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Abstract

We present a novel approach to non-rigid structure from
motion (NRSFM) from an orthographic video sequence,
based on a new interpretation of the problem. Existing ap-
proaches assume the object shape space is well-modeled by
a linear subspace. Our approach only assumes that small
neighborhoods of shapes are well-modeled with a linear
subspace. This constrains the shapes to belong to a man-
ifold of dimensionality equal to the number of degrees of
freedom of the object. After showing that the problem is
still overconstrained, we present a solution composed of a
novel initialization algorithm, followed by a robust exten-
sion of the Locally Smooth Manifold Learning algorithm
tailored to the NRSFM problem. We finally present some
test cases where the linear basis method fails (and is ac-
tually not meant to work) while the proposed approach is
successful.

1. Introduction
In this paper, we place ourselves in the Tomasi-Kanade

paradigm: features are fully tracked on a unique unknown
object in an orthographic video sequence and only their 2D
positions are known. We focus on the general problem
where the object is non-rigid. The goal is to recover the
3D positions of the observed features over time: this is or-
thographic Non-rigid Structure From Motion or NRSFM.

In traditional NRSFM [21], a deforming object is as-
sumed to adopt 3D shapes explainable by a linear combi-
nation of basis shapes. While this method can be compu-
tationally efficient and well suited to common objects of
study (e.g. faces), there is no reason to believe that the pos-
sible 3D shapes of an object lie on a linear low-dimensional
manifold (cf .Figure 1).

If we relax this assumption by assuming that only small
neighborhoods of shapes are well-represented by a linear
subspace, the set of possible 3D shapes can now be de-
scribed as a smooth and low-dimensional manifold. Also,
as a local neighborhood contains the different instances of

Figure 1. State of the art in non-rigid structure from motion as-
sumes that a deformable 3D shape can be expressed as a linear
combination of basis shapes. While this is a well-studied [3] and
convenient assumption (e.g. for faces), there is no reason to be-
lieve that the manifold of the possible shapes of an object is lin-
ear (e.g., as we will discover further, it is highly non-linear for a
Slinky R©/spring toy). In this work, the only constraint imposed on
the 3D shape manifold is its dimensionality.

how a 3D shape can deform, its dimensionality (and there-
fore, that of the manifold) is the number of degrees of free-
dom of the object. In this work, the only constraint imposed
on the shape manifold is its dimensionality.

By moving away from the linear basis interpretation and
adopting a manifold-learning framework to constrain the
number of degrees of freedom of a deforming object, we
can model more complex types of deformation and demon-
strate success in cases where existing techniques fail.

The proposed method first relies on a new initialization
that quantizes the non-rigidity into a temporal succession of
rigid shapes. An optimization then follows to minimize at
the same time the reprojection error as well as constraints on
the smoothness of the 3D shape deformations. A constraint
on the shape manifold dimensionality is also enforced to
make sure the recovered 3D shapes have a given number of
degrees of freedom.

After reviewing previous work in Section 2, we will de-
tail our problem formulation in Section 3 and the corre-
sponding solution in Section 4. Finally, in Section 5, weak-
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nesses of the current state of the art and performances of the
proposed approach will be highlighted on synthetic and real
data.

2. Previous Work

References here are restricted to the general non-
parametric case; hand-designed models are out of the scope
of this paper.

Modern structure from motion started with the study of
a rigid object under orthographic camera [18]. It was then
extended to the projective case [16], multiple bodies [4] and
articulated bodies [25]. The study of the orthographic non-
rigid case started with [2, 21] and was then extended to the
projective case [24, 11, 22].

Several NRSFM techniques have then improved their
accuracy and efficiency by combining them with the fea-
ture tracker [21, 5], using a statistical model on top [19],
including noise models [20] and even proving theoretical
limitations [9].

