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Summary 17 

 18 

The earliest studies of collective animal behaviour were inspired by and conducted in 19 

the wild. Over the past decades much of the research in this field has shifted to the 20 

laboratory, combining high-resolution tracking of individuals with mathematical 21 

simulations or agent-based models. Today we are beginning to see a ‘re-wilding’ of 22 

collective behaviour thanks to technological advances, providing researchers with the 23 

opportunity to quantify and model the heterogeneity that exists within the social 24 

groupings they study, and within the environments in which these groups live. The 25 

perspective we present here aims to inspire and steer this research toward answering 26 

fundamental and outstanding behavioural and ecological questions, while also 27 

tackling pertinent conservation challenges. 28 

 29 

 30 

 31 

 32 

 33 

 34 

Trends 35 

 36 

The field of collective animal behaviour is transforming. 37 

Continuous behavioural tracking in the wild affords an ecological perspective. 38 

Collective behaviour can be studied in the environment in which it has evolved and is 39 

maintained.  40 
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Introduction to collective behaviour 41 

 42 

How and why do animals form groups? The structure and functioning of animal aggregations 43 

have long intrigued scholars. Indeed, pivotal work by Nikolaas Tinbergen, Konrad Lorenz, 44 

and Karl von Frisch conducted during the last century won them a Nobel Prize (1973) for 45 

investigations of the “organization and elicitation of individual and social behaviour patterns” 46 

[1]. Their work, which included von Frisch’s discovery that bees use a type of “dance” to 47 

facilitate collective decisions [2], became the bedrock of studies of animal behaviour and 48 

ethology, and in particular, studies of differences in group structure and patterns of social 49 

relationships within and across species. Moving forward from these early descriptions, the 50 

past several decades have brought us a long way towards understanding the form and 51 

function of social interactions, resulting in the vibrant research field of collective animal 52 

behaviour (see glossary).   53 

 54 

In this article we give a brief history of collective behaviour research and provide an overview 55 

of the state-of-the-art in this fast-developing field, highlighting some of the major gaps in our 56 

current understanding. We then introduce technological advances in bio-logging (see 57 

glossary) and new methods for remote environmental monitoring which enable us to gather 58 

high-resolution behavioural and ecological data in the wild, with a focus on vertebrates. We 59 

suggest that these new tools allow researchers to embrace and model the heterogeneity 60 

(see glossary) in their study systems [3] and to study collective behaviours in the social and 61 

ecological environments in which they have evolved and are maintained [4]. We thus expect 62 

to see a “re-wilding” of collective behaviour research. We end by proposing key behavioural 63 

and ecological questions and pertinent conservation challenges that we can address in the 64 

near future by combining wild and laboratory studies of collective animal behaviour.   65 
 66 

A brief history of collective behaviour research  67 

 68 

Research in collective animal behaviour tends to adopt a self-organisation (see glossary) 69 

perspective, with investigations of how global-level collective behaviours emerge from local 70 

interactions (see glossary) among individuals [5]. The majority of this work is informed by 71 

laboratory experiments which tend to combine high-resolution tracking of individuals [6], 72 

mathematical simulations or agent-based models of self-organising (see glossary) groups [7] 73 

(Figure 1). These works have provided a mechanistic and predictive understanding of the 74 

behaviour, structure, and performance of animal groups. For example, research on ant 75 

colonies has shown how simple rules (see glossary) of interaction among individuals can 76 

generate spatial structures in their societies which are critical to their organisation and 77 

decision-making [8-11]. Similarly, research with shoaling or schooling fish has uncovered the 78 

behavioural rules fish use to coordinate their motion [12-14] and make collective decisions 79 

about features of their environment [15-17].  80 
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Glossary Box 81 

 82 

bio-logger: an electronic device attached on or in an animal providing data about that 83 

animal   84 
collective behaviour: the coordination of individuals’ behaviour in space and time  85 

flexibility: capacity for an individual’s behaviour or a collective’s behaviour to be modified to 86 

respond to altered circumstance 87 
global properties: group (or population) level dynamics that result from individual 88 

behaviours 89 
heterogeneity: social units or the environment being composed of parts (individuals, 90 

habitats, etc.) of different kinds 91 
keystone individuals: individuals that have a large effect on other group members’ 92 

behaviours and/or the overall group dynamics 93 

local interactions: interactions among individuals within a limited distance and/or range of 94 

each other 95 

robustness: ability of an individual’s or a collective’s behaviour to remain stable following 96 

perturbations 97 
self-organization: order at a global level arising from local interactions among individuals  98 

