data-B simulations, and
obtained the same result. Since we used the 3rd quartile of
π0 estimated by SampS and SampG, our estimations were
biased but conservative. With the same FDR control level
our method would make smaller numbers of rejections
than the q-value method, therefore the actual FDR and
power of the genes selected were lower than that of the q-
value method. This was shown by the p-value in pair-wise
comparison of actual FDR and power between the re-sam-
pling based methods and q-value method in these simu-
lations, where all FDR and most power comparisons were
significant (Table 2, Table 3). Interestingly, comparing the
mean of FDR and power, as shown in Table 4 and 5, we
found that the SampS and SampG methods, compared to
the q-value method, can reduce the average FDR up to
40%, with a decrease of average power in most cases less
than 1%. In fact, with the highest correlation constant we

tested, and in most cases for SampG.m method, the
decrease of power was not even significant from the q-
value method. In contrast, the most conservative BY
method reduced the average FDR by more than 90% com-
pared to the q-value method, but also reduced the average
power by approximately 10% in cases with strong correla-
tion.

Comparing the re-sampling strategy to bootstrap p-values 

directly

When there is strong correlation between genes, and thus
also between p-values, bootstrapping p-values does not
change the correlation structure and therefore the estima-
tions are still unstable. In contrast, re-sampling of samples
or gene expression values as we proposed could address
the variations induced by the correlation structure and
therefore smooth the estimation.

For example, for each of the simulated datasets, we boot-
strapped the p-values 100 times and then estimated π0 by
the q-value method. Figure 7 shows the scatter plots of π0

estimated by the q-value method versus the 1st, 2nd and 3rd

quartiles of the SampS and SampG methods, as well as the
estimations by bootstrapping p-values on the 100 Data-M
simulations with true π0 equals to 0.7. For the bootstrap
method, as expected, the scatter plot showed that the
median estimation of π0 was close to the estimation using
original p-values for all cases. Whereas for the SampS and
SampG methods, since they smoothed the variation
induced by correlation between p-values, the variation
was much smaller than the q-value method. Especially for
cases where the q-value method severely under- or over-
estimated the π0, the estimation by the SampS and SampG
methods were closer to the true value. This was also

Table 1: Mean Square Error of π0 estimation by different methods

Data_B Data_M

ρ 0.3 0.5 0.7

True π0 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6

Bootstrap 0.0038 0.0029 0.0035 0.0030 0.0106 0.0113 0.0115 0.0105 0.0423 0.0495 0.0422 0.0336 0.0202 0.0227 0.0213 0.0164

Qvalue 0.0045 0.0054 0.0051 0.0049 0.0120 0.0190 0.0170 0.0139 0.0445 0.0592 0.0621 0.0622 0.0247 0.0309 0.0318 0.0214

SPLOSH 0.0061 0.0059 0.0119 0.0201 0.0233 0.0107 0.0173 0.0308 0.0909 0.0456 0.0279 0.0298 0.0239 0.0145 0.0225 0.0388

BUM 0.0040 0.0032 0.0032 0.0040 0.0042 0.0037 0.0045 0.0061 0.0097 0.0050 0.0060 0.0060 0.0041 0.0071 0.0090 0.0117

Convest 0.0018 0.0021 0.0024 0.0021 0.0076 0.0087 0.0079 0.0076 0.0367 0.0402 0.0339 0.0275 0.0177 0.0200 0.0173 0.0138

PRE 0.0063 0.0072 0.0103 0.0151 0.0135 0.0189 0.0249 0.0402 0.0690 0.0739 0.0746 0.0748 0.0225 0.0289 0.0343 0.0478

Mgf 0.0017 0.0026 0.0038 0.0039 0.0054 0.0060 0.0048 0.0043 0.0122 0.0152 0.0148 0.0130 0.0104 0.0114 0.0094 0.0076