Usually, these techniques are initialized by assuming that
the observed object is globally rigid [10]. They are then op-
timized assuming a planar shape manifold model [1]. As
this assumption is unreasonable for more complex types
of deformations, we will need a more powerful manifold
learning technique. Recent development in this area in-
clude kernel-PCA [13], LLE [12], ISOMAP [17], and more
recently MVU [23]. Locally Smooth Manifold Learning or
LSML [6] specifically meets our needs as it focuses on the
manifold tangents, and hence its degrees of freedom, rather
the manifold itself.

3. Problem

In our setup, n features are tracked over f frame under
an orthographic camera: their 2D projected positions are
known and can be stacked in f 2×nmatricesWt (t indexes
time). The problem consists of recovering the 3D positions
of these features (stacked in a 3 × n shape matrix St at
each frame) as well as the camera position: rotation Rt +
translation tt.

These different parameters are obtained as a solution of
the following reprojection error minimization:

arg min
Rt,t,St

f∑
t=1

‖Π (RtSt + Tt)−Wt‖2F (1)

where Tt = t1> and Π is the known projection matrix of a
calibrated orthographic camera.

As this equation is severely underconstrained, some as-
sumptions need to be made.

Camera Motion

First, we assume the camera motion is smooth: the camera
position does not change much from one frame to the next.
Therefore, we add two regularization terms to Equation (1):

λR

f∑
t=2

‖Rt −Rt−1‖2F + λt

f∑
t=2

‖tt − tt−1‖2F (2)

where λR and λt are regularization constants.

Smooth Deformation

Next, another valid assumption is that the observed object
does not change much from one frame to the next: this is
also a physical constraint that is usually assumed by the
feature tracker prior to SFM. Hence a new term is added
to Equation (1):

λS

f∑
t=2

‖St − St−1‖22 (3)

where λS is another regularization constant. Higher order
smoothness terms could be used, but this one proved suffi-
cient for all our experiments.

Degrees of Freedom

While previous methods only allow for linear deformations,
the proposed approach only constrains the shape deforma-
tion to have at most d degrees of freedom, hence allowing
for non-linear deformations. This means that all the possi-
ble shapes St lie on a d-dimensional manifold or that, lo-
cally, several nearby shapes lie on a d-dimensional linear
subspace. We will make this constraint explicit in Section
4.2.

Complete Problem Formulation

Our problem can now be re-formulated as the following op-
timization:

min
Rt,t,St

f∑
t=0

‖Π (RtSt + Tt)−Wt‖2F +λS

f∑
t=2

‖St − St−1‖2F

+ λR

f∑
t=2

‖Rt −Rt−1‖2F + λt

f∑
t=2

‖tt − tt−1‖2F

(4)

with the St’s constrained to lie on a d-dimensional mani-
fold.



Ambiguities

In SFM problems, there is usually an overall rigid ambigu-
ity on the camera position. In our formulation, if the 3D
shapes are modified by an overall rigid transform (R, t),
we obtain the following new unknowns: S′t = RSt + t,
R′t = RtR

> and t′t = tt−R′tt. AsRtSt +Tt = R′tS
′
t +T ′t ,

the first term of Equation (4) will not change. As the
Frobenius norm is rotation-invariant, the terms 2 and 3
will also be unchanged. Nonetheless, the last term be-
comes:

∥∥t′t − t′t−1

∥∥
2

=
∥∥tt − tt−1 − (R′t −R′t−1)t

∥∥
2
6=

‖tt − tt−1‖2 except if t = 0.
Therefore, with our formulation, there is only a global

rotation ambiguity, that we resolve by imposing R1 = I3.
Also, the third component of the tt’s only matters in the

last term of Equation (4) and a trivial optimum is reached
by setting them to the same value. This arbitrary value is an
ambiguity inherent to the orthographic model.

Over-Constrained Problem

We must recover 3f camera rotation angles, 2f camera
translation parameters (2 and not 3, as there is a depth am-
biguity with orthographic cameras) and 3n × f 3D shape
parameters. On the other hand, 2n×f coordinates are given
in the Wt matrices.

