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Abstract—This paper presents new results that allow one to com-
pute the set of states that can be robustly steered in a finite number
of steps, via state feedback control, to a given target set. The as-
sumptions that are made in this paper are that the system is dis-
crete-time, nonlinear and time-invariant and subject to mixed con-
straints on the state and input. A persistent disturbance, depen-
dent on the current state and input, acts on the system. Existing
results are not able to address state- and input-dependent distur-
bances and the results in this paper are, therefore, a generaliza-
tion of previously published results. One of the key aims of this
paper is to present results such that one can perform the relevant
set computations using polyhedral algebra and computational ge-
ometry software, provided the system is piecewise affine and the
constraints are polygonal. Existing methods are only applicable to
piecewise affine systems that either have no control inputs or no
disturbances, whereas the results in this paper remove this limita-
tion. Some simple examples are also given that show that, even if
all the relevant sets are convex and the system is linear, convexity
of the set of controllable states cannot be guaranteed.

Index Terms—Controllability, control systems, nonlinear sys-
tems, Piecewise affine systems, reachability analysis, robustness,
set invariance.

I. INTRODUCTION

THE problems of reachability, invariance and control in-

variance for discrete-time systems have been extensively

studied in the literature for over four decades (see [1]–[6] for

some seminal papers on the subject). Recently these problems

have attracted renewed attention, partly because improvements

in computational capabilities have made it possible to imple-

ment the algorithms for systems of practical interest (see, for

instance, an excellent survey paper [7] for more details and a set

of relevant references). Another reason for the renewed interest

in these problems is the emergence of new classes of practically

important systems, such as hybrid systems. These are systems

whose states, inputs and outputs can take on values from both a

countable set (e.g., the set of integers) as well as an uncountable

set (e.g., the set of real numbers). In recent years, invariance and

Manuscript received December 23, 2004; revised August 22, 2005. Recom-
mended by Associate Editor C. T. Abdallah. This research was supported in
part by the Engineering and Physical Sciences Research Council and the Royal
Academy of Engineering, U. K., and in part by the European Commission under
the HYCON Network of Excellence Contract FP6-IST-511368.
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reachability problems for classes of hybrid systems have been

studied by a number of authors [8]–[15].

One class of systems that, to the authors’ knowledge, has re-

ceived relatively little attention are systems with mixed con-

straints on the states, control inputs and disturbances. When this

class of systems is treated, it is often with an insufficient amount

of detail and overly conservative approximations. Systems with

mixed state, control and disturbance constraints may arise in

practice for a number of reasons.

1) When modeling systems with physical constraints.

Here the model must reflect the fact that the constraints

will be satisfied by all evolutions of the system, what-

ever the control inputs and disturbances.

2) When designing controllers to meet safety or perfor-

mance specifications, i.e., to ensure that the state of the

system remains in a certain region of the state space.

Safety and performance specifications may be violated

if the inputs are not chosen properly.

A couple of simple examples illustrate the point. Consider the

following discrete-time model for the longitudinal motion of a

car on a highway:

where represents the position of the car, its ve-

locity, represents the control acceleration applied by

the engine or brakes, and a disturbance acceleration

due to wind. It is assumed that and . For

simplicity, all other constants have been normalized to 1.

One would like to capture the situation where the vehicle is

prevented from going backward. This is a reasonable require-

ment in many cases (e.g., on a highway) and is very easy to

implement in practice (assuming that the wind is incapable of

pushing the car backward when the brakes are applied one could

simply disallow the reverse gear). This can be captured by the

hard state constraint . To enforce this constraint, the model

needs to incorporate the additional state-dependent constraint

on the inputs (control and disturbance).

For another example, consider the following piecewise affine

system:

(1)

which is subject to a bounded disturbance . The func-

tion models physical saturation limits on the input. As-

suming that these saturation limits are symmetric and have unit
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magnitude, an equivalent way of modeling (1) is to treat it as

linear system with an input-dependent disturbance, i.e., letting

(2)

where the control is constrained to

(3)

and the input-dependent disturbance satisfies , where

(4)

Another common reason why state- and input-dependent dis-

turbances arise in practice is when it is known that the uncer-

tainty of a model is greater in certain regions of the state-input

space than in other regions. For example, when a nonlinear

model is linearized, the uncertainty gets larger the further one

gets from the point of linearization. This uncertainty can be

modeled as a state- and input-dependent disturbance, where the

size of the disturbance decreases the closer one gets to the point

of linearization. A state- and input-dependent disturbance model

will therefore allow one to obtain less conservative results than

if one were to assume that the disturbance is independent of the

state and input.

Another example when one can model uncertainty as a state-

and input-dependent disturbance is when there is parametric un-

certainty present in the model. For example, if there is uncer-

tainty in the pair in (2), then one can think of the uncer-

tainty as an additional state- and input-dependent disturbance.

The reader is referred to [16] to see how reachability compu-

tations can be carried out for this specific class of uncertainty

when the system is linear. The results in this paper can, with

some effort, be used to extend the results in [16] to the class of

piecewise affine systems with parametric uncertainty.

More generally, consider state variables , control variables

and disturbance variables , taking values in the sets , , and

, respectively. Consider dynamic constraints on these vari-

ables of the form

and (5)

where and . Here, is assumed

to capture the physical, state-dependent constraints on the con-

trol and disturbance inputs. The goal is to develop methods for

designing controllers for this class of dynamical systems.

