
Re-weighted Adversarial Adaptation Network for Unsupervised Domain

Adaptation

Qingchao Chen ∗1 Yang Liu ∗2 Zhaowen Wang 3 Ian Wassell 2 Kevin Chetty1

1 University College London 2 University of Cambridge 3 Adobe Research

{qingchao.chen.13, k.chetty}@ucl.ac.uk {yl504, ijw24}@cam.ac.uk zhawang@adobe.com

Abstract

Unsupervised Domain Adaptation (UDA) aims to trans-

fer domain knowledge from existing well-defined tasks to

new ones where labels are unavailable. In the real-world

applications, as the domain (task) discrepancies are usu-

ally uncontrollable, it is significantly motivated to match

the feature distributions even if the domain discrepancies

are disparate. Additionally, as no label is available in the

target domain, how to successfully adapt the classifier from

the source to the target domain still remains an open ques-

tion. In this paper, we propose the Re-weighted Adversarial

Adaptation Network (RAAN) to reduce the feature distribu-

tion divergence and adapt the classifier when domain dis-

crepancies are disparate. Specifically, to alleviate the need

of common supports in matching the feature distribution,

we choose to minimize optimal transport (OT) based Earth-

Mover (EM) distance and reformulate it to a minimax ob-

jective function. Utilizing this, RAAN can be trained in an

end-to-end and adversarial manner. To further adapt the

classifier, we propose to match the label distribution and

embed it into the adversarial training. Finally, after ex-

tensive evaluation of our method using UDA datasets of

varying difficulty, RAAN achieved the state-of-the-art re-

sults and outperformed other methods by a large margin

when the domain shifts are disparate.

1. Introduction

Recent developments in Deep Neural Networks (DNN)

have yielded state-of-the-art results from supervised learn-

ing applications in computer vision [11][35][19]. However,

the success of DNN requires a large amount of well anno-

tated training data which is not always feasible to perform

manually. Therefore, this has acted as a driver to transfer

knowledge from datasets for which labels are well-defined.

The Domain Adaptation (DA) problem [33] was proposed

in this context where the data distribution between the tar-

∗indicates equal contributions.

get domain (a few of labels are available) and the source

domain (well-annotated labels) varies so that the discrimi-

native features and the classifiers in the source domain can-

not be transferred to the target domain[33][41]. Under this

regime, unsupervised domain adaptation (UDA) is the most

challenging problem where no label information in the tar-

get domain is available. To successfully conduct adaptation

between domains in UDA, two essential problems are re-

quired to be addressed, including matching the feature dis-

tribution and adapting the classifier from source to target

domains.

Since DNN based methods exhibit strong capac-

ity to extract transferable feature representations among

datasets, research has been conducted investigating mea-

surements to estimate distribution divergence of deep fea-

tures among domains and the relevant methods to min-

imize them. As an un-biased estimate of distribution

divergence, Maximum Mean Discrepancy (MMD) [16]

has been employed in various DNN based methods for

UDA [23][26][27][38][42][39]. More recently, inspired

by the best-performing adversarial training in genera-

tive models, the state-of-the-art UDA methods utilize the

Jenson-Shannon (JS) divergence or the more generalized

f-divergence [32] implemented using DNN to estimate the

distribution divergence[12] [13] [37] [22] [4].

However, both the MMD and f-divergence based meth-

ods require that feature distributions of the source and target

domain share a common support. We argue that this is an

unrealistic condition which can rarely be met in the real-

world adaptation tasks, since the domain discrepancies are

caused by a variety of factors that are difficult to control

[8], such as light conditions, acquisition devices or even

from different image formats e.g., RGB and HHA. From

this point of view, these methods fail to adapt between do-

mains once their distributions do not have significant over-

lap. More recently, to alleviate the need of a common sup-

port in UDA, optimal transport (OT) based methods have

been proposed to match the source and target feature distri-

butions by minimizing the global transportation efforts [9]

[8]. However, OT based methods have not been formalized
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and embedded into an end-to-end pipeline to train DNNs,

which limits its application to large-scale UDA problems.

In UDA, besides selecting a good divergence measure

of the marginal feature distribution, it is essential to adapt

the classifier between domains. Long et.al [25][26] and

Courty.et.al both [8] proposed to match the joint distribu-

tion of feature and label by regarding the transductive fea-

tures from the final layer’s activation map of the DNN as

an approximation of the target domain labels. In fact, how

to match the feature distribution and meanwhile adapt the

classifier is still an open question in UDA.