 99 

 100 
Figure 1. Collective animal behaviour research cycle. Almost all collective behaviour 101 

research is related directly or indirectly to mathematical models, and Sumpter et al. [18] 102 

explain how regular movement back and forth between mathematical models, experimental 103 

data and statistical fitting can provide a comprehensive understanding of how interactions 104 

between individuals produce group level patterns. Based on observations of global patterns, 105 

researchers use theory-driven approaches to try to replicate group-level dynamics. In 106 

contrast, individual-level observations can be used to produce data-driven models to quantify 107 

the response of individuals observed in experiments. Both approaches are complementary 108 

(and are also not distinct as portrayed here), tending to rely on simple local rules, such as 109 

the individual being submitted to a zone of attraction (zr), a zone of orientation (zo) and a 110 

zone of repulsion (zr) ([19] as depicted) to produce model outputs. These model outputs can 111 

then be compared to each other, and the original or new observations, to quantify how 112 

closely each model approximates the real data [20].  113 
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 114 

Realism and heterogeneity 115 

 116 

Early studies of the mechanisms of coordination in animal groups depicted individuals as 117 

essentially identical units: from Reynolds’ “boids” [21] to Ballerini and colleagues’ starlings 118 

[22], neither simulations nor analyses of real data accounted for potential individual 119 

heterogeneity (see glossary) among group members. This was due partly to the field 120 

showing (as yet) little interest in such heterogeneity, but also to the difficulties in quantifying 121 

individual variation in animal collectives that are often composed of thousands of individuals.  122 

 123 

Constructing groups of (real or simulated) animals to study collective behaviours can ignore 124 

the very inter-individual differences – such as age, sex, reproductive or physiological state, 125 

social dominance, kin relations, personality, knowledge, or experience – which can result in 126 

differentiated social roles that can function to improve individual and group success [3]. For 127 

instance, inter-individual differences in flight speed, knowledge, personality and experience 128 

shape the collective dynamics of homing pigeons (Columba livia) (Box 1). Similarly, lab 129 

experiments with shoaling fish have shown personality differences can influence the 130 

structure of and movement dynamics within and between groups [23], but also that the 131 

influence of individual personality types can be context-specific [24]. Together, these 132 

empirical examples indicate how selection can drive behavioural differentiation between 133 

individuals within animal collectives [3].  134 

 135 

Quantification and representation of heterogeneity in the environment (as opposed to within-136 

groups as discussed above) has also been lacking. Research undertaken in the laboratory is 137 

typically optimised for the requirements of data collection (e.g. short periods of filming and 138 

subsequent tracking [6]) and wild studies tend to be restricted to short time periods or 139 

specific locations and/or contexts because of methodological constraints [22, 25, 26]. The 140 

challenge has therefore been for researchers to incorporate greater realism into their studies 141 

(Box 2). Where simple environmental heterogeneity has been introduced in laboratory 142 

experiments, their impact has been profound. For instance, studying fish under varying light 143 

conditions (dark and light patches varied in space and time) led to the discovery of emergent 144 

sensing in fish schools [27].  145 

 146 

By bringing greater realism to the social and physical environments of animal collectives, 147 

researchers can better understand both the mechanism and function of the behavioural rules 148 

and emergent patterns identified. Clever experiments with an evolvable simulation of small 149 

prey that were ‘preyed upon’ by a bluegill sunfish [28] show how this can be achieved. 150 

Researchers were able to observe how group formation and specific individual interaction 151 

rules can provide collectives with anti-predatory benefits. Embedding animals in such 152 

reactive, virtual reality environments provides a fascinating new line of investigation that will 153 

afford an “evo-mecho” approach to collective animal behaviour. In the sunfish experiments 154 

the researchers were able to observe how group formation and specific individual interaction 155 

rules can provide collectives with anti-predatory benefits. In essence, this can reveal which 156 

rules “work best”. Future VR environments [29] and/or robots [30-32] can help us achieve 157 

“closed loop” experiments in which freely moving animals can be precisely perturbed or 158 

stimulated, improving our ability to probe the social patterns we observe, as well as their 159 

underlying processes. However, we maintain that it will be difficult to test if and how the rules 160 

and mechanisms uncovered are adaptive without studying real-life, wild systems over 161 

sufficient time and context [33].  162 

  163 
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BOX 1. A birds-eye view 164 

