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Abstract— The emergence of wireless sensor networks has
imposed many challenges on network design such as severe
energy constraints, limited bandwidth and computing capa-
bilities. This kind of networks necessitates network protocol
architectures that are robust, energy-efficient, scalable, and easy
for deployment. This paper proposes a robust energy-aware
clustering architecture (REACA) for large-scale wireless sensor
networks. We analyze the performance of the REACA network in
terms of quality-of-service, asymptotic throughput capacity, and
power consumption. In particular, we study how the throughput
capacity scales with the number of nodes and the number of
clusters. We show that by exploiting traffic locality, clustering
can achieve performance improvement both in capacity and
in power consumption over general-purpose ad hoc networks.
We also explore the fundamental trade-off between throughput
capacity and power consumption for single-hop and multi-
hop routing schemes in cluster-based networks. The protocol
architecture and performance analysis developed in this paper
provide useful insights for practical design and deployment of
large-scale wireless sensor network.

Index Terms— Clustering, multi-hop routing, performance
analysis, throughput capacity, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) consist of spa-
tially distributed sensor devices with sensing, wireless

communications, and computation capabilities. These wireless
networks have broad applications, e.g., environment monitor-
ing, target tracking, and surveillance. Unlike mobile ad hoc
networks (MANETs), WSNs are usually application-specific.
The unique characteristics of WSNs such as limited bandwidth
and computing capacity, and severe energy constraints, make
their design more challenging. One essential issue in the
design of WSNs is how to use bandwidth and energy resources
efficiently while prolonging the system lifetime. In this paper,
we examine the following important design considerations.

A. Throughput Capacity

Since WSNs may consist of a large number of sensor
nodes, protocols should provide good throughput capacity
as the number of sensor nodes increases. In recent work
[1], it has been shown that the per node throughput capac-
ity of a general-purpose non-clustered wireless network1 is
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1The notation y = Θ(f(N)) is used to signify that there exist positive

constants κ1 and κ2 such that κ1f(N) ≤ y ≤ κ2f(N).

Θ
(
R/

√
Nt log Nt

)
, where R is the common transmission rate

of each node and Nt is the total number of nodes in the net-
work. The result implies that the per node throughput capacity
approaches zero as the network size increases. Therefore, it
is preferable to cluster together nodes that are geographically
close and mostly communicate with each other.

B. Energy Conservation and Awareness

Moreover, since the sensor nodes are battery operated, en-
ergy conservation is extremely important. In order to maximize
the system lifetime, protocols should alleviate the hot spot
problem in routing and evenly distribute the energy load
among all the nodes, so that there are no overly-used nodes
that will run out of energy before the others.

C. Robustness

Still, it is quite possible that some nodes will fail or be
blocked due to lack of energy, physical damage, or environ-
mental interference. In the proposed protocol, the failure of
some sensor nodes will not prevent the entire network from
operating.

In this paper, we develop a robust energy-aware cluster-
ing architecture (REACA) to meet the design requirements
of WSNs. This architecture supports data aggregation and
enables access to information of interest from data collected
by spatially distributed sensor nodes. Applications include the
average temperature of a field, an anomaly in a surveillance
network, and the location of a particular event, etc. We analyze
the performance of the REACA network in terms of quality-of-
service (blocking probability), throughput capacity, and power
consumption, and show how these performance measures scale
with the size of the network. Our results show that if the
number of clusters is medium or large, the REACA network
can achieve better performance than a general-purpose ad hoc
wireless network.

This paper is organized as follows. In Section II, we
review some related work. The REACA structure is described
in Section III. Throughout Sections IV-VI, we present the
performance analysis. Section VII concludes this paper with
discussion on some future research.

II. RELATED WORK

The development of low-energy protocols for WSNs has
attracted attention in recent years [2] [3]. It has been shown in
[4], for instance, that clustering enables bandwidth reuse and
scalability, and thus improves system capacity. In [5], a linked
cluster architecture was proposed and in [6] three effective
solutions for joint clustering and power control are described.
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Moreover, in [7], a joint rate and power control scheme is
presented that achieves a desired level of signal-to-interference
and noise ratio (SINR) at the cluster head node.

Likewise, energy-aware routing protocols [8]–[10] have
been developed to prolong the network lifetime. The basic
strategy of these protocols is to select routes based on the
energy at each node on the route. Recently, a low-energy adap-
tive clustering hierarchy (LEACH) protocol for application-
specific WSNs was developed in [11]. LEACH achieves this
goal by randomly selecting a few sensor nodes as cluster heads
so as to evenly distribute the energy load among nodes in the
entire network. Although LEACH can achieve a long system
lifetime, the dynamic clustering brings in protocol overhead
and may result in isolated nodes. Also, LEACH requires that
transmission within the cluster be completed through a single
hop, which is not energy efficient if the two nodes are located
far away from each other.