Adaptive 0.0030 0.0075 0.0144 0.0175 0.0008 0.0017 0.0023 0.0028 0.0012 0.0024 0.0025 0.0019 0.0003 0.0005 0.0005 0.0010

SampG.q Q2 0.0017 0.0026 0.0035 0.0032 0.0059 0.0067 0.0054 0.0049 0.0135 0.0168 0.0162 0.0140 0.0114 0.0124 0.0103 0.0085

SampG.q Q3 0.0043 0.0069 0.0084 0.0077 0.0065 0.0100 0.0076 0.0062 0.0106 0.0163 0.0176 0.0160 0.0109 0.0137 0.0119 0.0091

SampS.q Q2 0.0017 0.0026 0.0036 0.0033 0.0062 0.0070 0.0055 0.0051 0.0138 0.0176 0.0169 0.0169 0.0138 0.0136 0.0122 0.0094

SampS.q Q3 0.0046 0.0072 0.0091 0.0083 0.0073 0.0139 0.0110 0.0091 0.0081 0.0233 0.0341 0.0384 0.0094 0.0187 0.0176 0.0122

SampG.m Q2 0.0016 0.0037 0.0067 0.0082 0.0027 0.0029 0.0027 0.0025 0.0058 0.0060 0.0057 0.0047 0.0046 0.0045 0.0037 0.0032

SampG.m Q3 0.0021 0.0046 0.0081 0.0097 0.0030 0.0033 0.0031 0.0027 0.0055 0.0060 0.0057 0.0048 0.0048 0.0046 0.0039 0.0032

SampS.m Q2 0.0017 0.0037 0.0068 0.0083 0.0028 0.0031 0.0030 0.0027 0.0062 0.0063 0.0060 0.0050 0.0051 0.0048 0.0042 0.0033

SampS.m Q3 0.0025 0.0053 0.0091 0.0109 0.0045 0.0053 0.0049 0.0044 0.0059 0.0098 0.0097 0.0087 0.0065 0.0063 0.0056 0.0037
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observed in all simulated datasets that we have tested
(data not shown).

Discussion
In actual microarray datasets, genes expression is often
correlated due to co-regulation, sharing of transcription

factor binding motifs, or technical reasons such as
sequence similarity, cross-hybridization or signal leak
during hybridization. This is of critical importance for sta-
tistical inferences that rely on pooling of test statistics
across genes [21]. The distribution of p-values of these
correlated genes can be viewed under a mixture model

Boxplot of actual FDR and power by various methods on Data-MFigure 6
Boxplot of actual FDR and power by various methods on Data-M. The methods are (from left to right in each figure): 
BY, howmany, Qvalue, SampG.q, SampS.q, SampG.m, SampS.m. A-D: boxplot of FDR on Data-M with π0 varies from 0.9 to 0.6. 
E-H: boxplot of power on Data-M with π0 varies from 0.9 to 0.6. Horizontal lines represent FDR at 0.05 level.

Table 2: P-values comparing FDR by different methods.