In this paper, we propose a Re-weighted Adversarial

Adaptation Network (RAAN) for UDA to reduce disparate

domain discrepancies and adapt the classifier. More specif-

ically, there are two main contributions:

1. To match feature distributions when domains discrep-

ancies are disparate, we train a domain discriminator

network together with the conventional deep convolu-

tional neural network (DCNN) in an adversarial man-

ner to minimize the OT based EM distance. Compared

with other methods adopting geometry-oblivious mea-

sures, RAAN can better reduce large feature distribu-

tion divergence.

2. To help adapt the classifier in UDA, we propose

to match the label distribution by estimating a re-

weighted source domain label distribution so that it can

be similar to the unknown target label distribution. In

addition, we embed it into the procedure of minimiz-

ing the EM distance during the end-to-end adversarial

training procedure. This not only adapts the classifier

but also helps match the marginal feature distribution.

Finally, our proposed RAAN is evaluated by conducting a

series of experiments using datasets with different domain

distribution divergence.

2. Related Work

In this section, we review the state-of-the-art methods in

reducing the domain distribution divergence for the UDA

problem.

2.1. Matching Feature Distribution using Adversar­
ial Training

JS-divergence based methods are the best-performing

techniques for measuring the divergence of feature distribu-

tions in deep adaptation networks [22] [37] [4]. Although

it is not a new statistical measure, the JS divergence or

the f-divergence loss is implemented by a mini-batch ap-

proach in the DNN trained in an adversarial manner [32]

[15]. DANN [13] may be the first to add a domain classi-

fier, with the aim of extracting not only discriminative fea-

tures for the main classification task, but also indistinguish-

able ones for the domain classifiers. The adversarial loss of

Figure 1. RAAN’s architecture: first, in the source domain, the

DCNN Ts and the classifier CLS are trained to extract discrimi-

native features from images xs labeled by ys by minimizing the

cross entropy loss LCE . Second, to adapt the classifier by match-

ing the label distribution between domains, the re-weighted source

domain label distribution PRe(Y s) is computed by transforming

a variable α using the soft-max function. Then it is straightfor-

ward to obtain the ratio vector as follows: β = P
Re(Y s)

Ps(Y s)
. To

extract transferable features for target domain images xt, the tar-

get domain DCNN Tt, domain discriminator D and the estimated

density ratio vector β play the following adversarial game: β and

D tries to discriminate whether features is from the target or source

domain, while Tt tries to confuse D and β.

DANN is implemented by directly maximizing the domain

classification loss and reversing the gradient in the back-

propagation. DRCN [14] utilized the same approach but

added another loss function to minimize the reconstruction

error of the data samples between domains. More recently,

ADDA [37] designed two separate discriminative networks

(one for each domain) to extract useful features for the main

classification task. The domain discriminator network is

added so that the target network and the domain discrim-

inator network can compete with each other until the target

and source domain features cannot be distinguished.

Inspired by the good performance of adversarial train-

ing in generative models, some methods generate new im-

ages that are transferable in both domains. Co-GAN [22]

may be the first to design two Generative Adversarial Nets

(GANs) to generate diverse images for both source and

target domain. Although Co-GAN achieved good perfor-

mance in adapting domains having a small discrepancy, it

cannot work well when the domain shifts are disparate [37].

In contrast to Co-GAN, the pixel-level domain adaptation

network (pixelDA) proposed in [4] uses one generative net-

work to generate images indistinguishable from source and

target domains. In addition, constraints on pixel level simi-

larity between the generated and source images are utilized.

In fact, the ability of generative model based methods for

UDA having large discrepancy is still under investigation.
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2.2. Matching Feature Distribution using OT

The most closely related approach to ours for reducing

the distribution divergence is through solving the OT di-

rectly, as described in [9][8]. However, this implementation

has not been included into the end-to-end learning frame-

work and only the stand-alone De-Caffe features [11] from

the DANN network are used. Instead, RAAN utilizes the

domain discriminator network with the objective of mini-

mizing the dual formulation of the Earth-Mover(EM) dis-

tance. From this perspective, the Wasserstein GAN [2] [17]

is a special case to minimize the dual of EM distance, how-

ever, their ultimate goal is to generate the images. To the

best of author’s knowledge, RAAN may be the first to learn

domain invariant features for UDA utilizing the OT based

EM distance in a DNN. Note that the concurrent work [34]

also adopted the EM distance as the divergence measure-

ment in UDA, however, we are handling the more general-

ized scenario with unbalanced datasets.