A d-dimensional linear subspace is parametrizable by
a point and a basis of d elements, each of size 3n. The
point can be chosen anywhere in the subspace and therefore
has 3n − d degrees of freedom. Also, the basis only has
3nd − d2 degrees of freedom. The subspace can therefore
be explained with 3n − d + 3nd − d2 = (d + 1)(3n − d)
parameters.

In our formulation, the shapes lie on a d-dimensional
manifold, and locally on a d-dimensional linear subspace.
Therefore, if the data is uniformly distributed on the man-
ifold, there exists a neighborhood size s such that ev-
ery neighborhood of s shapes approximately lies on a
d-dimensional linear subspace. Consequently, every s-
neighborhood can be explained by s linear combinations
and a d-dimensional subspace. As a result, each frame can
be explained, on average, by 1

s (sd + (d + 1)(3n − d)) =
d+ 1

s (d+ 1)(3n− d) parameters.
As shown in Table 1, our model requires more param-

eters than traditional SFM techniques but it is still over-
constrained provided 5f + fd+ f

s (d+ 1)(3n− d) < 2nf
or again:

5 + d+
1
s

(d+ 1)(3n− d) < 2n (5)

To give a sense of magnitude, we can assume that usu-
ally, d < 10 and n > 100. Therefore, the inequality can be
approximated by s & 1.5(d + 1). Practically, this implies

Rigid Classical
NRSFM

Proposed
NRSFM

camera 3f + 2f
basis    (d+ 1)(3n− d) (((

shape 3n d
d+ 1

s (d+
1)(3n− d)

total 5f+3n 5f + fd+ (d+
1)(3n− d)

5f +fd+ f
s (d+

1)(3n− d)
Table 1. Number of parameters defining the model in rigid SFM,
traditional Non-Rigid SFM, and the proposed approach (all in the
orthographic case). This statistics concerns a sequence of f frames
with n features whose shape lie on a d-dimensional subspace (d =
0 in the rigid case). s is such that every s neighboring shapes
constitute a linear subspace.

that the observed shapes have to appear in similar configu-
rations at least 1.5(d+ 1) times (similar but not necessarily
exact: our approach does not require a perfect repetitiveness
of the motion).

4. Method
4.1. Initialization

In order to minimize Equation (4), several techniques
will be used including a partial closed-form solution, gra-
dient descent and manifold denoising. The system is ini-
tialized by assuming that the object can be modeled at any
frame as a rigid transformation of one of a collection of
shape templates.

Hypergraph Interpretation

We first cluster the shapes St. We assume that if St and St′

are in the same cluster, they are derived from different rigid
transformations of the same shape template and the corre-
sponding reprojection error errtt′ is computed. We can then
interpret the video sequence as a graph whose nodes are the
frames and whose edges are weighted with the following
reprojection affinity:

wtt′ = e
−

err2tt′
σ2

An affinity close to 0 means the two 3D shapes are not
in the same state. On the other hand, if it close to 1, it can
indicate either a similar state, or an ambiguity due to a view
point that “hides” the shape differences.

In order to disambiguate these cases, we compute higher
order affinities using the reprojection error of triplets of
frames using [18]. This method is known to be more stable
than epipolar geometry but is also more expensive. There-
fore, only pairs of frames that already have a high pairwise
epipolar-based affinity are considered to form triplets.



Figure 2. NRSFM is initialized by a Rigid Shape Chain. First of all, pairs and triplets of frames of the original video sequence are extracted.
Each pair or triplet is then assumed to be projections of the same 3D view: the corresponding reprojection error is computed and used to
define an affinity matrix/affinity tensor (only triplet composed of pairs with high affinities are considered for efficiency, hence the missing
data in the image). These are then combined into a hypergraph that is flattened and clustered using clique expansion and normalized cut.
The resulting clusters represent prototypical 3D shapes and they are then aligned to create a first estimate of the St’s.

Once these dyadic and triadic affinities have been com-
puted, we obtain a hypergraph with dyadic and triadic con-
nections. In order to cluster the object shapes, the hyper-
graph is approximated by a graph using clique expansion
[14].