ρ True π0 BY SampG.q SampS.q SampG.m SampS.m

Data-B 0.3 0.9 3.25E-11 3.68E-01 1.56E-02 1.31E-01 1.29E-01

0.8 7.45E-26 8.70E-04 8.40E-04 7.20E-03 4.12E-03

0.7 2.80E-32 6.23E-07 1.34E-07 4.13E-06 2.38E-06

0.6 9.74E-46 6.00E-09 6.10E-08 1.92E-08 4.47E-09

0.5 0.9 1.28E-10 1.74E-03 3.68E-05 4.56E-03 6.45E-04

0.8 4.17E-14 8.92E-06 5.09E-06 1.81E-04 2.94E-05

0.7 3.12E-21 4.94E-08 5.46E-10 1.40E-05 2.12E-07

0.6 2.19E-21 1.36E-07 2.81E-10 1.20E-06 1.75E-08

0.7 0.9 4.20E-06 1.26E-02 1.11E-03 2.86E-02 6.62E-03

0.8 1.32E-07 2.00E-04 2.62E-05 3.48E-04 1.15E-04

0.7 5.96E-10 2.12E-03 1.49E-04 1.62E-03 4.58E-04

0.6 4.06E-10 6.75E-04 3.24E-05 6.96E-04 1.52E-04

Data-M 0.9 4.92E-08 8.63E-05 1.97E-05 4.39E-04 4.16E-05

0.8 1.01E-09 3.05E-05 5.13E-07 4.84E-05 7.05E-06

0.7 2.76E-10 3.31E-05 1.83E-06 1.70E-04 2.28E-05

0.6 1.61E-12 8.38E-07 5.29E-09 6.91E-06 6.11E-07

The actual FDR in gene selections across the 100 simulations under each configuration by these methods was compared to that of q-value method 
using one-tail paired t-statistics.



BMC Bioinformatics 2007, 8:157 http://www.biomedcentral.com/1471-2105/8/157

Page 10 of 13

(page number not for citation purposes)

where groups of highly correlated genes share similar p-
values and the whole distribution is actually a mixture of
components corresponding to the groups of highly corre-
lated genes. The effect of strong and large scale correla-
tions is equivalent to reducing the total number of
independent components in this mixture model. Storey
[22] argued that subsets of genes fall into small but highly
correlated groups due to co-regulation or cross-hybridiza-
tion, but these groups are small in size and nearly inde-
pendent with each other ("clumpy dependency"),
therefore the uniformity of p-value distribution of true

null genes would not be strongly affected. However, other
researchers, such as Qiu et al [21], have found that the
impact of correlation may be quite strong. It is also true
that in our permutation study on a breast cancer microar-
ray dataset, the distribution of p-values could be
extremely far from uniform due to gene-gene correlation.

Systems biology research has shown that biological gene
networks have a scale free [36], hierarchical structure
[37,38], where most of the genes are connected to a small
number of other genes forming small groups of com-

Table 3: P-values comparing power by different methods.

ρ True π0 BY SampG.q SampS.q SampG.m SampS.m

Data-B 0.3 0.9 3.71E-17 1.10E-04 1.06E-04 2.06E-02 8.37E-03

0.8 2.74E-31 3.93E-05 2.97E-05 1.94E-03 5.58E-04

0.7 7.82E-34 7.72E-08 2.57E-08 3.20E-07 1.09E-07

0.6 4.48E-48 8.31E-12 9.01E-12 2.78E-12 5.55E-13

0.5 0.9 1.67E-08 4.95E-03 3.35E-03 3.73E-02 7.94E-03

0.8 1.06E-13 7.70E-04 6.05E-06 4.06E-02 9.28E-04

0.7 6.42E-15 2.14E-03 1.12E-04 1.60E-02 2.37E-03

0.6 1.28E-17 5.55E-04 1.77E-06 2.99E-03 1.41E-04

0.7 0.9 9.89E-03 8.65E-02 4.81E-02 6.76E-02 5.24E-02

0.8 4.72E-06 2.38E-02 1.11E-02 2.89E-02 1.73E-02

0.7 2.65E-08 1.53E-01 7.25E-03 2.85E-01 5.92E-02

0.6 1.73E-06 1.19E-01 2.52E-02 1.25E-01 5.93E-02

Data-M 0.9 1.77E-53 9.78E-05 1.00E-06 3.66E-03 1.37E-05

0.8 1.69E-62 3.05E-06 2.16E-10 3.52E-04 7.14E-08

0.7 1.53E-74 5.27E-03 4.66E-08 3.86E-01 6.87E-03

0.6 2.37E-80 2.05E-04 3.42E-10 2.49E-01 1.34E-05

The actual power in gene selections across the 100 simulations under each configuration by these methods was compared to that of q-value 
method using one-tail paired t-statistics.