Though fairly general results exist that can be applied to a

large class of nonlinear discrete-time systems, to our knowl-

edge, none of these control and analysis algorithms are capable

of explicitly dealing with this class of problems. For example,

most authors assume that the disturbance is not dependent on

the state and input—the only paper which addresses state-de-

pendent disturbances directly (for linear systems) is [17].

The key tool that allows one to perform a reachability anal-

ysis (often also called a controllability analysis), is software for

implementing the so-called predecessor operator, which allows

one to compute the set of states that can be robustly steered

(using an admissible control input) to a given target set in a

single step. The predecessor operator is then called in a recursive

fashion in order to compute the set of states that can be robustly

steered to the given target set in a finite number of steps.

A direct way of approximating the computation of the prede-

cessor set is to grid the state-input-disturbance space, effectively

approximating the original system by a finite state-input-distur-

bance system. Clearly, this approach has computational com-

plexity drawbacks, since the computation grows exponentially

with the dimension of the state, input and disturbance spaces.

Moreover, even though results exist guaranteeing asymptotic

convergence to the real set as the grid gets finer, in practice it

is not always clear how fine or coarse the grid needs to be in

order to have sufficiently accurate results.

A more elegant approach is to use symbolic algebra software

and/or quantifier elimination methods [15], [18]–[20]. The idea

here is to encode the predecessor computation in an appropriate

system of logic using quantifiers to capture requirements that

need to hold for some control actions, all disturbance, at some

or for all times, etc. Computational tools [21], [22] can then be

used to eliminate the quantifiers in these formulas and derive

quantifier free formulas that define the set of states where the

requirements hold (e.g., the predecessor set). For many classes

of systems this approach is exact and does not involve any ap-

proximation. Moreover, the quantifier elimination approach is

very general. In addition to linear and piecewise linear/affine

systems (on which the computational methods proposed in this

paper mostly apply), quantifier elimination methods can also be

applied to a considerably more general class of discrete-time

systems, for example systems whose dynamics and constraints

are encoded by piecewise polynomial functions. The limits of

the applicability of this approach to continuous-time systems are

investigated in [23], where methods for using systems amenable

to the quantifier elimination approach to approximate even more

general classes of systems are also discussed.

The main drawback of methods based on quantifier elimina-

tion is their complexity. It is known that general purpose quan-

tifier elimination is worst case doubly exponential in the size of

the input and output data. For the classes of problems consid-

ered here and under some conditions (e.g., absence of control

and/or disturbance variables), one can exploit structure present

in the formulas used to encode the predecessor computation to

get better performance [24], [25]. Worst case bounds are still ex-

ponential, even though the running times observed in practice

are typically much faster. [26] presents the results in this line

of work that are most closely related to our study. In this refer-

ence, the special structure afforded by piecewise linear functions

is exploited to derive algorithms with very reasonable running

times, reasonable enough to allow their application to realistic

problems in network monitoring. For other cases of the applica-

tion of symbolic methods to problems in control theory (equilib-

rium computation, stabilization, tracking) the reader is referred

to [18], [27], and [28].

It is well-known that if the system is linear or piece-

wise affine and the relevant constraints sets (e.g., ) are poly-

gons, then standard software for polytope manipulation can be

used for reachability analysis [7], [13], [29]. There are a number
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of benefits that can be obtained from using computational ge-

ometry software, rather than gridding the state–space or using

quantifier elimination and computer algebra packages.

• Many algorithms for performing fundamental opera-

tions on polyhedra have a computational complexity

that is a polynomial function of the size of the input

and output data [30]. As mentioned above, many quan-

tifier elimination algorithms do not have this property

and their computational complexity is often doubly-ex-

ponential with respect to the size of the input and/or

output data. For numerical methods based on gridding

the computation is typically exponential in the dimen-

sion of the state, input and disturbance spaces for fixed

accuracy.

• Software for manipulating polyhedra exploit the

structure of the problem, whereas gridding and gen-

eral-purpose quantifier elimination packages do not

always do this. See [31] for some results that show

how, by exploiting the structure when computing

projections of polytopes, a geometric approach can

reduce the computational requirements by a number

of orders of magnitude, compared to quantifier elimi-

nation methods such as Fourier elimination.

• It is often easier to visualize, understand and imple-

ment the results and exploit any structure, whereas it is

not always so clear how to proceed with an approach

that is not geometric.

One of the key aims of this paper is to present results such

that one can perform the relevant reachability computations

using polyhedral algebra and computational geometry software,

provided the system is piecewise affine and the constraints are

polygonal. Existing methods for piecewise affine systems are

limited to systems that either have no control input or no

disturbance [13], whereas the results in this paper remove

this limitation. The extension of these results is not trivial;

we will show, via some examples, that even if all the relevant

sets are convex and the system is linear, convexity of the set

of controllable states cannot be guaranteed if there are mixed

constraints on the state, input and disturbance.

This paper is organized as follows. The problem definition is

given in Sections II-A and B, which relates the problem defini-

tion with some well-known results on set invariance. The main

result for the computation of the predecessor set is presented

in Section II-C, topological properties of the predecessor set

are discussed in Section II-D and special cases are discussed

in Section II-E. Section III highlights the fact that the reacha-

bility analysis can be carried out using polyhedral algebra if the

system is piecewise affine and the relevant sets are polygons. To

validate the results, Section IV presents a few simple numerical

examples. The main contributions of this paper are summarized

in Section V. Appendix I contains some results regarding con-

tinuity of set-valued maps and Appendix II gives some new re-

sults that allow one to compute the set difference of (possibly

nonconvex) polygons.