In this paper, we develop an alternative architecture
(REACA) to address these issues. This protocol architecture
differs from LEACH in the following aspects. First, REACA
uses a predetermined clustered structure and applies energy-
awareness by selecting a node with most energy as the master
node (or cluster head) for each cluster. This circumvents the
unnecessary protocol overhead and possible isolated nodes in
the network. Second, to achieve energy efficiency, REACA
adopts multi-hop routing when the source and destination
nodes are far apart. In a sense, REACA may be considered as
a generalization of the LEACH protocol. More importantly,
this paper provides asymptotic analysis for scaling network
performance in terms of the blocking probability, capacity,
and power consumption.

III. REACA NETWORK

We consider a space covered by M predetermined geo-
graphical clusters2 as shown in Fig. 1. Each cluster contains N
terminal nodes and one master node, and thus, the total number
of nodes in the network is given by Nt = (N + 1) × M .
A master node performs important tasks, such as necessary
signal processing, sending data packets to a base station (BS),
and networking information management. To maximize the
network lifetime, we let each node of a cluster take its turn to
serve as the master. Although the master node is more power-
intensive than terminal nodes, the fraction of time it functions
as a master node is only about 1/(N + 1).

The protocol operation is divided into cycles [12]. As shown
in Fig. 2, each cycle begins with a setup phase when the master
nodes are determined for each cluster. Following the setup
phase is the transmission phase, during which the terminal
nodes send data to their own master nodes.

A. Master Selection

The strategy of energy-awareness is applied to maximize
the system lifetime. During the setup phase, candidates of
the master node broadcast a message through an exclusive

2The formation of clusters depends on specific applications. For energy
and bandwidth efficiency, we cluster nodes that are close to and have strong
correlation with each other. Other clustering approaches appear in [4], [6],
[11] and the references therein.
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Fig. 1. A generic model for REACA networks.
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Fig. 2. The protocol operation shown in a time scale. Once a master node is
chosen during the setup phase, packets are transmitted from terminal nodes
to the master node during the transmission phase. In general, the duration of
transmission phases is much longer than that of setup phases, i.e., Tt # Ts.

frequency channel using the CSMA/CA protocol. The message
indicates the available energy and the node’s unique identifier.
Therefore, each node can automatically determine the master
node without a centralized decision maker.

B. The Routes of Packets

In WSNs with data aggregation capability, the sensor nodes
send processed information instead of original observations to
the base station or fusion center. A simple example of such an
application is a WSN that measures the average temperature
of a field. In this application, each node individually measures
its surrounding temperature and sends the measurement to
the master node. The master node takes the average of
measurements over all nodes within the cluster and over a
period of time, i.e., Tm cycles, and then sends the result to
the base station for further processing.

Without loss of generality, the intra-cluster traffic amounts
to the majority of the overall network traffic. According to
the available energy on each node, routes of packets are es-
tablished either through a single hop or through multiple hops
via relay nodes within the cluster. The single-hop transmission
is similar to LEACH, in which the terminal node sends data
packets directly to the destination node. Nevertheless, WSNs
are usually energy constrained and prefer multi-hop routing.
To secure efficiency, the routes should be over nearly straight-
line paths. An example is illustrated in Fig. 3. At time cycle t,
packets generated from the source node are forwarded to the
master node if the master node is in its route to the final
destination; otherwise, the packets wait in the buffer until
the master node appears in any one of the possible routes.
At time cycle t + 1, the previous master node transfers the
relayed packets together with its own generated traffic to the
current master node if the current master node is in the route
to the final destination. If the destination node becomes the
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Fig. 3. Example of a multi-hop route within the cluster. The cluster is divided
into many cells, each of them contains at least one node.

master at time t + 3, the packets will then be forwarded to
the destination. Thus, a successful multi-hop transmission may
take many cycles.

The master nodes process information collected from the
terminal nodes and then send the result to the BS. The
communication between the master and the BS uses a different
channel from intra-cluster communications, and this amount
of traffic will be negligible compared with the intra-cluster
traffic when Tm is large. Above and throughout this paper,
we assume that each node has enough power to transmit data
packets to the BS and has a large buffer for relayed traffic.

C. Transmission Model

Consider N + 1 nodes independently and uniformly dis-
tributed in a cluster A with an area of A. When node i
communicates with its master node, it suffers interference
from the nodes in other clusters using the same channel and
from background noise. Let T be the set of nodes from
different clusters simultaneously transmitting over the channel.
At time t, the transmission from a terminal node of cluster i
can be successfully received by its master node if the SINR
at the master node satisfies

Pi(t)Gii(t)∑
j∈T ,j "=i Pj(t)Gji(t) + σ2

i

≥ γ (1)

where Gji denotes the channel gain from the j-th transmitting
node to the master node of cluster i, σ2

i is thermal noise at the
receiver of the master node of cluster i, Pi is the transmission
power of node i, and γ is a certain threshold.

In a fading and shadowing channel, the channel gain is
modelled as

Gji = S0
10η/10

dβ
ji

(2)

where dji denotes the distance between the nodes, S0 is a
function of the carrier frequency, β denotes the path loss
exponent, and η is a zero mean Gaussian random variable
with variance σ2

η (i.e., 10η/10 represents the shadowing factor
with a lognormal distribution). In practice, the values of β
and ση depend on the physical environment and usually have
2 < β < 6 and 6 < ση < 12.