2.3. Instance Re­weighting Scheme

The instance re-weighting scheme is well documented

in the literature [7] [43], for example in the instance re-

weighting of the bias in the discriminative models [42], or

in the causal inference regime [44]. In DNN based methods

for UDA, Yan.et.al [42] recently proposed to learn the bias

of the source domain instances by the classification expec-

tation maximization (CEM) algorithms using the MMD as

the divergence measure[6].

In contrast, RAAN differs from [42] as the instance re-

weighting is achieved by estimating the density ratio vector

of label distributions between domains. Specifically, the es-

timation of the density ratio vector is embedded into the

adversarial training via back-propagation. Finally, we also

argue and explain why matching the label distribution helps

to adapt the classifier in UDA.

3. Model

First, we introduce the notation and formulate our prob-

lem. Suppose we are given a ncls-class source domain set

Ds = {(xs
i , y

s
i )}

ns

i=1 including ns images xs
i labeled by

ysi and an unlabelled ncls-class target domain set Dt =
{(xt

j)}
nt

j=1 composed of nt images xt
j . The random vari-

ables representing the image and label in general are de-

noted as X and Y . As illustrated in Figure 1, RAAN is

composed of three networks, specifically two conventional

L-layer DCNNs Ts and Tt and a domain discriminator net-

work D.

The first objective of RAAN is to adapt the classifier,

which is difficult without the target domain labels. How-

ever, as the label is a low-dimensional and discrete variable,

it is fairly straightforward to match between domains and

we argue that this can assist with the adaptation of clas-

sifiers (see reasons in section 3.2). With this intuition, a

re-weighted source domain label distribution PRe(Y s) is

obtained by mapping a variable α ∈ R
ncls by the soft-

max function. Then estimation of α aims to ensure that

PRe(Y s) is similar to the unknown target one P t(Y t).
Consequently, the density ratio vector can be denoted as

β ∈ R
ncls , with its (ys)

th
element β(ys) calculated by

β(ys) = PRe(Y s=ys)
P s(Y s=ys) . As β can be directly computed

based on α, in the following paper, we regard β as the vari-

able under estimate.

The second objective of RAAN is to learn the do-

main invariant transformations Ts and Tt so that the dis-

parate divergence between marginal feature distributions

P t(T l=L
t (Xt)) and P s(T l=L

s (Xs)) is reduced. For

brevity, we denote Tt and Ts to replace T l=L
t and T l=L

s re-

spectively in the following. Given the images and labels in

the source domain {xs, ys} ∈ Ds, with the aim of extract-

ing discriminative features Ts(x
s) for the classification, it is

straight-forward to train the classifier CLS and Ts by min-

imizing the cross-entropy loss LCE as follows:

min
Ts,CLS

LCE . (1)

To obtain transferable features Tt(x
t) without labels, Tt

is trained by playing an adversarial game with the domain

discriminator network D and the ratio vector β so that the

divergence between the re-weighted feature distribution in

the source domain β(ys)P s(Ts(x
s)) and the target domain

P t(Tt(x
t)) is reduced. Additionally, to better reduce the di-

vergence between disparate domains, the OT-based EM dis-

tance is reformulated in the adversarial manner, with more

details shown in section 3.1. Specifically, RAAN is trained

in the following adversarial manner, where D with the help

of β aims to discriminate whether features are from source

or target domain, while Tt tries to confuse them. Based on

the discriminator loss LRe
adv , the following objective func-

tion can be obtained:

min
Tt

max
D,β

LRe
adv. (2)

In fact, besides helping the adaptation of the classifier,

matching the label distributions also eases the difficulty

of matching the marginal feature distribution. The pos-

sible reason may be: if we assume that the feature gen-

eration processes are the same between domains, that is

P s(T s(Xs)|Y s) = P t(T t(Xt)|Y t), then PRe(Y s) =
P t(Y t) helps match the marginal feature distributions

P s(T s(Xs)) = P t(T t(Xt)).
In section 3.1, to match the marginal feature distribu-

tions between domains, an OT based EM distance is intro-

duced and implemented in an adversarial manner in RAAN.

Then in section 3.2, we propose to match label distributions

between domains and embed it in the adversarial training.
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We also explain why this helps to adapt the classifier and

meanwhile to match marginal feature distributions. Finally

in section 3.3, we formulate the final objective function of

RAAN.