Table 4: Percentage in decrease of mean FDR

ρ True π0 BYa SampG.qb SampS.qc SampG.md SampS.me

Data-B 0.3 0.9 84.13% 2.19% 3.00% 1.99% 2.05%

0.8 90.03% 5.54% 5.60% 4.04% 4.33%

0.7 87.04% 7.64% 8.27% 7.44% 7.84%

0.6 91.59% 6.82% 6.72% 7.09% 7.45%

0.5 0.9 92.89% 4.51% 8.51% 1.83% 6.39%

0.8 92.87% 7.68% 9.73% 3.90% 7.66%

0.7 95.09% 6.79% 11.63% 3.01% 8.24%

0.6 94.24% 8.49% 13.26% 4.34% 8.82%

0.7 0.9 96.62% 19.79% 35.22% 18.30% 25.52%

0.8 97.03% 28.32% 40.86% 26.00% 32.72%

0.7 96.15% 17.09% 35.83% 14.98% 23.57%

0.6 97.80% 20.12% 36.47% 15.41% 27.46%

Data-M 0.9 94.87% 10.25% 14.66% 7.00% 14.70%

0.8 93.11% 7.87% 19.48% 6.33% 11.38%

0.7 93.50% 4.60% 12.11% 0.15% 5.96%

0.6 94.18% 6.35% 14.16% 1.85% 8.70%

a (FDRqvalue - FDRBY)/FDRqvalue
b (FDRqvalue - FDRSampG.q)/FDRqvalue
c (FDRqvalue - FDRSampS.q)/FDRqvalue
d (FDRqvalue - FDRSampG.m)/FDRqvalue
e (FDRqvalue - FDRSampS.m)/FDRqvalue
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plexes, while some "hub" genes may be connected to large
number of peripheral genes. The distribution of connec-
tivity degree (the number of genes being connected to a
given gene) decreases with a power-law, which is much
slower than the exponential decay expected in a random
network [36]. These gene-gene interactions may be
reflected by co-regulation or correlation in expression
under certain conditions, and the possible scale of gene

interaction is unlimited given the scale free structure.
Therefore, large scale correlation of gene expression levels
is not surprising in microarray studies.

We have shown in our simulated study that with the
growth of correlation structures, the p-value distribution
of H0 genes increasingly deviates from a typical uniform
distribution. This may influence the estimation of π0 and

Table 5: Percentage in decrease of mean power

ρ True π0 BYa SampG.qb SampS.qc SampG.md SampS.me

Data-B 0.3 0.9 48.57% 4.45% 3.93% 3.38% 3.54%

0.8 41.43% 1.96% 2.06% 1.58% 1.79%

0.7 36.81% 1.89% 2.01% 2.30% 2.42%

0.6 34.73% 1.58% 1.63% 2.00% 2.18%

0.5 0.9 18.21% 0.47% 0.52% 0.40% 0.51%

0.8 11.02% 0.28% 0.46% 0.16% 0.34%

0.7 10.55% 0.26% 0.36% 0.21% 0.28%

0.6 10.38% 0.33% 0.57% 0.36% 0.53%

0.7 0.9 5.67% 0.34% 0.52% 0.38% 0.54%

0.8 5.73% 0.83% 1.21% 0.98% 1.15%

0.7 7.91% 0.14% 0.49% 0.09% 0.31%

0.6 4.40% 0.16% 0.41% 0.21% 0.35%

Data-M 0.9 11.85% 0.36% 0.53% 0.27% 0.53%

0.8 9.50% 0.19% 0.36% 0.17% 0.36%

0.7 7.99% 0.09% 0.23% 0.01% 0.12%

0.6 7.76% 0.08% 0.19% 0.02% 0.15%

a (Powerqvalue - PowerBY)/Powerqvalue
b (Powerqvalue - PowerSampG.q)/Powerqvalue
c (Powerqvalue - PowerSampS.q)/Powerqvalue
e (Powerqvalue - PowerSampG.m)/Powerqvalue
f (Powerqvalue - PowerSampS.m)/Powerqvalue