D. Media Access Control (MAC)

For specific applications, the cluster needs several simul-
taneous transmissions in each cycle. We adopt time division
multiple access (TDMA) to transmit packets for bandwidth
and energy-efficiency considerations. The master node divides
the transmission time into Q time slots and selects at most Q
terminal nodes to transmit packets. This scheduling informa-
tion is sent to nodes in the cluster such that no collision will
happen among transmitting nodes and the non-transmitting
nodes can switch to a sleeping state for energy conservation.

Throughout this paper, the analysis is carried out based on
an asymptotic regime, i.e., with a probability approaching one
as N → ∞, denoted by “with high probability (w.h.p.)”.

IV. BLOCKING PROBABILITY

With the protocol described above, we define the blocking
probability in a cluster as Pr(ZN > Q), where ZN is the
number of nodes that simultaneously express a desire to
connect to the master node. In this section, we will study the
blocking probability in two scenarios: α-prioritized networks
[13] and distance-based probabilistic connections.

A. α-Prioritized Networks

Assuming that no two nodes have the same probability to
connect to the master node at any time, the definition of the
α-prioritized network is given as follows.

Definition 1 (Ordered Chain): An ordered chain is a set of
real numbers where its i-th element is less than its j-th element
if i > j (i.e., it is a set of strictly decreasing real numbers).

Definition 2 (Prioritized Cluster): A prioritized cluster is a
cluster in which the set of all probabilities that a terminal-
master pair becomes active forms an ordered chain.

Definition 3 (α-Prioritized Cluster): An α-prioritized clus-
ter is a prioritized cluster in which the set of all probabilities
that a terminal-master node pair becomes active is uniformly
bounded above by a geometric series {αk, k ≥ 0} for some
known and fixed real number, 0 < α < 1.

The α-prioritized networks form a wide class of networks
considering the fact that many networks have nodes that
are widely and uniformly distributed and with a minimum
distance between any two nodes. The following result gives
an expression for how Q should scale with N if we desire to
maintain a fixed bound on the blocking probability, say 1/ν,
for any N .

Proposition 1 (Time Slots and Blocking Probability): For
an α-prioritized cluster with a master node and N terminal
nodes, the number of time slots sufficient to ensure a
maximum blocking probability of 1/ν (with ν ≥ 1) is

Q =
√

2N ln ν +
1 − αN+1

1 − α (3)
!

This implies that Q should scale with O(
√

N) to en-
sure a maximum blocking probability of 1/ν. Note that if√

2N ln ν + 1−αN+1

1−α > N , then the blocking probability of
1/ν is not achievable. A related question of interest is how
ZN scales as N → ∞.

Proposition 2 (Connection Requests): For an α-prioritized
cluster with arbitrarily large N , there exists an N0 dependent
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on α such that for all N > N0, the number of nodes that
express a desire to connect to the master node in a cluster can
be bounded above w.h.p. by

ZN ≤ min
{

N, N
√

2 ln(1/α) +
1

1 − α

}
(4)

!
For example, let α = 0.95 for a cluster. Then there exists

an No such that if the cluster has N > No nodes, then the
number of nodes that try to connect to the master node is
bounded above by 0.323N + 20 w.h.p. The two propositions
above are established in the sequel.

Denote by Bi the event that node i tries to connect
to the master node. Without loss of generality, we assume
that {Bi}N

i=1 are identically and independently distributed
(i.i.d.). Let BN be the sigma algebra formed by the events
{B1, B2, . . . , BN}. Then we have ZN =

∑N
i=1 I(Bi), where

I(·) is the indicator function. If there are k terminal nodes
in the cluster, then Zk =

∑k
i=1 I(Bi). Recall the following

lemma.
Lemma 1 (Azuma’s Inequality [14]): Let {Y0, Y1, Y2, . . .}

be a martingale sequence such that for each k, | Yk −Yk−1 |≤
ck, where ck depends on k. Then, for all k ≥ 1 and for any
µ > 0,

Pr(Yk ≥ µ) ≤ exp

(
− µ2

2
∑k

j=1 c2
j

)
(5)

!
Motivated by the discussion in [15], we introduce a mar-

tingale sequence Yk and utilize the above lemma to obtain a
bound on ZN . Let Yk = Zk −

∑k
i=1 Pr(Bi) with Y0 = 1. It

can be shown that Yk is a martingale because

E[Yk+1|Yk] = E[Yk+1|Bk]

= E
((

k+1∑

i=1

I(Bi) −
k+1∑

i=1

Pr(Bi)

)∣∣∣∣∣Bk

)

= Yk + E[I(Bk+1|Bk)] − E {E[I(Bk+1)]|Bk]}
= Yk

Moreover, it can be shown that |Yk − Yk−1| ≤ 1. Now
applying Azuma’s inequality with µ =

√
2k ln ν, we get

Pr
(
Yk ≥

√
2k ln ν

)
≤ 1
ν

, k ≥ 1 (6)

or equivalently,

Pr

(
k∑

i=1

I(Bi) −
k∑

i=1

Pr(Bi) ≥
√

2k ln ν

)
≤ 1
ν

, k ≥ 1 (7)

Noting that the cluster is an α-prioritized cluster, and using
the fact that {Bi} are independent of each other, we obtain

k∑

i=1

Pr(Bi) ≤
1 − αk+1

1 − α (8)

Substituting (8) into (7), we have

Pr
(

Zk ≥
√

2k ln ν +
1 − αk+1

1 − α

)
≤ 1
ν

(9)

Since there are N terminal nodes in a cluster, Proposition 1
is established.