Note that some of the results given in this paper, namely for

the case where the disturbance is independent of the state and

input, were originally reported in the thesis [32, Ch. 4] and the

conference papers [33] and [34]. The conference paper [35] and

the thesis [36] significantly extended these results to cover the

more general case of state- and input-dependent disturbances;

this paper follows a similar line of development. The results in

[32]–[34] are summarized in Section II-E.3.

II. GENERAL CASE

To keep the notation as simple as possible and maintain a

large degree of generality, we will adopt a nonlinear approach

for a large part of this paper. Definitions and results for inter-

esting special cases, for example when the system is piecewise

affine or the constraints on the disturbance are independent of

the state, will be introduced where appropriate.

Given two sets and , the reflection of

through the origin is , the complement

of in is , the set difference

between and is ,

the Minkowski set addition of and is

and the Pontryagin difference be-

tween and is for all .

Given a set , the (or-

thogonal) projection of the set onto is defined as

such that . The set

of nonnegative integers is denoted by .

A. Definitions

Consider the problem of controlling a nonlinear discrete-time

system in the form

(6)

where is the current state (assumed to be measured), is the

state at the next time instant, is the current input, and is an

uncertain parameter, which shall be referred to as the “distur-

bance,” and may change from one sample to the next.

The disturbance takes on values in a set, which is dependent

on the current state and input, i.e.,

(7)

where denotes the disturbance space. We say that

the disturbance is independent of the state and input if the set

for all and will

use the notation to denote this fact. A distur-

bance that is dependent only on the state or input is defined

in a similar fashion and the notation and

, respectively, will be used to denote this. We

define the “nominal/no disturbance” case when

for all . Note that the set does not directly depend

on previous values of the disturbance. However, constraints of

this type (used, for example, to encode rate constraints on the

disturbance or the disturbance dynamics) can be included, in

cases when it is possible to measure them, by appropriately ex-

tending the state to include past disturbance values. A similar

comment extends to the input constraints.

The state and input are required to satisfy a set of mixed con-

straints

(8)
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where is the state space and is the input

space. These constraints typically arise due to physical limita-

tions, desired levels of performance or safety considerations.

Combining this constraint with the previous constraint on the

disturbance, let

and (9)

be the subset of the graph of where the constraints on the

state and input are also satisfied. In order to have a well-defined

problem, we have the standing assumption that

for all , hence

(10)

The state-dependent set of admissible inputs can now be defined

as

(11)

The set of admissible states is then

such that

(12)

If the state and input constraints are not coupled, then we will

use the notation or to denote this.

Remark 1: Note that for the case when a feedback control

law is applied to (6), by considering

with and , where

and , the

required reachability analysis follows the procedure outlined in

Section II-E.

Often part of the control objective is to guarantee robust con-

vergence to a given set, either in minimum time, some finite time

or asymptotically. Let denote this so-called target set (also

often called terminal constraint set) and, without loss of gener-

ality, assume that

(13)

One of the key aims of this paper is to present results that

allow for the computation of the set of initial states for which

a time-varying state feedback control law exists such that the

constraints on the state and input (8) are robustly satisfied (for

all allowable disturbances) over a finite horizon and that the state

is guaranteed to be in at the end of the horizon.

Let denote a control policy

(sequence of control laws, i.e., , )

over a horizon of length and let

denote a sequence of disturbances. Also, let denote

the solution of (6) when the state is at time 0 (since the system

is time-invariant, we can always take the current time to be zero),

the control policy is and the disturbance sequence is .

For a given current state and policy , let be the

set of admissible disturbance sequences of length , i.e.,

(14)

Clearly, if the disturbance is independent of the state and input,

then for all .

Next, let be the set of admissible policies of length ,

i.e., those policies that satisfy, for all , the state

and control constraints (8) over the horizon ,

and the terminal constraint

(15)

In other words, the set of admissible policies is defined as

(16)

The set is the set of initial states for which an admissible

policy of length exists (often also called the -step control-

lable set) and is defined as

(17)

B. Reachability Analysis and Invariant Sets

Before proceeding to give our main result, we first recall a few

well-known results that link reachability analysis to the compu-

tation of invariant sets. Central to this discussion is the so-called

predecessor set (or one-step set) of a given set.

Definition 1 (Predecessor Set): Given a set , the pre-

decessor set is the set of states for which there exists an

admissible input such that, for all allowable disturbances, the

successor state is in , i.e.,

such that

for all (18)

An equivalent formulation of (18) is

such that

(19)

where .

For any integer , let denote the -step predecessor set

to , i.e., is the set of states that can be steered, by a

time-varying state feedback control law, to the target set in

steps, for all allowable disturbance sequences while satisfying,

at all times, the constraint . In other words, is

given by (17) with . Following a standard procedure [4],

the sequence of sets may be calculated recursively as

follows:

(20a)

(20b)

Recall that a given set is defined to be robust control

invariant [7] if for any , there exists a such that

for all . A robust control invariant

set is called maximal in if all other robust control

invariant sets in are contained in .
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We are now in a position to state some important, well-known

results that link the recursion in (20) to its use in the computation

of invariant sets. Since it is beyond the scope of this paper to give

a detailed literature review of this subject, we refer the reader to

the surveys [7] and [29] for a detailed discussion. In this paper,

we would like to highlight the following results.