3.1. Optimal Transport in Adversarial Training

Suppose that the empirical distributions of source and

target domain features are denoted as µs and µt respec-

tively as follows:

µs =

ns
∑

i

psi δTs(xs
i
),µ

t =

nt
∑

j

ptjδTt(xt
j
) (3)

where δTs(xs
i
) and δTt(xt

j
) are the Dirac functions at loca-

tion Ts(x
s
i ) and Tt(x

t
j) and psi and ptj are their probability

masses. Then, the joint probabilistic coupling, or the trans-

portation plan between feature distributions in source and

target domains can be defined as γ with the marginals µs

and µt. In the discrete version, the set of probabilistic cou-

plings B can be defined as the following:

B =
{

γ ∈ (R+)ns×nt |γ1nt
= µs,γT

1ns
= µt

}

[9].
(4)

In general, to reduce feature distribution divergence, OT

based methods first estimate the optimal transportation plan

between two distributions and then learn the feature trans-

formation to minimize the cost of such a plan. Therefore,

we first define the metric J(µs,µt) in equation (5) to mea-

sure the total cost of transporting probability masses from

target to source domains,

J(µs,µt) = 〈 γ,C〉F , with γ ∈ B, (5)

where C is the distance matrix whose (i, j)th element is

defined by the distance cost function c(Ts(x
s
i ), Tt(x

t
j)) be-

tween features. The (i, j)th element γ(i, j) indicates how

much mass is moved from Tt(x
t
j) to Ts(x

s
i ), and F is the

Frobenius dot product. Subsequently for brevity, we drop

the index i, j to represent xs
i ,x

t
j as xs,xt. After that, the

OT γ0 can be estimated by minimizing the cost J(µs,µt)
in equation (6), with the optimal transportation cost or the

well-known EM distance defined by W (µs,µt) in equation

(7) [20]. Finally, assuming the ideal source domain features

Ts(x
s) are available, to learn the transferable features in

target domains, it is intuitive to train the DCNN transforma-

tion Tt under the objective of minimizing the EM distance

W (µs,µt), as shown in (8).

γ0 = argmin
γ∈B

J(µs,µt)[9] (6)

W (µs,µt) = min
γ∈B

J(µs,µt) (7)

min
Tt

W (µs,µt) (8)

To avoid using linear programs or iterative algorithms to

compute the constraint of γ in equation (4), the dual for-

mulation of W (µs,µt) is utilized in equation (9) and (10)

(following equation(5.3) in [40]), considering the capability

of batch-wise back-propagation in DNN. More specifically,

we use the domain discriminator network D and its variant

D̂ as two dual functions in the following:

W (µs,µt) = max
D D̂

Ladv, where

Ladv = E
xs∼P s(Xs)

D(Ts(x
s)) + E

xt∼P t(Xt)
D̂(Tt(x

t))

(9)

s.t.D(Ts(x
s)) + D̂(Tt(x

t)) ≤ c(Ts(x
s), Tt(x

t)). (10)

In this paper, we choose the following distance cost func-

tion c(Ts(x
s), Tt(x

t)) = ‖Ts(x
s) − Tt(x

t)‖ for reasons

of computational efficiency and permitting gradient mea-

surements, however, this does not infer that it is the only

function that could be selected. According to the con-

straint (10), the best function that D̂ has to be is −D, as

c(Ts(x
s), Tt(x

t)) is defined to be non-negative. In this way,

the constraint in (10) is equivalent to ensuring that D is a

1-Lipschitz function, or alternatively its gradient norm is

smaller than 1. Therefore, if we use (9) and (10) in (8) to

replace the EM distance, the DCNN transformation Tt and

the domain discriminator network D can be trained based

on the mini-max objective function in (11),

min
Tt

W (µs,µt) = min
Tt

max
D

Ladv, where

Ladv =
∑

(xs,ys)∼P s(X,Y s)

D(Ts(x
s))P s(Ts(x

s)|ys)P s(ys)

− E
xt∼P t(Xt)

D(Tt(x
t))

s.t.‖ ▽Tt(xt) D(Tt(x
t))‖2 ≤ 1,

‖ ▽Ts(xs) D(Ts(x
s))‖2 ≤ 1. (11)

3.2. Adapting the Classifier by Label Distribution
Matching

Although OT based EM distance is utilized to match fea-

ture distributions P s(Ts(X
s)) and P t(Tt(X

t)), we argue

that it is not enough to successfully adapt the classifier from

source to target domain, since P s(Ts(X
s)) = P t(Tt(X

t))
does not infer P s(Y s|Ts(X

s)) = P t(Y t|Tt(X
t)).