Rigid Shape Chain

In order to deal with noise and outliers and to lower the di-
mensionality of the initialization, quantization is performed
on the frames by separating them into clusters of equivalent
3D shape. To this end, a simpleK-way clustering is applied
using normalized cuts [15] to the previously defined frame
affinity graph. K is chosen as the biggest number of clus-
ters such that no cluster has less than 3 frames (in practice,
K was between 10 and 30 for a 200-frame sequence).

Next, each cluster Ci is considered and its corresponding
3D shape Si, i = 1, . . . ,K is computed (using [18]).

The resulting clustering is an initialization that actually
explains the observed non-rigidity by a succession of rigid
problems. We name this approach a Rigid Shape Chain
(cf .Figure 2).

Initial Shape Alignment

The shapes obtained so far have been computed without re-
gard to any deformation smoothness. This smoothness is
enforced by applying a rigid transform (Ri,Ti) to the Si’s
in order to minimize the following temporal smoothness cri-
terion:

min
(Ri,Ti)

f∑
t=2

∥∥∥Ri(t)Si(t) + Ti(t) −Ri(t−1)Si(t−1) −Ti(t−1)
∥∥∥2

F

(6)
where i : t 7→ i|St ∈ Ci. This minimization is simply a
continuous version of the exterior orientation problem [7].
It can be solved by least squares optimization with random

initialization and rotation constraints on the Ri’s. In prac-
tice, we found that finding the closed form solution of the
problem with no rotation constraints, and then projecting it
onto SO(3) [8] gave very good and fast results. The ad-
vantage of this approach is that it can rectify 3D shapes that
have been flipped because of the possible chirality ambigu-
ities appearing during the rigid shape chain.

Finally, the Ri(t)Si(t) + Ti(t) are set to be the initial
estimates of the St’s (modulo a global rotation to ensure
that R1 = I3).

4.2. Minimization

After initialization, we obtain a reasonable approxima-
tion of the shapes and camera positions over time. The min-
imization of Equation (4) proceeds by alternating between
the different unknowns, assuming the others are fixed.

Optimizing Camera Positions

If the St’s and Rt’s are fixed, finding a global optimum to
Equation (4) with respect to t is trivial: it is the closed form
solution of a sparse linear system.

Concerning the Rt’s, the global optimum is as trivial,
provided they are not constrained to be rotation matrices.
In practice, we compute this global optimum and project it
to SO(3). If the result lowers the error, it is kept. Oth-
erwise, we perform a projection-based gradient descent (at
every step of gradient descent, the result is reprojected onto
SO(3)).

LSML

When performing optimization on the St’s, there are two
criteria to take into account: the smoothness term in Equa-
tion (4) and the shape manifold dimensionality constraint.
Optimizing the first one is just a least square optimization,
but the second one needs a new interpretation.



The problem of imposing this dimensionality constraint
can be seen as trying to force the St to lie on a d-
dimensional manifold (as previously defined, d is the num-
ber of freedom of the observed object). After initialization,
the St’s are close to this manifold but are not on it: it is as
if they formed a noisy low-dimensional manifold. As men-
tioned earlier, we have no reason to believe that this mani-
fold is planar or isometric to a plane, hence our motivation
for using LSML [6].

LSML is a manifold learning technique that seeks to
learn from training data a smooth mapping from every point
on the manifold to its local tangents. Consider:

M : Rd → RD

y 7→ x

a smooth mapping from a low d-dimensional space to a
higher D-dimensional space (e.g. y is the coordinate on a
manifold of a high dimensional point x), d � D. LSML
seeks to recover the mapping:

H :
RD → RD×d

x 7→
[
∂/∂y1M(y) . . . ∂/∂ydM(y)

]
whereM(y) = x and y =

[
y1 . . . yd

]> ∈ Rd.
The strength of this technique is that the mapping is not

only learned for the training points but, by continuity, it is
applicable to any new given point in RD.