Proposition 1 (Results on Set Invariance):

i) There exists a unique robust control invariant set

that is maximal in , provided that is nonempty.

ii) A given set is robust control invariant if and only if

.

iii) is robust control invariant for all if and only

if is robust control invariant.

iv) If , then for all and

the maximal robust control invariant set satisfies

. Furthermore, for a given

if and only if .

Remark 2: If the system has no input , i.e., if is a func-

tion only of , then Proposition 1 still holds with the ap-

propriate modifications to definitions, but with “robust control

invariant” replaced with “robust positively invariant” [7].

Remark 3: Without any additional assumptions on the

system or sets, it is possible to find examples for which

if [6].

It isclear thatresults thatenableonetocomputethepredecessor

set also allow one to compute each of the sets in the sequence

. Furthermore, as will be shown below in Corollary 2,

one can also employ the predecessor operator via the recursion

(20) to compute an arbitrarily close approximation to the max-

imal robust control invariant set , provided some additional

compactness and continuity assumptions are satisfied. Finally,

the computation of the predecessor set plays a crucial role in al-

lowing one to compute optimal control laws for piecewise affine

discrete-time systems with disturbances [34], [37], [38].

C. Main Result

As discussed in the introduction, the main aim of this paper is

to provide results that allow one to use computational geometry

packages for computing the predecessor set. Due to the fact that

existing computational geometry software do not provide gen-

eral tools for the direct elimination of the universal quantifier in

an expression, one first has to obtain an equivalent expression for

the predecessor set that only contains the existential quantifier.

The elimination of the existential quantifier can then be achieved

by computing the projection of an appropriately defined set. Of

course, any suitable quantifier elimination software may also be

used to compute the projection. However, as mentioned in the

Introduction, we are not aware of quantifier elimination methods

withacomputationalcomplexityboundthat isapolynomial func-

tionoftheinputandoutputdata,whereascomputationalgeometry

methods exist with polynomial complexity bounds.

Before proceeding to state our main result, we define

for all

(21)

Fig. 1. Graphical illustration of Theorem 1.

the set of admissible state-input pairs for which the state of the

system at the next sample instant is in a given set for all

admissible disturbances, and

(22)

the set of state-input-disturbance triplets for which the state of

the system evolves to a given set at the next time instant.

Note that the sets and are also functions of the set

as evident from their definitions; however, in order to simplify

notation in the sequel of this paper we simply write and but

we bear in mind that and .

We are now in a position to state our main result, originally

presented in [35] and [36].

Theorem 1 (Predecessor Set): , the set of states that

are robustly controllable to in one step, is given by

(23)

where is given by

(24)

Proof: A graphical interpretation of the proof is given in

Fig. 1.

From the definition of the set difference

(25)

so that

such that (26)

It follows that

for all (27)

The proof is completed by noting that

such that and

for all (28a)

such that

for all (28b)

(28c)
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A conceptual algorithm for computing the sets and

is easily constructed from the above result. The required steps

are outlined by the following prototype algorithm, given the sets

and .

1) Compute the projection .

2) Compute the inverse map .

3) Compute the set difference .

4) Compute the projection .

5) Compute the set difference .

6) Compute the projection .

Note also that if the recursion (20) is to be implemented,

a minor modification of the previous prototype algorithm

is needed; in this case there is no need to recompute

after initialization. We also remark

that the set recursion (20) allows one to compute the sets of

states that can be robustly steered in steps to a

given target set.

In order to implement the result, we clearly need software

for computing inverse images, set differences and projections.

Section III will show that, provided the system is linear

or piecewise affine and the relevant sets are polygons, then the

computation of the predecessor set is easily done using

standard software for polytope manipulation.

D. Topological Properties of the Predecessor Set

The following assumption will be invoked where appropriate.

• A1) The function is con-

tinuous and the set-valued map is

continuous and bounded on bounded sets.

We refer the reader to Appendix I for a review of some basic

definitions and results on set-valued functions.

Theorem 2 (Topological Properties): Suppose A1) holds. If

and are closed, then is closed. If, in addition, is com-

pact, then and are also compact.

Proof: Let the set-valued map be defined

as follows:

(29)

By Proposition 2 in Appendix I, the set-valued function is

continuous. The set , defined in (21), is given by

(30)

Since is continuous and is closed, it follows from Proposi-

tion 3 in Appendix I that is closed (compact if, in addition,

is compact). Since , it follows that

is compact if is compact.

Corollary 1: Suppose A1) holds. If and the target set

are compact, then each set , , computed as in (20), is

compact.

It is very useful to note that if is compact, then the previous

result can be used to establish conditions under which the max-

imal robust control invariant set is the limit of the sequence

of sets if . The next result, which follows

from Corollary 1 and [6, Prop. 4], makes this claim more pre-

cise.

Corollary 2: Suppose A1) holds. If is compact, the max-

imal robust control invariant set is nonempty and ,

then is compact and . Furthermore, given

any open set such that , there exists an

such that for all .

Remark 4: Note that if , then the require-

ment that A1) hold and be compact is not sufficient for

(where the limit is appropriately defined

and assumed to exist) to be closed or compact. It is not difficult

to find examples where A1) holds, is compact and ,

but is open. Clearly, it is also not difficult to find examples

for which is not equal to the maximal robust control

invariant set .