However, according to Bayes rule in (12), instead

of matching P t(Y t|Tt(X
t)) and P s(Y s|Ts(X

s)) di-

rectly, we can learn Tt under the objective of matching

P s(Ts(X
s)|Y s)P s(Y s) and P t(Tt(X

t)|Y t)P t(Y t).

P (T (X)|Y )P (Y ) ∝ P (Y |T (X)). (12)

In fact, as no label information in the target domain

P t(Y t) is available, it is non-trivial to directly match
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P t(Tt(X
t)|Y t)P t(Y t) and P s(Ts(X

s)|Y s)P s(Y s).
However, as the label is a low-dimensional and discrete

variable whose distribution is well-defined, it is more

straightforward to match label distributions between do-

mains compared with its conditional variant. Therefore, we

take a step back and propose to estimate the re-weighted

source domain label distribution PRe(Y s) so that it is

similar to the unknown P t(Y t) in the target domain.

In fact, we argue that matching the label distributions

between two domains can also help the adaptation of the

classifier, because at least part of P t(Tt(X
t)|Y t)P t(Y t)

and P s(Ts(X
s)|Y s)PRe(Y s) is matched. Based on such

an assumption, since the EM-distance has been adopted

to match P t(Tt(X
t) and P s(Ts(X

s), we propose to

embed the re-weighted label distribution PRe(Y s) into the

procedure of matching the marginal feature distribution

P s(Ts(X
s)) and P t(Tt(X

t)) in the adversarial training.

To estimate the re-weighted label distribution PRe(Y s),
the following constraint should be considered:

ncls
∑

i=1

PRe(Y s = yi) = 1, (13)

where, yi indicates the label of the ith class. However, this

constraint has already been considered in the implementa-

tion using the softmax function.

Finally, to estimate the re-weighted label distribution, if

we directly replace the P s(Y s) by PRe(Y s) in the mini-

max objective function Ladv in (11), a new one LRe
adv is ob-

tained in (14), where the network D, Tt and the ratio vector

β are trained in the following manner: D and β are trained

in a cooperative way to estimate the EM-distance, while

Tt is trained to minimize the EM-distance. From the per-

spective of implementation, β can be regarded as assigning

different significance to images xs in the source domain,

so that the mini-batches in the two domains are sampled

from similar distributions, which helps D and Tt to focus

on matching P s(Ts(x
s)) and P t(Tt(x

t)).

min
Tt

max
D,β

LRe
adv, where

LRe
adv =

∑

(xs,ys)∼P s(Xs,Y s)

D(Ts(x
s))P s(Ts(x

s)|ys)PRe(ys)

− E
xt∼P t(Xt)

D(Tt(x
t))

=
∑

(xs,ys)∼P s(Xs,Y s)

D(Ts(x
s))P s(Ts(x

s)|ys)β(ys)P s(ys)

− E
xt∼P t(Xt)

D(Tt(x
t))

= E
(xs,ys)∼P s(Xs,Y s)

β(ys)D(Ts(x
s))− E

xt∼P t(Xt)
D(Tt(x

t))

s.t.‖ ▽Tt(xt) D(Tt(x
t))‖2 ≤ 1,

‖ ▽Ts(xs) D(Ts(x
s))‖2 ≤ 1. (14)

Figure 2. DA datasets: (a) four hand-written digit datasets; (b)

cross-modality dataset including RGB and RGB-depth images.

3.3. Optimization in RAAN

As shown in Figure 1, RAAN is proposed to jointly min-

imize the cross entropy loss of the source domain samples

and to reduce the divergence of the extracted feature distri-

butions. First, we define the empirical estimate of the loss

function LRe
adv as follows:

LRe
adv =

1

ns

ns
∑

i=1

D(β(ysi )Ts(x
s
i ))−

1

nt

nt
∑

j=1

D(Tt(x
t
j)).