Scatter plot of π0 estimated by q-value method versus the 3 quartiles by SampG, SampS and bootstrapping p-valuesFigure 7
Scatter plot of π0 estimated by q-value method versus the 3 quartiles by SampG, SampS and bootstrapping p-
values. X-axis represents the π0 estimated by q-value method on the 100 Data-M simulations, and y-axis represents the 1st, 2nd 

and 3rd quartiles of π0 estimated by SampG, SampS method and the bootstrapped p-values, in the 3 plots respectively. Circles 
are the 3rd quartile of estimation, triangles are the median and diamonds are the 1st quartile. The lines in the images are the 45 
degree diagonal line and the horizontal line corresponds to the true π0 which equals to 0.7. We used q-value plug-in for SampG 
and SampS in this figure.
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the following statistical inferences. The effect of strong
correlation was also discussed by other researchers [14].
To solve this problem, we proposed the SampS and
SampG methods. These algorithms replaced the unbiased
but unstable π0 estimation step in the q-value method
with a model averaging procedure of re-sampling samples
or furthermore re-sampling independently for each gene
to partially break the correlations between genes. Strong
correlation between genes will inevitably increase the var-
iation of the π0 estimation, even though the variation
could be partially smoothed by the re-sampling strategies
proposed in this paper. Therefore, it is necessary to com-
promise between safety and efficiency; in this case, we
would like to shrink the estimation toward 1 from an
unbiased estimation to guarantee a strong control of FDR.
That is why we used the upper quartile instead of the
median of the re-sampling estimations, although medians
had a smaller MSE in estimating π0 in our simulated stud-
ies. We showed in our simulations that these plug-in revi-
sions, compared to the q-value method, can greatly reduce
the variation of the π0 estimation under strong gene-gene
correlations, and enhance the performance of FDR con-
trol by reducing false discovery rate up to 40% with a
reduction of power less than 1% compared to q-value
method.

In our study, to create datasets with a known proportion
of true null hypotheses while still having a similar corre-
lation structure to that in actual microarray datasets, we
developed 2 strategies to generate simulated datasets. The
first one, Data-B, is simply a block-wise structure with
arbitrary block size and intra-block correlation, but inde-
pendent between blocks. When the block size was small,
this was similar to the "clumpy" hypothesis [22]. When
the block size became bigger, we showed that the correla-
tions influenced the π0 estimation, and the re-sampling
strategies we proposed improved the performance of gene
selection by significantly reducing the FDR with a minor
reduction of power. To mimic a more realistic scenario,
we also developed the Data-M strategy to generate simu-
lated data from actual microarray datasets by arbitrarily
permuting a given proportion of the genes. This permuta-
tion breaks the correlation between arbitrarily assigned
differentially and non-differentially expressed genes, but
maintains the correlation within the 2 groups of genes.

Conclusion
The SampS and SampG methods we proposed and tested
in this paper are simple revisions, but they greatly
improved the π0 estimations. The same approach using
independent re-samples of expression values to estimate
the π0 and then using the upper quartile of the re-sam-
pling estimations in FDR control, could be applied to
other FDR algorithms in data where strong correlation
between hypotheses exists. In this paper we considered

the typical 2-sample comparison problem with a reasona-
ble number of independent replicates. For more complex
problems, such as time-course studies, the SampG
method (re-sample gene expression values independently
for each gene) may not be able to be applied directly with-
out a reasonable number of replicates in each time point,
but the SampS method (re-sample samples) may be appli-
cable if there is sound reason to assume the existence of
stationary time patterns in the biological system under
investigation.

Availability and requirements
The R code of SampG and SampS methods, and R code to
generate simulated data sets Data-B and Data-M, is
included as Additional file 1.

Requirements: R environment.

Operating systems: Windows XP or Linux.

License: free.
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