We also remark that if is not compact then the previous ob-

servations (Corollaries 1 and 2) apply directly to any (arbitrarily

large) compact subset of with obvious modifications.

E. Special Cases

1) Disturbance is Dependent Only on the State or

Input: Consider first the simpler case when the disturbance

constraint set is a function of only, i.e., the disturbance

satisfies . The definitions of and in (9) and (21),

respectively, and become

and (31)

for all

(32)

and

such that

for all (33)

Theorems 1 and 2 and Corollaries 1 and 2 remain true with

these changes. A similar modification is needed if the distur-

bance constraint set is a function of only, i.e., the disturbance

satisfies .

2) System Does Not Have an Input: Next, consider the case

when is a function of only, i.e., the system has no

input and . In this case, the constraint

is replaced by and the definitions of , and

in Theorem 1, and are replaced by

and (34)

for all (35)

(36)

and

for all (37)

In other words, is now the set of admissible states

such that the successor state lies in for all . In this

case, the conclusion of Theorem 1 becomes

(38)

As can be seen, this special case results in less computa-

tional effort, since operations are performed in lower dimen-

sional spaces and only one projection operation is needed.

Also, in this case where there is no control input, A1) is re-

placed by the following.

• A1’) The function is continuous

and the set-valued map is continuous and

bounded on bounded sets.

Theorem 2 and Corollaries 1 and 2 remain true subject to the

above modifications, but with “maximal robust control invariant
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set” in Corollary 2 replaced with “maximal robust positively

invariant set.”

3) Additive, Independent Disturbances: The case when the

disturbance is additive and independent of the state and input

deserves a detailed discussion. In this case, Theorem 1 still pro-

vides a method for computing the predecessor set. However, an

alternative to Theorem 1 was originally presented in [32]–[34].

We recall the result and its proof.

Theorem 3 (Additive, Independent Disturbance): Let the dis-

turbance be additive and independent of the state and input, i.e.,

and

(39)

The predecessor set is then given by

(40a)

(40b)

where the Pontryagin difference is given by

(41a)

(41b)

Proof: It follows easily from the definitions that

such that

and for all (42a)

for all (42b)

hence (40) is verified directly from the definition of the Pon-

tryagin difference. Recall that the Pontryagin difference is de-

fined as for all , hence

the truth of (41) follows from:

(43a)

(43b)

(43c)

(43d)

(43e)

(43f)

Remark 5: It is important to note that the majority of well-

known results in the control literature on computing the Pon-

tryagin difference , such as those in [4], [5], and [39], only

consider the case when is a convex polyhedron. The above re-

sult allows for the computation of the Pontryagin difference of

nonconvex polygons.

Remark 6: It is interesting to note that though (41) does not

appear to have been reported in the control literature, it is a well-

known identity in the field of mathematical morphology [40],

[41], where the Pontryagin difference is often called the

erosion of by .

A prototype algorithm for computing the predecessor set is

easily derived from Theorem 3.

1) Compute the reflection .

2) Compute the complement as a set differ-

ence.

3) Compute the Minkowski sum .

4) Compute the Pontryagin difference

as a set difference.

5) Compute .

6) Compute the projection .

Clearly, appropriate software is needed for computing the re-

flection, Minkowski sum, set difference, inverse image, inter-

section and projection of sets. This can be done for a large class

of nonlinear systems by gridding the state space or by using

computer algebra packages. However, as will be pointed out

in Section III, one of the aims of this paper is to highlight the

fact that all these operations can be done using standard poly-

tope software, provided the system is linear or piecewise affine

and the constraint sets are polygons. At this point, it is worth

pointing out that it can be shown (see, for example, [36] and

[38]) that

(44)

where is the convex hull of ; the Pontryagin differ-

ence is efficiently computed using the algorithm

in [39] if is a polytope. It is also worth pointing it out that the

formula (44) is still valid if is replaced by any convex

set that contains [36].

Obviously, any algorithm for computing the Pontryagin dif-

ference that is derived from (41) or (44) will result in exactly the

same set. However, in practice the computational requirements

depend very much on the specifics of the problem and the com-

putational tools that are available. It may be that an algorithm

derived directly from one equation is faster than an algorithm

directly based on another equation. It is also not always easy to

tell whether an algorithm for computing the predecessor set is

more efficient if it were based on Theorem 1 or whether it were

based on Theorem 3. A possible direction for further research

is to find results that allow one to determine a priori the most

efficient algorithms for computing the predecessor set, based on

sensible assumptions on the data.

Finally, we conclude this section by pointing out that all of

the results in this section are true if is a function of only,

i.e., , provided the appropriate modifications to

definitions are made. In this case, no final projection operation

is necessary, since

(45a)

(45b)

III. LINEAR AND PIECEWISE AFFINE SYSTEMS WITH

POLYGONAL CONSTRAINT SETS

Up to now, we have deliberately not made any special as-

sumptions on the structure of . The main aim of this sec-

tion is to point out that the computation of the predecessor set is

possible using existing computational geometry software, pro-

vided is linear or piecewise affine and the constraint sets

are polygons.

The main reason for presenting the results in Sections II-C

and E in their current form, is because it is not possible to de-

rive an algorithm for computing the predecessor set, which uses

computational geometry software, directly from the definition in

(18). However, Theorems 1 and 3 allow for the straightforward
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derivation of algorithms that can be implemented using readily

available software libraries for the manipulation of polyhedra.