(15)

Following on from the idea of controlling the 1-Lipschitz

function of the domain discriminator network D [17], we

explicitly constrain the gradient norm penalty term as fol-

lows:

Lgp = ‖ ▽
T̂ (x̂) L

Re
adv − 1‖2, (16)

where T̂ (x̂) is the weighted interpolation samples of Tt(x
t)

and Ts(x
s). In summary, the total objective function in

RAAN is formulated in the following adversarial manner:

min
Tt,D,β

− LRe
adv + λgpLgp + λreg‖β‖2, (17)

min
Tt

−
1

nt

nt
∑

j=1

D(Tt(x
t
j)), (18)

min
Ts,CLS

1

ns

ns
∑

i=1

LCE(CLS(Ts(x
s
i )), y

s
i ), (19)

where LCE(CLS(Ts(x
s
i )), y

s
i ) indicates the cross-entropy

function with classifier CLS, feature vector Ts(x
s
i ) and

its label ysi . Note that to train the networks stably, the

source domain DCNN Ts is trained first while Tt and D are

trained to match the feature distributions between Tt(x
t)

and Ts(x
s) in an adversarial manner. In addition, to stably

learn the ratio vector, we add the L2-norm of β as the regu-

larization term in (17). λgp and λreg indicate the regulariza-

tion weights of the gradient penalty term and the L2-norm

of the ratio vector respectively.

4. Experiment and Results

In this section, RAAN is evaluated in two UDA tasks,

specifically one between hand-written digit datasets and
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the other between cross-modality datasets. For all the ex-

periments, RAAN achieves competitive results compared

with the state-of-the-art methods and outperforms them by

a large margin when the distribution divergence is large be-

tween domains.

4.1. Adaptation Tasks and Dataset

The first UDA task adapts between four hand written

digit datasets including MNIST[21], USPS [10], SVHN

[31] and MNIST-M [12]. As shown in Figure 2, adap-

tation between these four datasets are of varying diffi-

culty. MNIST and USPS are both composed of grey-scale

images in a fairly well-controlled environment while im-

ages in MNIST-M are synthesized using the patches from

BSDS500 dataset [1] as the background and the MNIST

images as the foreground. To evaluate RAAN in reduc-

ing large domain discrepancies, SVHN is also explored

which is composed of RGB images in more complicated

real-world scenarios, e.g, misalignment of images and dif-

ferent light conditions. In addition, note that the sub-class

instances between SVHN and the others are largely unbal-

anced.

To continue evaluating RAAN in reducing large domain

shifts, the second adaptation task is designed using the

NYU-D dataset [30], adapting from the indoor object im-

ages in RGB format to the depth variants encoded by the

HHA format[18]. The 19-class dataset is extracted follow-

ing the scheme in [37]. As shown in Figure 2, the domain

shifts between images of RGB and HHA format are fairly

large, mainly due to the low image resolutions and poten-

tial mis-alignments caused by the coarse cropping box. In

addition, as shown in the instance number in Table 4, this

dataset has unbalanced sub-class instances. Furthermore, it

is challenging as the images from the target domain are in

a completely different format from those in the source do-

main.

4.2. Adaptation in Hand­Written Digit Dataset

For the task of adapting between hand written digit

datasets, the following four adaptation directions are cho-

sen for the evaluation: from MNIST to USPS, from USPS

to MNIST, from SVHN to MNIST and from MNIST to

MNIST-M. For the first three adaptation tasks, we adopt a

variant of LeNet as network Ts, Tt and the domain discrim-

inator network D is composed of three fully-connected lay-

ers activated by the rectified linear unit (ReLU) with output

activation numbers of 512,512,1 respectively. For adapting

from MNIST to MNIST-M, we adopt the basic model archi-

tecture of pixelDA but change their domain discriminator

network to an OT-based objective function and embed the

ratio vector β. As for the experiment protocols, we utilized

the one in [24] for adapting between MNIST and USPS,

while for adaptation from SVHN to MNIST, we choose that

in [37]. The protocol used for adapting from MNIST to

MNIST-M is the same as that in [4] to permit fair compar-

isons.

To assess the reasons underlying RAAN’s performance,

we denote RAAN(+) and RAAN(-) as RAAN with and

without the re-weighting scheme respectively. As shown in

Table 1, when adapting between MNIST and USPS, com-

pared with ADDA and Co-GAN, the proposed RAAN(-)

and RAAN(+) achieved competitive results and RAAN(+)

slightly outperforms RAAN(-). In the most difficult

task, i.e., adapting from SVHN to MNIST, RAAN(-) and

RAAN(+) achieved 80.7% and 89.1% respectively, outper-

forming the state-of-the-art ADDA by 4.7% and 13.1% re-

spectively, while Co-GAN does not converge in this exper-

iment. It seems that the weight-sharing approach utilized in

Co-GAN is not capable of generating transferable images

between disparate domains such as MNIST and SVHN. As

RAAN(-) utilized the same DCNN architecture to ADDA’s,

RAAN(-)’s superior performance is mainly owing to the

OT based objective function. We hypothesize that the OT

based objective function is able to better reduce feature dis-

tribution divergence when the domains are disparate, e.g.,

SVHN and MNIST. In addition, based on the fact that

RAAN(+) achieves superior performances to both ADDA

and RAAN(-), we hypothesize that matching the label dis-

tribution helps adapt the classifiers, and embedding it into

minimizing the EM distance of feature distributions can be

regarded as two cooperative tasks.