Consider again Azuma’s inequality but choose µ =
k
√

2 ln(1/α), then

Pr
(
Yk ≥ k

√
2 ln(1/α)

)
≤ αk, k ≥ 1 (10)

Summing the above inequality over k, we get
∞∑

k=0

Pr
(
Yk ≥ k

√
2 ln(1/α)

)
≤ 1

1 − α < ∞ (11)

From the Borel Cantelli Lemma [15], we conclude that the
event {Yk ≥ k

√
2 ln(1/α)} cannot occur infinitely often.

Thus, for sufficiently large k, say k ≥ No, we have Yk ≤
k
√

2 ln(1/α) w.h.p. Hence, when the number of terminals in
a cluster is N , we get

ZN ≤ N
√

2 ln(1/α) +
1

1 − α w.h.p. (12)

which leads to Proposition 2.

B. Distance-Based Probabilistic Connection

We now consider a probabilistic connection scheme that
is based on the distance between nodes. Assuming the master
node knows the locations of all terminal nodes, the probability
that node i successfully connects to the master node can be
modelled in terms of its distance from the master node as

Pr(Bi) = F (di) =
(

d0

di

)1/δ

, d0 ≤ di ≤ dM (13)

where d0 and dM are respectively the minimum and maximum
distances3 between the transmitting node and the master node,
and δ is a user defined parameter (0.5 < δ < 1). di is the
distance between the terminal node and its intended master
node.

Denote the position of the master node at time t by X(t).
Considering the energy requirement for many important tasks,
it is reasonable to assume that {X(t)} is stationary and ergodic
with uniform distribution on the disc. Since the nodes are i.i.d.
with a uniform distribution, conditional on X(t) = x, the
cumulative probability density function of di is given by

Pr (di ≤ r|X(t) = x) = c(x)
r2 − d2

0

d2
M − d2

0

, d0 ≤ r ≤ dM

where c(x) (0 < c(x) ≤ 1) is a constant factor dependent on
x and is used to account for edge effects. If the master node
is near the periphery of the cluster, then c(x) < 1; otherwise,
c(x) = 1. Differentiating the above equation, the probability
distribution function (p.d.f.) of di follows

fdi (r|X(t) = x) =
2rc(x)

d2
M − d2

0

, d0 ≤ r ≤ dM (14)

Proposition 3 (Number of Time Slots): In the distance-
based probabilistic connection scenario defined by (13),
Q should scale with O(N) in order to ensure a constant
blocking probability4.

3For the requirement of network connectivity [16], we usually have d0 ≥
κ A log N

N , which ensures that no node in the cluster is isolated w.h.p. Note
that κ is a certain constant.

4The notation y = O(g(N)) denotes that there exits a constant κ such
that limN→∞

y
g(N) ≤ κ.
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Proof: When ZN > Q, the master node chooses Q
closest nodes for transmission. Since ZN takes nonnegative
values, the blocking probability can be bounded above as

Pr(ZN > Q) ≤ E(ZN )
Q

=
E

(∑N
i=1 I(Bi)

)

Q
(15)

where (15) follows from the Markov inequality [17][18].
Using the fact that {Bi}N

i=1 are independently and identically
distributed, we have

E
(

N∑

i=1

I(Bi)

)
= NE (I(B1))

= N

∫ dM

d0

F (r)fdi (r|X(t) = x) dr

= O(N) (16)

Combining (15) and (16) yields Proposition 3.
In this network scenario, in order to ensure a constant

blocking probability 1/ν, Q should scale with O(N). This
is because the connection probability of a terminal node
is completely determined by its distance from the intended
master node.

V. THROUGHPUT CAPACITY

Without loss of generality, the per node throughput is de-
fined as the time average of the number of bits per second that
can be transmitted from every source node to its destination.
Specifically, we adopt the following asymptotic notion as
defined in [1] and [19].

Definition 4 (Feasible Per Node Throughput): Let Mi(t)
denote the amount of information originated from node i to
its destinations at time t. Given the random locations of the
source and destination nodes, we shall say a long-term per
node throughput of λ(N) bits per second is feasible if there
is a spatial and temporal scheduling policy π such that

lim inf
T→∞

1
T

T∑

t=1

Mi(t) ≥ λ(N) (17)

For each transmission, we assume that the transceiver is
able to adaptively control the transmitting power level so
that the SINR can maintain a value of at least γ. In the
capacity analysis below, we limit our attention to intra-cluster
communications.