All the operations encountered in Sections II-C and E, such

as projection, set difference, piecewise affine maps and their

inverse, Minkowski sums, intersections, etc., are easily imple-

mented using existing computational geometry software pack-

ages. The reader is referred to [31], [42]–[44] and the large lit-

erature on computational geometry for details.

Another reason for presenting the results as above, is to main-

tain a high degree of generality and to emphasize the structure

of the results. When dealing with piecewise affine systems or

nonconvex constraints, it is easy to exhaust the reader with no-

tational details. As a consequence of the chosen style of pre-

sentation, we are now in a better position to state some basic

definitions and present the main results, without having to in-

troduce too much additional notation.

A. Definitions and Notation

A polyhedron is the intersection of a finite number of closed

and/or open halfspaces, a polytope is a closed and bounded

(equivalently, compact) polyhedron and a polygon is the union

of a finite number of polyhedra (and is thus not necessarily

convex). A family of sets is a (closed) poly-

hedral cover of a (closed) polygon if the index set

is finite, each is a nonempty (closed) polyhedron and

. Where it is useful, , and will denote, respec-

tively, a polyhedral cover of a polygon , its associated index

set and the th polyhedron in the cover.

Remark 7: It is important to discuss a few points regarding

the previous definitions.

• A polyhedron is often defined in the literature to be

the intersection of a finite number of closed halfspaces.

The main reason for modifying the definition is be-

cause it allows us to considerably simplify the presen-

tation of the results in this paper, without sacrificing

rigor.

• A polyhedral cover of a polygon should not be con-

fused with the polygon itself. The former object is a

family of sets that can be used to conveniently describe

the latter object, which is a single set. A given polygon

may have any number of suitable polyhedral covers as-

sociated with it. This distinction between a polygon

and its polyhedral cover is important when interpreting

the results in this paper and implementing them with

existing algorithms for polytope manipulation. For ex-

ample, a closed polygon need not be described by a

closed polyhedral cover; any number of members of

the polyhedral cover are allowed to be neither closed

nor open, provided the union of all the members is

closed and equal to the polygon.

• The definition of a polyhedral cover given here is

weaker than that of a so-called polyhedral partition,

as defined in [45]. The latter object is a polyhedral

cover, where the members are closed polyhedra with

nonempty interiors and the interiors of the members

are mutually disjoint.

Fig. 2. Graph ofW .

• The definition of a polyhedral cover is weaker than that

of a so-called complex, as defined in [46]. A complex

is a polyhedral cover, where the members are closed

polyhedra, the faces of each of the members of the

cover are also members of the cover and the intersec-

tion of any two members of the cover is a face of each

of them.

• Our use of the term cover is stronger than the one

commonly used in topology, where a cover of a set

is a (possibly infinite) collection of nonempty sets

such that . In this

paper, we require equality (not the weaker condition

of inclusion) and that the collection of sets is finite.

Finally, a function is said to be piecewise

affine on a polyhedral cover of a polygon

if the restriction is affine for all

.

B. Main Results

In this section, we make the following assumption.

• A2) is a polygon (hence, is also a polygon) and

the system in (6) is piecewise affine

on a polyhedral cover of the

polygon , i.e.,

(46)

where for all , the matrices ,

, , and vector .

Remark 8: Note that existing results on reachability anal-

ysis of discrete-time piecewise affine systems assume that either

there is no control input or there is no disturbance, i.e., all the

or all the [13]. The results in this paper allow

one to remove this restriction.

For convenience, we define the functions ,

, as

(47)



554 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 4, APRIL 2006

Fig. 3. Sets � for i = 1; 2; 3; 4.

Remark 9: Clearly, if has cardinality 1, then is affine

(linear if, additionally, ). Note also that, since is

assumed to be single-valued, it follows that if and

, then for all

.

We now give the main result of this section, where we make

the assumption that the system is piecewise affine and all rele-

vant sets are polygons. In this case, it is easy to specialize the

prototype algorithms in Sections II-C and E.3 and implement

them using standard computational geometry software.

Theorem 4 (Piecewise Affine Systems): Suppose A2) holds.

If is a polygon, then the predecessor set , as given in

(18) and (23), is a polygon. Furthermore, the set as given in

(21) is also a polygon.

Proof: Recall the statement of Theorem 1. Let

be a polyhedral cover of the polygon . First,

note that

(48a)

(48b)

Since each nonempty set

is a polyhedron, it follows that is a polygon with

a easily-derived polyhedral cover.

Next, recall that the projection of the union of a finite number

of sets is the union of the projections of the individual sets,

hence the projection of a polygon is also a polygon, i.e., if

is a polygon with a polyhedral cover ,

then is a polyhedral cover of the polygon

. Note also that is a polygon, hence, its projection onto

is a polygon. Similarly, if is a polygon, then so

too is its projection onto .

What remains to be shown is that and are polygons.

This follows immediately from referring to Appendix II, where

it is shown that the set difference between two polygons is also

a polygon.

The proof of the following result follows similar arguments

as in Theorem 2 and Corollary 1 by noting that the projection

of a closed polygon is a closed polygon.

Corollary 3: Suppose A1) and A2) hold. If the target set

is a (closed/compact) polygon (and is a closed/compact

polygon), then each set , , computed as in (20), is a

(closed/compact) polygon.