For adaption from MNIST to MNIST-M, as shown in

Table 2, RAAN achieves slightly better performance than

pixelDA. In addition, as expected RAAN(-) and RAAN(+)

achieve similar results since the label distribution of the two

domains are quite similar. Although it has been argued that

domain shift between MNIST and MNIST-M is large for

a conventional DCNN based method[13], we argue that re-

ducing the domain shift caused by the background images in

MNIST-M is easier than reducing the one between MNIST

and SVHN if a generative model is utilized. The possible

reason may be that the domain shifts led by background

patches in MNIST-M exhibit fewer details and variations

than the one caused by the complex real-world variations

present in SVHN. In addition, we argue that the adversarial

training based generative model is good at generating such

background patches. These consideration may suggest and

explain the slight outperformance achieved by RAAN in

this task, compared with RAAN’s large improvement when

adapting from SVHN to MNIST.

4.3. Adaptation in Cross­modality Dataset

In this section, RAAN is evaluated in the presence of

large domain shifts that confront the adaptation from RGB

images to RGB-depth images. To enable a fair comparison,

we follow ADDA’s experimental set-up [37] and utilized
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Table 1. Recognition rates of adapting hand-written digit datasets; RAAN(+) and RAAN(-) indicate with and without the re-weighting

scheme.

Methods MNIST to USPS USPS to MNIST SVHN to MNIST

Source Only 0.725 0.612 0.593

Gradient Reversal[13] 0.771 0.730 0.739

Domain Confusion [38] 0.791 0.665 0.681

Co-GAN[22] 0.912 0.891 No Converge

ADDA [37] 0.894 0.901 0.760

RAAN(-)(Ours) 0.883 0.915 0.807

RAAN(+)(Ours) 0.89 0.921 0.892

Table 2. Recognition rates of adapting from MNIST to MNIST-M; RAAN(+) and RAAN(-) indicate with and without re-weighting scheme

Dataset Source Only[4] CORAL[36] MMD[4] DANN [13] DSN [5] PixelDA[4] RAAN(+)/(-)(Ours)

MNIST to MNIST-M 0.636 0.577 0.769 0.774 0.832 0.982 0.985

Table 3. A-Distance of Adversarial Training Method

Metric Source ADDA RAAN(-) RAAN(+)

Only

A-Distance 1.673 1.548 1.526 1.506

the VGG-16 architecture [35] for DCNNs Ts and Tt. The

domain discriminator network D is composed of three fully-

connected layers activated by the Relu, with 1024,2048,1

outputs respectively.

As shown in Table 4, we report the sub-class classifica-

tion accuracy achieved by RAAN(-) and RAAN(+), along

with the re-weighted label distribution PRe(Y s) yielded

by RAAN(+) and the target one P t(Y t). It can be ob-

served from the overall recognition rates that RAAN(+)

achieves an average of 34.3%, outperforming ADDA by

6.7% and RAAN(-) by 3.5%. In addition, RAAN(-) out-

performs ADDA by 3.2%. For classes with less samples,

RAAN(+) and RAAN(-) achieve better performances than

ADDA. In fact, ADDA only achieved better performance in

class ’chair’ as that class has the largest number of samples.

It can also be seen that RAAN(+) outperforms RAAN(-)

not only from the overall recognition accuracy but also from

how many classes the classifier can recognize (classes with

the recognition rates more than 0%). This is potentially

due to the fact that the re-weighting scheme increases the

significance of instances from the sub-classes with a lower

number of instances. This can be verified by comparing the

number of sub-class instances with the estimated ratio vec-

tor β in Table 4.

4.4. Parameter Selection and Implementation

The experiments are conducted on a GPU clus-

ter. For all experiments, we utilize the Adam opti-

mizer, with the learning rate selected from the following

set:{2e−5, 5e−5, 1e−4, 2e−4, 5e−4, 1e−3}. For the regular-

ization weights, λgp and λreg are chosen from the following

sets {1, 10, 50, 100} and {0.1, 1, 10, 50, 100, 500} respec-

tively. We used the exponential decay, with decay factor of

0.99 for every 1000 iterations. All experiments are run 10
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Figure 3. Ratio of label distribution between SVHN and MNIST;

red line indicates the ground truth ratio, while blue one indicates

the estimated ratio.

times, each for 100000 iterations and we report the average

results. For adapting from MNIST to MNIST-M, the batch

size is 32 while for others, the batch size is 128.