A. Single-Hop REACA

In the single-hop REACA network, terminal nodes send
data packets to their master node. Since each cluster can
obtain a common transmission rate of R and there are M
simultaneous transmissions at any moment, the aggregate
transmission rate is MR. This rate is shared by the Nt nodes
in the network, and thus, the per node throughput capacity is
given as Θ(MR/Nt).

B. Multi-Hop REACA

In the following, we analyze the multi-hop REACA net-
work.

1) Packet Routing: We first investigate the routing behavior
of packets within a cluster. Fig. 3 shows an example of routing
a packet from a source node to the destination. The packets
travel almost in the same direction toward the destination at
each step. To derive the number of hops for each packet, we
partition the cluster into many cells with an equal area D, as
shown in Fig. 3. Before proceeding, we need the following
lemma.

Lemma 2 (Cluster Partitioning): Consider a cluster that is
partitioned into many cells with an equal area D. There exits a
deterministic positive constant µ, such that if D ≥ µ log N/N ,
then every cell contains at least one node w.h.p.

Proof: Consider N + 1 nodes i.i.d. in a cluster A of
area A. Any cell D is a subset of A, i.e., D ⊂ A. Recall the
coverage result given in [20]. When N is large enough, the
number of nodes in a given area D is Poisson distributed with
mean ρD, where ρ = (N + 1)/A is the node density. That is,
the probability that a cell D contains k nodes is

Pr(There are k nodes located in D) =
(ρD)k

k!
e−ρD

Given a cell D, the probability that it contains at least one
node is given by

Pr(k ≥ 1|D) = 1 − Pr(k = 0|D) = 1 − e−ρD

Let D = µ log N/N , then

Pr(k ≥ 1|D) ≥ 1 − e−µ log N/A −→ 1 as N −→ ∞

This completes the proof.
Corollary 1 (Cluster Coverage): As the density of nodes

ρ = (N + 1)/A increases, the cluster is fully covered w.h.p.
!

The above corollary says that any non-zero area around the
final destination node can be reached by a packet w.h.p. when
the density of nodes is large enough.

Consider each of the N terminal nodes in a cluster gener-
ating Mi(t) bits to their destinations at time t. For these N
S-D pairs, the following theorem estimates how many routes
will pass through a certain node in the cluster.

Theorem 1 (Number of Routes Through a Node): At any
time, in a cluster with N terminal nodes, the number of
generated routes that will pass through a certain node is
Θ

(√
N/ log N

)
.

Proof: We first partition the cluster into many cells with
a common area D ≥ µ log N/N so that each cell contains
at least one node w.h.p. Consider an S-D pair i at any time
t. The number of hops needed for the packet to move from
the source to the destination is denoted by hi. The distance
between the source and destination nodes of S-D pair i is li.
Since the routes are nearly straight lines, the number of hops
for S-D pair i can be written as hi = Θ

(
li/

√
D

)
. For any

cell j, we define a Bernoulli random variable Yij as

Yij =
{

1 if the route of S − D pair i intersects cell j
0 otherwise

where Pr(Yij = 1) = 1 − Pr(Yij = 0) = pij . Then Yj =∑N
i=1 Yij is the total number of routes that intersect cell j. Its
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Fig. 4. The number of hops per route v.s. the total number of nodes in the
network. M is the number of clusters in the whole network.

expected value is

E(Yj) = E
(

N∑

i=1

Yij

)
= NE (Yij) =

NE (hi)
A/D

(18)

(18) follows the assumption that the source and destination of
S-D pair i are independently and uniformly distributed in the
cluster. Because d0 ≤ li ≤ dM , we have

E (hi) = E(li)Θ
(

1√
D

)
= Θ

(
1√
D

)
(19)

Substituting (19) into (18), we have

E(Yj) = Θ
(
N
√

D
)

= Θ
(√

N log N
)

(20)

As implied by the Chernoff bound [21] for independently
distributed Bernoulli random variables,

Pr {Yj > (1 + ε)E(Yj)} < e−ε2E(Yj)/4, for ε < 2e − 1

and

Pr{Yj > (1 + ε)E(Yj)} < 2−εE(Yj), for ε > 2e − 1

Let ε = 2
√

log N/E(Yj), we have

Pr{Yj > (1 + ε)E(Yj)) < max
(

1
N , 2−2

√
E(Yj) log N

)
(21)

where the right hand side goes to zero as N −→ +∞. On
the other hand, we have

Pr {Yj < (1 − ε)E(Yj)} < e−ε2E(Yj)/2 = 1
N2 (22)

which also goes to zero as N −→ +∞.
Combining (21) and (22) yields

Yj = E(Yj) + o(E(Yj)) w.h.p. = Θ
(√

N log N
)

w.h.p.

where f(N) = o(g(N)) means that limN→∞ f(N)/g(N) =
0.

Since the number of cells in a cluster is given as Θ(A/D) =
Θ(N/ logN), the number of nodes per cell is Θ(log N).
Considering that the source and destination nodes are i.i.d.,
from a long term average point of view, the routes through a

cell are evenly distributed on each node of this cell. Therefore,
the number of routes that pass through each node is given by

Yj

Θ(log N)
= Θ

(√
N

log N

)
w.h.p.