The results above can be combined with the results presented

in Section II to develop and implement a number of “first-at-

tempt” algorithms for reachability analysis of piecewise affine

systems, based on the prototype algorithms in Sections II-C and

E.3. The set differences can be computed using the results in Ap-

pendix II and the inverse maps are obtained directly from (48);

all other operations, such as projection and Minkowski summa-

tion, are standard and relevant software is readily available [31],

[42]–[44]. These algorithms can then be analyzed and used as a

basis for proposing and comparing more efficient algorithms.

It is important to note that, in practice, different computa-

tional geometry problems benefit greatly from modifying an al-

gorithm in subtle, but important ways. A practical algorithm

with a meaningful complexity bound can only be obtained by

looking at the exact problem structure and choosing the right

subset of methods from one or more computational geometry

software libraries.

By considering a few special cases, we have provided a

number of results that allow for the derivation of different
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Fig. 4. Graph of (top)W and (bottom) the set �.

algorithms that exploit the system structure. Since there is such

a large class of special cases and the various algorithms for

polyhedra can be combined in any number of suitable ways, it

is beyond the scope of this paper to propose a specific, detailed

algorithm and to derive rigorous computational complexity

results. An important research topic would be to assume a

certain problem structure, use one of the results in this paper,

develop the algorithmic details and analyze its complexity

when implemented with different computational geometry

software libraries.

Remark 10: Clearly, all the results in this section still hold

if the system is linear. Once again, there may be many com-

putational and theoretical benefits in exploiting the linearity of

the system, convexity of the sets or if the constraints are decou-

pled. However, it is important to note that, even if all the sets

are convex and the system is linear, there is no guarantee that

is convex if the disturbance is dependent on the state

and input. This claim is justified in Section IV-A via a numerical

example. Note that this is in strong contrast to the well-known

fact that is convex if all the sets are convex and the dis-

turbance is not dependent on the state and input.

IV. EXAMPLES

In order to illustrate our results, we consider two simple

examples. In the first, the system is scalar and the distur-

bance state-dependent ; in the second, the

system is second-order and the disturbance control-dependent

.

A. Scalar System With State-Dependent Disturbances

We consider the following scalar system:

(49)

which is subject to the constraints where

(50)

The state-dependent disturbance satisfies

(51)

where

The set is shown in Fig. 2. The target set is

, which was chosen to be robust control

invariant.

The sequence of -step controllable is computed by

using the results of Theorem 1 and some of the sets are:

, ,

,

,

,

, and

. The set of all states
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Fig. 5. Graph of (top)W and (bottom) the set � (bottom).

that can be steered to the target set, while satisfying state and

control constraints, for all allowable disturbance sequences, is:

. The sets for

are also shown in Fig. 3.

In order to illustrate the fact that the -step controllable set

can be nonconvex even if , , and the graph of are

convex, consider the same example. This time the state-depen-

dent disturbance satisfies where

(52)

If the target set is , the

one-step set is

. The sets and are shown in Fig. 4.

Even if is a robust control invariant set, the con-

vexity of each -step set still cannot be guaranteed. This

is easily illustrated by considering the same example with

and where

and the robust control invariant target set

. In this case, the one-step robust control

invariant set is

. The sets and are shown in Fig. 5.

B. Second-Order LTI Example With Control-Dependent

Disturbances

The discrete-time linear time-invariant system

(53)

is subject to the state and control constraints

with

and

(54)

The control-dependent disturbance satisfies

(55)

where and are given by

(56)

and

(57)

The target set is
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Fig. 6. Graph ofW .

which was chosen to be robust control invariant. The projec-

tions of the set onto two-dimensional subspaces are shown

in Fig. 6. Some of the -step controllable sets, computed using

Theorem 1, are shown in Fig. 7.

V. CONCLUSION

The main result of this paper (Theorem 1) showed how one

can obtain , the set of states that can be robustly steered

to , via the computation of a sequence of set differences and

projections. It was then shown in Theorem 4 that if and the

relevant constraint sets are polygons (i.e., they are given by the

unions of finite sets of convex polyhedra) and the system is

linear or piecewise affine, then is also a polygon and can

be computed using standard computational geometry software.

In particular, new results were given in Appendix II which allow

one to compute the set difference for (possibly nonconvex) poly-

gons by solving a finite number of LPs. Finally, some simple ex-

amples were given which show that, even if the system is linear,

the respective constraint sets are convex and the target set is ro-

bust control invariant, convexity of the -step controllable sets

cannot be guaranteed.

Future work could focus on using the results in this paper to

develop efficient algorithms that exploit system structure. For

piecewise affine systems, the complexity of the description of

the output of a reachability computation might, in general, be

worst-case exponential in terms of the size of the input data.

Clearly, there is nothing that one could do about the inherent

complexity of a solution, except maybe through making suit-

able approximations during computation time. However, as is

common practice in computational geometry [30], [31], it may

be more appropriate to analyze the complexity of a reachability

algorithm not only in terms of the size of the input data, but also

in terms of the size of the output data. In computational geom-

etry, an algorithm is said to be tractable if it has a computational

complexity that is a polynomial function of the size of the input

and output data. This notion could also be applied to the rig-

orous analysis of the complexity of reachability algorithms for

piecewise affine systems.