 165 

           166 
        Images: Z. Ákos 167 

 168 

Individual tagging of free-flying birds, and, in particular, the use of study systems in which 169 

individual variation can be not only quantified but also manipulated, has provided significant 170 

insights into the role of within-group heterogeneity in shaping collective dynamics. Homing 171 

pigeons (pictured) provide an experimental model especially amenable to both quantification 172 

and manipulation. These birds’ long history in studies of individual spatial cognition and 173 

navigation [34] allows models to incorporate numerous known sources of individual variation, 174 

and, crucially, to do so in collective decision-making scenarios on ecologically valid scales. 175 

For example, we know that different birds prefer to fly substantially different routes when 176 

navigating home over familiar landscapes [35] and that these differences can give rise to 177 

conflict that needs to be resolved when birds with different preferred routes are made to 178 

travel together [36]. Rather than choosing the best available route, how “stubbornly” a given 179 

bird tries to keep to its own route, even whilst flying with a partner, seems to predict 180 

leadership in pairs [37]. In larger flocks transitive leadership hierarchies emerge [38], whose 181 

temporal stability and robustness to manipulations of individual navigational knowledge [39] 182 

suggest structuring by inherent individual differences among flock members. Perhaps 183 

unexpectedly, neither social dominance [40] nor individual navigational competence [41] 184 

seem to be significant predictors of leadership. However, solo flight speed [41] and a 185 

tendency for greater exploratory behaviour [42] do: faster and “bolder” birds are significantly 186 

more likely to assume higher leadership ranks. In combination, variation in these traits 187 

provides a simple and elegant link between individual heterogeneity and the organisation of 188 

collective movement. Similar mechanisms have now also been identified in fish [23], and 189 

confirmed to explain multiple aspects of collective functioning. Interestingly, the observation 190 

that there can exist feedback between leadership and the individual traits that structure it 191 

(such as knowledge gained through the experience of leading reinforcing leadership [41]) 192 

opens up many new and fascinating questions about changes that collective behaviour can 193 

undergo over time. Future work will need to further explore such feedback for a longer-term 194 

perspective on collective behaviour [4], incorporating the role of learning during collective 195 

action as an additional source of individual heterogeneity.  196 

 197 

  198 
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 199 

BOX 2. A Fish-Eye Lens 200 

 201 

 202 
    Image: A. Ward.   203 

 204 

The challenge for researchers interested in the collective behaviour of shoals and schools is 205 

to incorporate greater realism to their laboratory studies and, where possible, to conduct 206 

studies in the wild. Wild studies of fish aggregations have a surprisingly long history. Sund 207 

applied echo-sounding to the study of cod shoals over 80 years ago [43], while in the 60s, 208 

Radakov filmed wild fish schools from aircraft [44]. Recent technological developments offer 209 

the tantalising prospect of building on these early advances. Improvements in camera 210 

technology now facilitate filming of fish in their natural habitat. One interesting outcome of a 211 

recent study of the collective behaviour of wild stickleback shoals [45] was the remarkable 212 

concordance between the behaviour of free-swimming shoals and shoals of the same 213 

species under the oft-criticised environs of the laboratory. Nonetheless, studies in the wild 214 

represent our best opportunity of developing a deep understanding of collective behaviour in 215 

its proper ecological context. Until recently, one obstacle has been the difficulty in tracking 216 

fish in the wild, due to problems with variable light and contrast, among other issues. The 217 

application of artificial intelligence to this problem offers a way forward, for example, the use 218 

of trainable algorithms to assist in the detection of target animals. Another challenge for 219 

studying fish in the wild is that visibility is often restricted in aquatic systems. Active acoustic 220 

techniques provide an alternative to cameras in these cases. Collective manoeuvres and 221 

information transfer within pelagic shoals and the interactions of predators and prey have 222 

been quantified using sonar and the development of techniques to effectively resolve 223 

collective responses in space and time [46-49]. As yet, acoustic techniques lack the 224 

resolution to be able to identify individuals consistently over time; however in cases where 225 

this is of particular importance, telemetry can offer an alternative solution. Reductions in the 226 

size, mass and price of tags now allows for the possibility of tracking individual fish over 227 

extended periods of time [50].     228 

  229 
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Re-wilding collective behaviour 230 