This completes the proof.
The following corollary bounds the expected number of

hops for each packet.
Corollary 2 (Number of Hops Per Route): The mean num-

ber of hops that a packet takes from its source to the
destination is Θ

(√
N/ logN

)
.

Proof: From (19), we have

E (hi) = Θ
(

1√
D

)
= Θ

(√
N

log N

)
(23)

We plot the function (23) in Fig. 4. It shows that in a
non-clustered network (M = 1), the number of hops per
route increases rapidly as the number of nodes in the network
increases. When the network is partitioned into many non-
overlapping clusters (M = 10 or M = 100), the number
of hops increases slowly with respect to the total number of
nodes in the network because the routing is restricted within
the clusters.

2) The Distance Between the Source and Destination
Nodes: The distance that a packet travels from its source to the
destination node within the cluster is a function of the number
of hops in routing, and can be determined asymptotically by
the number of nodes in the cluster as shown in Lemma 3
below.

Lemma 3 (Mean Travel Distance): The mean distance L̄
that a packet travels within a cluster from its source node
to the destination is O

(
4
√

1
N log N

)
.

Proof: Consider a large time T seconds, during which
the cluster transports a total number of λNT bits. For bit b
(1 ≤ b ≤ λNT ), we denote by h(b) the number of hops it
takes to reach the destination, and let r(b, h) represent the
length of hop h, 1 ≤ h ≤ h(b). Then, it follows that

λNT∑

b=1

h(b)∑

h=1

r(b, h) ≥ λNL̄T (24)

Because d0 ≤ r(b, h) ≤ dM , and summing over the RT bits
transmitted during the T seconds, we also have

λNT∑

b=1

h(b)∑

h=1

r2(b, h) ≤ RTd2
M (25)

The total number of hops taken by the λNT bits is denoted
by H =

∑λNT
b=1 h(b). By the convexity of quadratic functions,

we obtain



λNT∑

b=1

h(b)∑

h=1

r(b, h)
H




2

≤
λNT∑

b=1

h(b)∑

h=1

r2(b, h)
H

(26)

Combining (24), (25), and (26) together gives

λNL̄ ≤
√

HR

T
dM . (27)
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Fig. 5. Throughput capacity in wireless clustered networks.

Denote the variance of h(b) by σ2
h. Assuming that the hops

are i.i.d. and σ2
h < +∞, by the weak law of large numbers

[17] (pp. 69–71), we get for any ε > 0,

Pr
(∣∣∣∣

H

λNT
− E(h(b))

∣∣∣∣ > ε

)
≤ 1
ε2

σ2
h

λNT
−→ 0 as T −→ ∞

Thus, when T is large enough,

E(h(b)) =
H

λNT
w.h.p. (28)

Substituting (28) into (27), we get

L̄ ≤ dM

√
RE(h(b))
λN

w.h.p. (29)

Because the number of hops h that a packet takes is the same
order as h(b), i.e., h = h(b), it holds that L̄ = O(

√
E(h)/N)

w.h.p. Combined with Corollary 2, the result is established.
Rearranging (29) gives

E(h) ≥ λNL̄2

Rd2
M

w.h.p. (30)

As implied by (30), when the number of nodes, transmission
rate, and per node throughput are specified, the mean number
of hops per route is lower bounded by a function of the square
of the distance that a packet travels. With this information, one
can predict how the packets will be routed within the cluster
given the distance between two nodes.

3) Throughput Capacity: Consider that each cluster trans-
mits at a rate of R. This rate should be shared by N nodes,
each of which generates traffic at a rate of λ(N), i.e.,

Nλ(N)E(h) = R. (31)

Substituting (23) into (31), we obtain that the per node
throughput capacity

λ(N) = Θ

(
R

√
log N

N3

)
(32)

is feasible w.h.p. Considering the Nt ≈ MN nodes in the
entire network, we obtain the following asymptotic per node
throughput capacity.

Theorem 2 (Per Node Throughput Capacity): For a large-
scale multi-hop REACA network with Nt nodes organized
into M clusters, the per node throughput capacity is given by

Θ

(
R

√
M3(log Nt − log M)

N3
t

)
w.h.p. (33)

!
It can be shown that given the number of nodes, the per node

throughput capacity of the network increases with the number
of clusters, as illustrated by a numerical example in Fig. 5.
The improvement is mainly due to the fact that clustering
greatly limits the number of hops in routing and thus reduces
the relaying burden carried by each node. Another important
observation is that the short-range communication imposed by
the clustered structure decreases the interference and allows
for more simultaneous transmissions in the entire network.

One may want to consider the effect of traffic sent by the
master node to the BS. For simplicity, the communication
between the clusters and BS is scheduled by a TDMA scheme
and has a transmission rate of R1. The throughput capacity
between a cluster (or master node) and the BS is Θ

(
R1

MTm

)
,

which vanishes when Tm is large. Therefore, we can assume
that this amount of traffic is negligible in the asymptotic
analysis.