APPENDIX I

RESULTS ON SET-VALUED FUNCTIONS

The definitions of inner and outer semicontinuity employed

below are due to [47]; for Definitions 1–4 and Theorem 5, see

[48]; Polak also provided the proof of Proposition 2 (private

communication). In what follows,

and .

Definition 2: A set-valued map is outer

semi-continuous (o.s.c.) at if is closed and, for every

compact set such that , there exists a

such that for all . A set-valued map

is o.s.c. if it is o.s.c. at every .

Definition 3: A set-valued map is inner

semi-continuous (i.s.c.) at if is closed and, for every

open set such that , there exists a such

that for all . A set-valued map

is i.s.c. if it is i.s.c. at every .

Definition 4: A set-valued map is contin-

uous if it is both o.s.c. and i.s.c.

Definition 5: A point is a limit point of the infinite sequence

of sets if . A point is a cluster point if

there exists a subsequence such that as

, . The set is the set of cluster points

of and is the set of limit points of ,

i.e., is the set of cluster points of sequences

such that for all and is the set of

limits of sequences such that for all .

The sets converge to the set ( or )

if .
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Fig. 7. Sets X for i = 0; 1; . . . ; 7.

The following result appears as [48, Th. 5.3.7].

Theorem 5:

i) A function is o.s.c. at if and

only if for any sequence such that ,

. Also, is o.s.c. if and only if

it graph is closed.

ii) A function is i.s.c. at if and

only if for any sequence such that ,

.

iii) Suppose is such that is compact

for all and bounded on bounded sets. Then,

is o.s.c. at if and only if, for every open set such that

, there exists a such that

for all .

Proposition 2: Suppose that is con-

tinuous and that is continuous and bounded

on bounded sets. Then the set-valued function

defined by is continuous.

Proof:

i) ( is o.s.c.). Let be any infinite sequence such that

and let be any infinite sequence such that

for all and . Then, for all

, with . Since lies

in a compact set and is bounded on

bounded sets, there exists a subsequence of such

that as , . Since is

continuous, . Hence

This implies that is o.s.c.

ii) ( is i.s.c.) Let be any infinite sequence such that

and let be an arbitrary point in . Then,

for some . Since is contin-

uous, there exists an infinite sequence such that

and . Then

for all and

This implies that is i.s.c.

Proposition 3: Suppose is continuous and

that is closed. Then, the (outer) inverse set

is closed.

Proof: Suppose is an arbitrary infinite sequence in

( for all ) such that . Since

is continuous, . Because is closed,

for all implies . Hence,

so that is closed.
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APPENDIX II

SET DIFFERENCE BETWEEN POLYGONS

Since we were unable to find any specific details in the litera-

ture on computing the set difference and/or complement of poly-

gons, we include some basic results in this section that are easily

implemented using standard computational geometry software

libraries. Further research could be focused on deriving more

efficient algorithms that exploit any structure in the problem.

Before proceeding, let and recall that

the complement of in is and that

. In other words, the set difference operation also allows

us to compute the complement of a set in a given space. For the

definitions of a polyhedron, polygon and polyhedral cover, see

Section III.

The first result, which is due to [45], allows one to compute

the set difference between two polyhedra.

Proposition 4: Let be a polyhedron and let

be a nonempty polyhedron,

where all the and . If

(58a)

(58b)

then the set difference is a polygon. Further-

more, the polyhedral cover is a partition of

.

Remark 11: Note that in order to simplify notation was

assumed to be closed, whereas no similar assumption on has

been made. Clearly, Proposition 4 is without loss of generality,

since the result is trivially extended (at the expense of an increase

in notational complexity) for the case when is not closed.

In practice, computation time can be reduced by checking

whether is empty or whether before actually

computing ; if , then and if ,

then . Using an extended version of Farkas’ Lemma

[7, Lemma 4.1], checking whether one polyhedron is contained

in another amounts to solving a single LP. Alternatively, one can

solve a finite number of smaller LPs to test for set inclusion [32,

Prop. 3.4].

Once has been computed, the memory requirements can

be reduced by removing all empty and removing any redun-

dant inequalities describing the nonempty . Checking whether

a polyhedron is nonempty can be done by solving a single linear

program (LP). Removing redundant inequalities can be done

by solving a finite number of LPs [30]. As a general rule, it is

usually a good idea to determine first whether a polyhedron is

nonempty or not before removing redundant inequalities.

The second result allows one to compute the set difference

between a polygon and a polyhedron.

Proposition 5: Let be a polyhedral cover

of the polygon . If is a nonempty polyhedron, then each

nonempty , , is a polygon and the set difference

(59)

is also a polygon.

Proof: This follows trivially from

.

Note that if the polyhedral cover is a parti-

tion of and is nonempty, then it is easy to compute a

polyhedral cover of that is also a partition of , pro-

vided Proposition 4 were used to compute the polyhedral cover

of each , .

The last result allows one to compute the set difference be-

tween two polygons.

Proposition 6: Let and

be polyhedral covers of the polygons and , respectively. If

(60a)

(60b)

then the set difference is a polygon.

Proof: The result follows from noting that

(61a)

(61b)

(61c)

(61d)

(61e)

(61f)

(61g)

Letting and , , yields the

claim.

Clearly, polyhedral covers for all the polygons ,

, can be computed using Proposition 5. Note also that

if the polyhedral cover is a partition of and

is nonempty, then it is easy to compute a polyhedral cover

of that is also a partition of by using Propositions 4

and 5 to compute polyhedral covers for all the , .
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