 231 

Whilst there is a long tradition of wild studies in collective behaviour research – von Frisch’s 232 

work on the collective decisions of honey bees was undertaken in the wild [2] – we have not 233 

yet been able to collect the same sorts of data that have become the norm in the lab (Figure 234 

2). For instance, we know from direct observations of primate groups that a type of 235 

“embedded leadership” can emerge from simple and local interactions [51] whereby socially 236 

connected or dominant individuals steer group activities [52, 53]. We assume that this 237 

process might result in faster collective decisions because transmission of information via 238 

central individuals will be quicker than via peripheral individuals (and possibly more accurate 239 

too, since it will pass through fewer individuals) [53]. Similarly, decision accuracy might also 240 

be enhanced since highly connected individuals tend to be dominant and/or elders which 241 

can have superior knowledge of features in their environment [54]. However, whilst 242 

correlational data from elephants (Loxodonta africana) [55], and orcas (Orcinus orca)  [56] 243 

offer some support for these ideas – because individuals in elephant herds and orca pods 244 

gain significant benefits from following older, socially important leaders – we do not yet fully 245 

understand why certain rules evolve. To achieve this, we need more and better data, 246 

adopting similar approaches to those used in the laboratory (Figure 1), but over longer time 247 

periods and in more depth [4]. Only then will researchers be afforded a fully integrated study 248 

of collective behaviour. 249 

 250 

 251 

 252 
 253 

Figure 2. Collective animal behaviour research: traditional observation techniques. (a) 254 

Observation of chacma baboon troops on foot to study collective movement and decision-255 

making [52, 57] (image: A. King); (b) Observations of orcas by boat to study leadership and 256 

collective behaviour of pods [56] (image: The Center for Whale Research). (c) Observations 257 

of wild dogs in Botswana to study the collective movement decisions of packs [58] (image: 258 

N. Jordan).  259 

 260 

Tools for re-wilding 261 

 262 

Field researchers tend to gather data on one or a few individuals at a time, or else conduct 263 

repeated scans of all individuals’ behaviour at some interval. Where animals cannot be 264 

followed, observations tend to be restricted to certain resources (e.g. water or food sources, 265 

or at sleeping locations). These are noisy and patchy data. New developments in bio-logging 266 

[59] – which use animal-attached devices to provide data on the individual’s movement, 267 

behaviour, or physiology, without the need to directly observe the animal – can enable 268 

researchers to generate wild data comparable to the “whole-system” information afforded by 269 

laboratory experiments [60] (Figure 3). Three-dimensional accelerometers and 270 

magnetometers, for instance, allow us to reconstruct not only animal movement but also 271 

behavioural states [61, 62], and global positioning systems can provide animal location with 272 

high accuracy [63, 64]. With devices and batteries getting smaller, cheaper, and more 273 

powerful, there is now a real possibility of attaching loggers to the majority or all individuals 274 

in a social group as has recently been done with baboon troops [65-68]. Similarly, high-275 

resolution sonar imaging can be used to track the motion and interactions among aquatic 276 
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organisms under water [47], and drones used to track them at the surface [69]. Imaging 277 

techniques can be used to reconstruct the 3D position and velocity of individual birds within 278 

large mobile flocks, too [70]. Note that with all the excitement of new data from these 279 

technologies, researchers must also carefully consider the ethical questions such 280 

technologies raise, related to animal capture and tagging, and disturbance to animals and 281 

habitats via drone use [71]. 282 
  283 

New tools are also available for remotely gathering environmental information. For example, 284 

with easy-to-deploy mapping drones we can capture accurate aerial imagery and generate 285 

2D maps and 3D models of research sites on demand [72]. At larger scales, remote sensing 286 

data can not only classify objects and landscapes at high resolution, but also provide 287 

estimates of environmental heterogeneity (and its ‘productivity’) [73]. In aquatic landscapes 288 

high-resolution mapping data can be generated by Autonomous Underwater Vehicles 289 