5. Analysis

In this section, we analyze the results presented in the

previous sections, including the re-weighting scheme in ad-

versarial training and the domain distribution divergence in

both quantitative and qualitative ways. The evaluation is in

the context of the most challenging scenario, which involves

adapting from the SVHN to the MNIST.

5.1. Evaluate the Re­weighting Scheme

In Figure 3, we evaluate the re-weighting scheme by

comparing the ground truth label ratio vector (red) and the

learned one (blue). It can be seen that some ratios are accu-

rate while others are not. However, the relative ratio trend

of the learned ratio vector β follows that of the ground truth.

As the label distributions between SVHN and MNIST

are largely mismatched, it will confuse the domain discrim-

inator and the feature distributions will be matched in a bi-

ased manner. In addition, the mismatch of label distribu-

tion will directly give rise to the mismatch of classifiers as

well. However, as shown in Figure 3, RAAN(+) success-

fully matches the distribution of labels by simply learning
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Table 4. Adaptation results in cross-modality dataset; RAAN(+) and RAAN(-) indicate with and without re-weighting scheme
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ADDA 0.000 0.469 0.000 0.005 0.762 0.194 0.016 0.519 0.040 0.018 0.007 0.000 0.000 0.083 0.000 0.062 0.138 0.000 0.000 0.276
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Figure 4. T-SNE plot of features when adapting from SVHN to MNIST; (a) No adaptation (b) Adaptation after ADDA (c) Adaptation after

RAAN. We randomly select 1000 features samples from 10 classes, with 100 samples per class.

the ratio vector embedded in the adversarial training. There-

fore, this can be regarded as the main reason for the 9% im-

provement achieved by RAAN(+) compared to RAAN(-)

shown in Table 1. To sum up, matching the label distribu-

tion can better adapt the classifiers.

To understand the instance re-weighting scheme intu-

itively, it is implemented by assigning different significance

to source domain instances. For example, as shown in Fig-

ure 3, the learned ratio of digit “0” is around 1.5, which

means that in the adversarial training, each sample from

digit “0” in SVHN dataset can be regarded as 1.5 samples.

5.2. Evaluate Distribution Divergence of Feature
Embeddings

To analyze the distribution divergence in a quantitative

way, we calculate the A distance suggested by the UDA

community [3] [29], taking the input features extracted by

various methods. Using the SVM classifier, we first calcu-

late the generalization error θ of classifying the source and

target domain features as a binary classification task. Then

the A distance can be calculated as follows: d = 2(1− 2θ).
As shown in the Table 3, the A distances of feature em-

beddings with no adaptation, adapted by ADDA, OT based

RAAN(-) and RAAN(+) progressively decrease. In the ex-

periment, since RAAN uses the same DCNN architecture

as ADDA’s, compared with ADDA, the lower A distance

achieved by RAAN(-) infers that feature distribution be-

tween domains can be better matched using RAAN(-). This

may be due to the fact that the OT based EM distance

is a better measure to reduce large distribution divergence

than the geometry-oblivious JS divergence. In addition,

compared to RAAN(-), the smaller A distance achieved by

RAAN(+) indicates that matching the label distribution and

the feature distribution are two cooperative tasks and this

cooperative training may be the main reason for the lower

A distance.

Finally, to measure the feature distribution divergence in

a qualitative way, we utilized the T-SNE software package

[28] to visualize the 2-D embedding of the extracted fea-

tures. It can be seen in Figure 4 that the example points

from the same class adapted by RAAN in Figure 4(c) are

clustered closer than those in Figure 4(b) by ADDA and

also those without the adaptation method in Figure 4(a).

6. Conclusions

In this paper, we propose a Re-weighted Adversarial

Adaptation Network (RAAN) to reduce disparate domain

feature distribution and adapt the classifier. Through an

extensive set of experiments using various UDA datasets,

RAAN outperforms state-of-the-art methods by a large

margin when the domain distribution divergence is large.

Therefore we argue that the OT based objective function in

the adversarial training exhibits better properties to match

distributions when they share less common support. In ad-

dition, embedding the estimation of the ratio vector into the

adversarial training is capable of matching the label distri-

bution between domains and further adapting the classifier.

It is also shown that this scheme can help reduce feature

distribution divergence.
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