Compared with the non-clustered wireless network con-
sidered in [1], which has a per node throughput capacity
of Θ

(
R/

√
Nt log Nt

)
, the single-hop REACA network will

obtain a better throughput capacity if the number of clusters is
large enough, i.e., M >

√
Nt

log Nt
. For the multi-hop REACA

network, it is sufficient that 3
√

N2
t

log Nt
< M < Nt

2 makes
it outperform the non-clustered wireless network. Therefore,
clustered networks can achieve throughput improvement by
taking advantage of traffic locality and in-network data aggre-
gation. If the degree of traffic locality or data aggregation is
low, the non-clustered wireless network might outperform the
clustered networks.

VI. POWER CONSUMPTION

In this section, we study the power consumption of the
REACA network and compare its performance with that of
non-clustered networks.

A. Multi-Hop vs. Single-Hop

In wireless networks, it is in general preferable to use
multiple short-range transmissions rather than a long-range
transmission. Consider that a packet can be transmitted from
the source to the destination through m hops, which have
distances L1, L2, · · · , Lm. Denote the distance between the
source and destination nodes by L. If the route is nearly a
straight line, then L ≈

∑m
i=1 Li. Provided that the transceiver

works on a fixed transmission rate R with a frequency band
of bandwidth W , the required signal-to-noise ratio (SNR) of
each hop is given by

γ = 2R/W − 1 =
PiGi

σ2
N

, 1 ≤ i ≤ m
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Fig. 6. Annulus between distances a and b from the master node.

where σ2
N is the Gaussian noise level, P is the transmission

power, and G is the channel gain given in (2). Substituting (2)
into the above equation, we get

Li =
(

S010η/10

γσ2
N

Pi

)1/β

(34)

Since L ≈
∑m

i=1 Li, assuming the same noise level σ2
N at each

receiver and the same shadowing factor over each channel, we
have

P 1/β =
m∑

i=1

P 1/β
i

Since β > 2, and due to convexity, it follows that

P =

(
m∑

i=1

P 1/β
i

)β

≥
m∑

i=1

Pi

Therefore, the power needed for transmission over a single
hop of length L is greater than the sum of power over m
short hops Li, 1 ≤ i ≤ m. Thus, multi-hop routing results
in significant power saving compared with the single direct
transmission. We should emphasize that the power efficiency
is achieved at the cost of increasing the routing delay, which
scales with O(m).

B. REACA Networks

For REACA networks, we will show that there exists
P0 > 0 such that if all the transmitting nodes transmit at
an equal power level P > P0, then each cluster can obtain
a common transmission rate of R. This can be accomplished
by a simple distributed power control scheme in which the
receivers measure the interference and tell their transmitters
how to adjust the power levels. This process is iterated until all
the transceivers reach equilibrium. More sophisticated power
control algorithms can be found in [22] and the references
therein.

In a cluster, denote the distance between a node and its
master node by d (d0 ≤ d ≤ dM ). Within the distance of
(1 + ε)d from the master, where ε > 0 is a guard parameter
for safety margin, we assume that the number of potential
interfering nodes is upper bounded by some constant n1. We
may enforce a spatial and temporal scheduling scheme to

ensure none of interfering nodes from neighboring clusters
transmits simultaneously within the distance of (1+ ε)d from
the master node. In this way, all the remaining interfering
nodes would be from outside the distance of (1 + ε)d from
the intended master of the node.

Consider the annulus of all points lying within a distance
between a and b from the master node, as shown in Fig. 6.
The area of the annulus is given by

π(b2 − a2) = π(2k + 1)(1 + ε)2d2 (35)

where a = k(1+ε)d and b = (k+1)(1+ε)d for k = 1, 2, · · · ,
and this area contains no more than π(2k + 1)(1 + ε)2d2/A
clusters, each of which has an interfering transmitting node.
Thus, by summing over all interfering nodes, i.e., over k, the
interference at the master node can be bounded above as

Ii(t) =
∑

j "=i

Pj(t)Gji(t)

≤ πc′P

A(1 + ε)β−2dβ−2

( ∞∑

k=1

2k + 1
kβ

)

≤ πc′P

A(1 + ε)β−2dβ−2

(
3 +

2
β − 2

+
1

β − 1

)
(36)

where c′ = S010η/10.
Therefore, for large enough power, the SINR at the master

node is lower bounded by

γ
∆= lim

P→∞

c′P
dβ

πc′P
A(1+ε)β−2dβ−2

(
3 + 2

β−2 + 1
β−1

)
+ σ2

i

=
A(1 + ε)β−2

πd2
(
3 + 2

β−2 + 1
β−1

) (37)

This result indicates that when the guard parameter ε is speci-
fied, there is a large enough power level P to transmit packets
such that the SINR can attain a desired level γ. Subsequently,
the transmissions in the cluster would be successfully received
by the master node.

We now investigate how the per node power consumption
p will scale with Nt.