(AUVs: [74]), while in aerial landscapes, fine-scale data on variability and predictability in 290 

airflows can be mapped using an Ornithodolite (binoculars with an inbuilt laser-rangefinder, 291 

compass and inclinometer) which can provide a series of coordinates of a target to estimate 292 

groundspeed [75]. 293 

 294 

Combining bio-logging and remotely sensed data creates “individual-environment” data 295 

streams that can enable researchers not only to model interactions between individuals 296 

according to their relative positions and movements, but to also explicitly measure and 297 

explore the influence exerted by local and global heterogeneity (i.e. how individual traits, 298 

relationships between individuals, and environmental features interact to modify movement 299 

and interaction rules). For example, a recent study of wild baboons in Kenya combine bio-300 

logging data collected for a majority of individuals in a troop over a number of days together 301 

with environmental mapping [66], providing a benchmark for future wild studies of collective 302 

behaviour.  303 

 304 
A new era? 305 

 306 

What will all these complex individual-level data paired with environmental information do to 307 

advance the field of collective behaviour? Will it be worth all the effort? We think so. This 308 

new era will provide opportunity to integrate knowledge of the rich, complex, and changing 309 

environments in which social groups live with the behavioural data which are collected. The 310 

approaches we have discussed will allow for a synergy between laboratory and field 311 

experiments, providing insight into why specific rules of interaction evolved and how they are 312 

maintained, enabling better integration of function and mechanism, and therefore a platform 313 

for a more explicit comparative perspective. However, to achieve this requires a degree of 314 

restraint from researchers because it will become all too easy to gather vast datasets on the 315 

movement, behaviour, and environment of wild animal collectives. We therefore urge 316 

researchers to carefully consider (1) what the data are for, and (2) how they will be analysed. 317 

Data should be collected to allow systematic testing of hypotheses and predictions 318 

generated by researchers with good knowledge of the systems being investigated. A 319 

discussion of analytical tools requires a methodological review that is beyond the scope of 320 

this article, but we would point researchers towards new open-access analytical tools and 321 

software for storing, visualising, processing, analysing, and integrating data streams that will 322 

be crucial [e.g. 76, 77]. Below, we provide three inter-linked research themes that represent 323 

the sort of advances that will be possible (see the questions box some for more). 324 
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 325 

 326 
Figure 3. “Whole-system” information in the wild. (a) chacma baboon (Papio ursinus) 327 

wearing a F2HK.v2 baboon tracking collar pictured in (b) which can be used to create an 328 

acceleration ethogram (a catalogue of different acceleration footprints produced by different 329 

behaviour of an animal) as pictured in (c). For full details on how to build, deploy, and 330 

interpret data from the F2HK.v2 collar see [62]. (d) Represents a schematic of a baboon 331 

GPS track coloured by behaviours depicted in the acceleration ethogram and at the end of 332 

the GPS point “X” marks a location in time and space (Cape Town suburbs) for which 333 

information has been gathered on habitat types, food quality, risk of conflict with humans [78] 334 

and which has been combined with information on the average activity type performed by 335 

baboons from past data to produce a series of landscape layers in (e). The schematic in (f) 336 

shows that if multiple individuals are collared this allows for individual behaviour and 337 

positions can be recorded at each time point. In this image, the frequencies of recent 338 

interactions (e.g. spatial proximity based on GPS data or behavioural interactions based on 339 

acceleration data) are represented by line thickness. Combining these data one can 340 

investigate spatial or temporal synchrony in activities and explore variation within these as a 341 

function of the physical and/or social environment. Supplemental animation 1 provides a 342 

visualisation of how these data can be combined. 343 

 344 

Simple rules: fixed or flexible?  345 

Over the past decade, one of the major goals for collective behaviour research has been to 346 

uncover the “rules of interaction” (normally with reference to motion) used by individuals in 347 

animal groups, but even with sophisticated model selection processes, these are difficult to 348 

infer [79]. One reason for this could be that the rules might change (i.e. a fixed rule set that 349 

varies with context or a rule set that changes over time). A ‘flexible phenotype’ [80-82] is 350 

hypothesised to be a primary causal factor determining individuals’ success when dealing 351 

with uncertainty in their environment [83]. However, an infinitely flexible phenotype is not 352 

possible due to the genetic and developmental basis of species-specific traits [84] which limit 353 
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the range of possible physiological and/or behavioural responses individuals might exhibit 354 

[80]. Ecological constraints too (e.g. predation risk) can limit the types of social interaction 355 

that are possible [84]. As an alternative to flexibility, species can evolve sub-optimal, but 356 

resilient or robust phenotypes that operate well across a broad range of environments [80]. 357 