LSML can also learn H from noisy data and then de-
noise it by making the points follow the gradient of an op-
timization criterion detailed in [6]. It is important to notice
that LSML is limited to noise orthogonal to the manifold
and cannot deal with collinear noise.

At each of our optimization steps, LSML is used to learn
the manifold of noisy St’s and recover the gradient for the
LSML noise criterion.

Optimizing 3D Shapes

Optimizing the St’s now needs to take two criteria into ac-
count - the one from Equation (4) and the one from LSML-
and we have computed an optimization gradient for both,
which we define as ∇Smooth and ∇LSML. It is an instance
of multi-objective optimization. As, we do not want one of
the constraints to be enforced more and impede the other,
we decide not to use a weighted linear combination of the
two criteria or a Lagrangian multiplier: we keep the con-
straints separate and and optimize them at the same time
using multi-level programming to favor the dimensionality
contraint.

Instead of using our two gradients as they are, we keep
∇LSML responsible for any variation orthogonal to the shape
manifold but only restrict ∇Smooth to its projection ∇⊥Smooth
onto a plane tangent to ∇LSML: this way, ∇⊥Smooth does not

Figure 3. Two gradients are involved when optimizing the St’s.
First, there is a gradient ∇LSML provided by LSML that tends to
bring a noisy St back onto the shape manifold (but that is only
orthogonal to it). Then, there is a gradient ∇Smooth that minimizes
the smoothness of the shape deformation. In order not to inter-
fere with the LSML gradient, only its component orthogonal to
∇LSML is considered: ∇⊥Smooth. A linear combination of these two
gradients is then searched to optimize the two criteria at the same
time.

interfere with any effect of ∇LSML. Figure 3 illustrates this
approach.

What follows is a gradient descent step following the
gradient: ∇ = a∇LSML + b∇⊥Smooth, where a and b are cho-
sen so that both criteria are optimized at the same time.

Outliers

As LSML is not robust to outliers, special care is taken for
any 3D shape that does not comply to the two following
criteria:

• the distance to one of its neighbors is above three stan-
dard deviations (of the distribution of distances from
points to their neighbors)

• the distance to its temporal predecessor is above three
standard deviations.

These points are simply optimized by disregarding the man-
ifold dimensionality constraint and by assigning them to
their globally optimal value (which can be obtained in
closed form, in a similar way as the tt’s).

Considerations

Each iteration of our optimization routine attains a lower er-
ror for Equation (4) that in the previous one, so it is bound to
converge. In our experiments, we did not need to repeat the
optimization (which could have been useful as it contains
randomized algorithms such as Normalized Cut or LSML)
but we faced a slow convergence (100 to 200 iterations were
required).



(a) Frame Example (b) Reconstruction Performance (c) Reconstruction Examples (respectively PCA, CSFM, MSFM)

Figure 4. Roller Coaster. Figure 4(a) is a typical frame from the sequence. The black square refers to the first point of the coaster. Overall,
the coaster loops 6 times. Figure 4(b) illustrates the performances of the different algorithms the percentage error refers to the average
reconstruction error along the camera depth axis, normalized by the depth of the roller coaster as in [20]). PCA on the 3D points beats
MSFM when the basis contains at least 6 elements which shows that the structure is not easily representable by a linear basis. Figure 4(c)
shows examples of reconstruction for PCA (with 5 shapes in the basis), CSFM (with 4 shapes in the basis) and MSFM. The corner of the
roller coaster presented a challenge for PCA to capture even with a bigger basis.

Also, most of the steps described previously take a few
seconds to compute except for the triadic affinity computa-
tion and the St gradient descent involving LSML. Indeed,
for each iteration, LSML needs to be retrained which can
take up to a few minutes leading to an overall time of an
hour or two.

5. Experiments
We experimented our method on both synthetic and real

data. These experiments show the flexibility of our ap-
proach and its robustness as well as comparisons with state
of the art (using code from [20]). We will refer to this Clas-
sical NR-SFM method as CSFM while we name ours Man-
ifold Structure From Motion or MSFM.