Lemma 4 (Power Consumption for REACA Networks): In
the REACA network described above, the average per node
power consumption can be estimated as

E(p) = O

(
M

Nt
γ

)
(38)

Proof: From (1), we have

Pi(t) =
γ

Gii(t)




∑

j "=i

Pj(t)Gji(t) + σ2
i



 (39)

Since the channel gain Gii(t) depends only on the transmis-
sion distance and the physical environment, taking expecta-
tions of both sides of (39) gives

E(Pi) = E
(

γ

Gii(t)

)
E




∑

j "=i

Pj(t)Gji(t) + σ2
i





≤ E
(

γ

Gii(t)

) (
c′

γdβ
E(Pi) + σ2

i

)

≤ c′c′′

dβ
E(Pi) + γc′′σ2

i (40)
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Fig. 7. The per node power consumption ratio of the proposed network to
the non-clustered network.

where (40) follows from

E
(

γ

Gii(t)

)
=

∫ dM

d0

E
[

γ

Gii(t)

∣∣∣∣ di

]
fdi (r|X(t) = x) dr

≤ γS0(dβ+2
M − dβ+2

0 )
(d2

M − d2
0)(β + 2)

e(ση ln 10)2/200

= γc′′

Rearranging (40), we obtain

E(Pi) ≤
γc′′σ2

i dβ

dβ − c′c′′
≤ γc′′σ2

i dβ
0

dβ
0 − c′c′′

(41)

Then, it can be easily seen that E(Pi) = O(γ). As a
consequence, the average per node power consumption can
be given by

E(p) =
E(Pi)
N + 1

= O

(
M

Nt
γ

)
(42)

Lemma 4 shows that the power consumed by the network
depends on the number of clusters as well as on the simultane-
ous transmissions. Furthermore, if the number of clusters M
is a constant, the per node power consumption is of the order
of 1/Nt. With high degree of traffic locality and in-network
data aggregation (i.e., large Tm), the power used to transmit
information from the master node to the BS is negligible in
Lemma 4.

C. Non-Clustered Wireless Networks

We now investigate the per node power consumption in a
non-clustered multi-hop routing network without clustering as
described in [1].

Lemma 5 (Power Consumption for Non-clustered Networks):
In the non-clustered wireless network, the expected per node
power consumption can be estimated as E(p) = O (γ/ logNt).

Proof: Consider the protocol model in [1], in which all
source nodes transmit with a common distance r(Nt). Due
to the requirement of network connectivity [16], the common
transmission distance should satisfy

r(Nt) ≥
√

log Nt

πNt
(43)

which ensures that no node in the network will be isolated
w.h.p. To successfully transmit packets from node Xi to
another node Xj at a distance |Xi −Xj |, where |Xi −Xj| ≤
r(Nt), there should be no node simultaneously transmitting
within the distance (1 + ε)r(Nt) from Xj . In this way, each
transmission consumes an area of at least πr2(Nt) because
ε > 0. Therefore, provided that the entire network is deployed
in a disc of unit area in R2, the total number of simultaneous
transmissions can be bounded above by

1
πr2(Nt)

≤ Nt

log Nt
(44)

Then the per node power consumption can be given by

E(p) ≤ 1
Nt

Nt

log Nt
E(P ) =

E(P )
log Nt

(45)

where E(P ) is the average power consumption for each
transmission. Using similar techniques to Lemma 4, it can
be shown that E(P ) = O(γ) and the result follows.

For the physical model in [1], in which each node transmits
at a common power level, it can be shown that if ε is properly
chosen then the above result holds for a large enough common
power level P .

By comparing the above results, we find that the cluster-
based structure is more power efficient than the non-clustered
network provided M ≤ Nt

log Nt
. Given a large set of wireless

network nodes, each node of the non-cluster network requires
more power, by a factor of at least O

(
Nt

M log Nt

)
, than that of

the clustered structure. The reason is that the cluster-based
network limits the number of simultaneous transmissions
nearby by clustering, and thus reduces energy dissipation.
Besides, due to spatial separation, the transceivers of the
clustered network can achieve the same SINR with less power
compared with the non-clustered model. Fig. 7 illustrates the
per node power consumption ratio of the clustered network to
the non-clustered network.

Taking into consideration the throughput capacity and
power consumption together, we find that the preferable range
for the number of clusters in single-hop REACA networks is√

Nt
log Nt

< M < Nt
log Nt

. In multi-hop REACA networks, the
network is expected to utilize bandwidth and energy efficiently

if 3
√

N2
t

log Nt
< M < Nt

log Nt
.

VII. CONCLUSION

In this paper, we have developed REACA, a robust energy-
aware clustering protocol architecture for large-scale wireless
sensor networks. We examined its performance in terms of
quality-of-service, throughput capacity, and power consump-
tion. It has been shown that clustering can utilize bandwidth
and energy efficiently by taking advantage of spatial sepa-
ration and traffic locality. In particular, we focus on intra-
cluster communications without considering communications
between clusters and the BS. Nevertheless, in some scenarios,
one may have to consider inter-cluster traffic. An interesting
extension is to optimally determine the link capacity between
the master nodes and BS according to a specific aggregation
function so that the data traffic can fully exploit the avail-
able bandwidth and network architecture. Overall, the results
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obtained in this paper provide useful insights for design and
implementation of large-scale WSNs.
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