Studying social animals in the wild and collecting “whole-system” information (Figure 3), we 358 

can start to test whether these rules are flexible and/or robust (see glossary). Such 359 

characterisation will be especially important with respect to novel environmental changes 360 

and challenges caused by humans. In doing so, we can also investigate if and how 361 

interaction rules change with greater heterogeneity in systems and the environment (Figure 362 

4a). 363 

 364 

Networks and resilience  365 

All manner of collective behaviours can be represented and analysed using a network 366 

approach [85, 86], and one of the most exciting avenues for network research and collective 367 

behaviour is to link the rules of interactions (see above) to global network structure and 368 

function. If rules turn out to be flexible, then individuals in animal collectives should 369 

adaptively change their behaviour and/or restructure their social networks to maintain 370 

performance under change. If rules are robust, then individual behaviour or the resulting 371 

social networks should not drastically alter when experiencing change, but instead show 372 

temporary “dips” in performance (Figure 4b). Work on ants in the laboratory has begun to 373 

tackle such questions [87], but, as yet, we have very little idea of how wild animal networks 374 

respond when their physical or social environment is perturbed [88] (Figure 4b). However, 375 

work investigating the effect of short- and long-term differences in predation risk upon fish 376 

collective behaviours offers a useful platform from which to build [89, 90]. 377 

 378 

Keystone roles  379 

Similarly, if specific ‘keystone’ individuals are particularly important for collective animal 380 

behaviour [91, 92] and these same individuals are preferentially hunted, exploited, or 381 

exposed to risks via their own behaviour or via human activity, then this can impact on the 382 

structure and functioning of social units [93] (Figure 4c). Investigations of keystone roles and 383 

complementarity in roles within social units will offer insight for decision-makers tasked with 384 

managing the consequences of harvesting or human-wildlife conflicts. For instance, in the 385 

case of human-wildlife conflicts, if certain individuals play “keystone” roles and steer group 386 

activities, it could be more efficient to attempt to manage these individuals [78]. In the case 387 

of harvesting, research into keystone roles and collective behaviour can be employed to 388 

understand – and crucially, predict – if the removal of specific individuals will result in 389 

temporary or more permanent changes to social dynamics (Figure 4b). In extreme cases, 390 

these data and/or predictions might even help prevent catastrophic change to group stability 391 

and viability [94]. 392 

  393 
Concluding remarks 394 

 395 

The frontier of collective behaviour research is riding on a wave of technological 396 

developments, but for the field to progress and answer fundamental behavioural and 397 

ecological questions and solve challenges concerning the consequences of environmental 398 

change (Figure 4) requires technology-enhanced learning and research within a broad multi-399 

disciplinary research environment. That mouthful of a sentence requires students and 400 

researchers capable of this. Karl Popper, the famous Austrian-British philosopher said in 401 

1963: “We are not students of some subject matter, but students of problems. And problems 402 

may cut right across the borders of any subject matter or discipline.” [95]. We urge 403 

Universities and funding agencies to enable such scientific endeavour [96].  404 
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 405 
Figure 4. Environmental change and adjusted phenotypes/networks. (A) Detailed 406 

individual level data paired with environmental information will enable researchers to track 407 

individual interaction rules and resulting collective dynamics, and quantify the level of 408 

heterogeneity and social roles within their study system. We can then investigate if and how 409 

interaction rules change with greater heterogeneity in systems and the environment. (B) 410 

Schematic of social disorder (e.g. a breakdown of social hierarchy or cooperation) as a 411 

function of possible interaction (network) configurations: Stable states are indicated by the 412 

horizontal black lines, and a rapid environmental change indicated by the red comic-book 413 

style crash icon and red dashed vertical lines. Possible routes to maintaining stability: ‘a’ 414 

represents flexibility where interaction configurations adaptively change and social networks 415 

restructure. ‘b’ represents robustness where there is no significant change to interaction 416 

configurations and individuals/networks accommodate the change without any impact on 417 

social order. c represents resilience in the system. (C) Represents a case where individuals 418 

with specific behaviour (e.g. risk-takers) or morphology (e.g. big horns) die or are removed 419 

because of human impacts. For example, these individuals can be preferentially hunted or a 420 

particular exposed phenotype. If these individuals have a disproportionate influence on 421 

collective behaviours, this can alter the functioning and efficiency of social units. If such 422 

individuals play keystone roles, then the network might reconfigure (B).  423 

 424 
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