5.1. Synthetic Data
Roller Coaster

The first data set is a synthetic roller coaster. The video
sequence consists of 200 frames with 42 points moving on
a fixed closed track. As seen on Figure 4(a), it looks like
a closed roller coaster or a bent bike chain. The camera
rotates around the object while it deforms. Both the object
and the camera evolve at random speeds (no translation is
involved for the camera).

This motion only has one degree of freedom as the points
have to move along a fixed structure. Nonetheless, this mo-
tion causes problem for CSFM because it is not easily rep-
resentable by a linear basis (for comparison, we show how
hard it is for PCA to characterize the data given the full 3D
points in Figure 4(b)). Also, the object does not have a main
component that could be considered as rigid and be used as
initialization for CSFM.

CSFM seems to fail in this case while MSFM only has
1.2% of error (the computed error is similar to [20] and de-
tailed in Figure 4). Figure 4(b) also shows an interesting
limitation of using a linear basis: as its focus is to minimize

the reprojection error at any cost, more elements in the ba-
sis can help lowering it but at the cost of getting a worse 3D
reconstruction.

It is also worth mentioning that the sequence of recov-
ered St is also moving on itself (in addition to its intrinsic
one degree of freedom): this is due to the fact that this opti-
mizes the overall smoothness.

Bending Shark

The next experiment uses the shark data from [20]. It con-
sists of 240 frames during which 91 points form a shark
that bends its tail left/right or up/down (hence 2 degrees of
freedom). In [19], they obtain errors of 1.24% and 2.5%.
With our setup, we obtain 3%, which is comparable to their
second best method. Several details are shown in Figure 5

5.2. Real Data

The final round of experiments involves a calibrated
video sequence of a Slinky R© toy: this spring has a complex
motion but, in this instance, only one degree of freedom.
27 painted features were tracked during a 300 frame long
video sequence. There are approximately three periods of
up/down movement that occur.

This data set is difficult for two reasons: the feature tra-
jectories are noisy and the baseline between two extreme
views is small. MSFM reconstructed a 1D-manifold of the
different 3D-shapes with an average reprojection error of
1.4%. Examples are illustrated in Figure 6. CSFM fails in
this case as the object does not have a main rigid part and be-
cause it undergoes non-linear deformations (like compres-
sion).

6. Conclusion
In this paper, we have presented a new approach to non-

rigid structure from motion by focusing primarily on how to
exploitconstraints on the degrees of freedom of the observed



(a) MSFM Initialization

(b) New Views

Figure 5. Bending Shark. Figure 5(a) illustrates the initial camera position estimation after the rigid shape chain computation. The ground
truth camera movement of the camera is a view from below first followed by a full rotation around the shark. There are of course a few
outliers but the overall camera trajectory is already well approximated. Figure 5(b) shows two reconstructions of the shark sequence. In
the right image, the camera was pointing down leading to a lower quality reconstruction because of the depth ambiguity.

(a) Some Frames of the Slinky Sequence

(b) MSFM Reconstruction

Figure 6. Slinky. Figure 6(a) shows a few frames of the slinky sequence with some tracked features. The lines are just drawn to help
visualize the 3D structure in the reconstruction Figure 6(b). These three frames demonstrate the compression the object undergoes: this
property is difficult for a linear basis to model, even in 2D, hence the failure of CSFM. On the other hand, MSFM seems to recover correct
3D feature positions: the structure contains compression and seems to have a correct orientation.



object. By interpreting the d.o.f.’s as the dimensionality of
the shape manifold, the problem boils down to performing
manifold recovery and, by actually providing a good initial-
ization via a rigid shape chain, it is an instance of manifold
denoising.

Our method seems more intuitive and we also showed
it is more flexible than a shape basis interpretation. Future
work will include a better integration of LSML and anal-
ysis of the recovered shape manifold. Finally, the current
initialization is still valid in the projective case but the min-
imization needs to be adapted.
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