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Abstract. This paper deals with conservative reachability analysis of
a class of hybrid systems with continuous dynamics described by lin-
ear differential inclusions, convex invariants and guards, and linear reset
maps. We present an approach for computing over-approximations of
the set of reachable states. It is based on the notion of support function
and thus it allows us to consider invariants, guards and constraints on
continuous inputs and initial states defined by arbitrary compact convex
sets. We show how the properties of support functions make it possible
to derive an effective algorithm for approximate reachability analysis of
hybrid systems. We use our approach on some examples including the
navigation benchmark for hybrid systems verification.

1 Introduction

Reachability analysis has been a major research issue in the field of hybrid
systems over the past decade. An important part of the effort has been devoted to
hybrid systems where the continuous dynamics is described by linear differential
equations or inclusions. This work resulted in several computational techniques
for approximating the reachable set of a hybrid system using several classes of
convex sets including polyhedrons [1,2], ellipsoids [3,4], hyperrectangles [5] or
zonotopes [6,7]. In these approaches, the set of continuous inputs is assumed
to belong to the considered class; invariants and guards are usually given by
polyhedrons or also sometimes by ellipsoids (e.g. in [3]).

In this paper, we propose an approach that can handle hybrid systems where
invariants, guards and constraints on the continuous inputs and initial states are
defined by arbitrary compact convex sets. It is based on the representation of
compact convex sets using their support function. Algorithms based on support
functions have already been proposed for reachability analysis of purely contin-
uous systems in [8] and more recently in [9], using the efficient computational
scheme presented in [7]. We extend this latter approach to handle hybrid dy-
namics. The paper is organized as follows. In section 2, we briefly present some
results from [9] on reachability analysis of continuous linear systems. In section
3, we adapt these results for hybrid systems by taking care of the constraints
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imposed by invariants and guards. In section 4, we present the notion of support
functions for convex sets. In section 5, we show how the properties of support
functions make it possible to derive an effective implementation of the algorithm
presented in section 3 for reachability analysis of hybrid systems. Finally, we use
our approach on some examples including the navigation benchmark for hybrid
systems verification [10].

Notations : Given a set S ⊆ R
n, CH(S) denotes its convex hull. For a matrix

M , MS denotes the image of S by M , and for a real number λ, λS = (λI)S
where I is the identity matrix. For S, S′ ⊆ R

n, S ⊕ S′ denotes the Minkowski
sum of S and S′: S ⊕ S′ = {x + x′ : x ∈ S, x′ ∈ S′}. For a matrix M , M�

denotes its transpose.

2 Reachability Analysis of Linear Systems

In this paper, we shall consider a class of hybrid systems where the continuous
dynamics is described by linear differential inclusions of the form:

ẋ(t) ∈ Ax(t) ⊕ U ,

where the continuous state x(t) ∈ R
n, A is a n × n matrix and U ⊆ R

n is a
compact convex set; note that U need not be full dimensional. Let X ⊆ R

n, we
denote by RC(s,X ) ⊆ R

n the set of states reachable at time s ≥ 0 from states in
X : RC(s,X ) = {x(s) : ∀t ∈ [0, s], ẋ(t) ∈ Ax(t) ⊕ U , and x(0) ∈ X} . Then, the
reachable set on the time interval [s, s′] is defined as

RC([s, s′],X ) =
⋃

t∈[s,s′]

RC(t,X ).

Let X ⊆ R
n be a compact convex set of initial states and T > 0 a time bound. In

the recent paper [9], we presented an improved computational scheme, adapted
from [6], for the over-approximation of the reachable set RC([0, T ],X ). Let ‖.‖
be a norm and B ⊆ R

n the associated unit ball. We denote δX = maxx∈X ‖x‖,
and δU = maxu∈U ‖u‖. We use a discretization of the time with step τ = T/N
(N ∈ N). We have

RC([0, T ],X ) =
N−1⋃

i=0

RC([iτ, (i + 1)τ ],X ).

An over-approximation of RC([0, T ],X ) can be obtained by computing over-
approximations of the sets RC([iτ, (i+1)τ ],X ). We consider the first element of
the sequence.

Lemma 1. [9] Let Y0 ⊆ R
n be defined by :

Y0 = CH
(X ∪ (eτAX ⊕ τU ⊕ ατB)

)
(1)

where ατ = (eτ‖A‖ − 1 − τ‖A‖)(δX + δU
‖A‖). Then, RC([0, τ ],X ) ⊆ Y0.
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This lemma can be roughly understood as follows, eτAX⊕τU is an approximation
of the reachable set at time τ ; a bloating operation followed by a convex hull
operation gives an approximation of RC([0, τ ],X ). The bloating factor ατ is
chosen to ensure over-approximation. We consider the other elements of the
sequence. Let us remark that

RC([(i + 1)τ, (i + 2)τ ],X ) = RC (τ,RC(, [iτ, (i + 1)τ ],X )) , i = 0, . . . , N − 2.

For Y ⊆ R
n, the following lemma gives an over-approximation of RC(τ,Y):

Lemma 2. [9] Let Y ⊆ R
n, Y ′ ⊆ R

n defined by Y ′ = eτAY ⊕ τU ⊕ βτB where
βτ = (eτ‖A‖ − 1 − τ‖A‖) δU

‖A‖ . Then, RC(τ,Y) ⊆ Y ′.

The set eτAY ⊕ τU is an approximation the reachable set at time τ ; bloating
this set using the ball of radius βτ ensures over-approximation. We can define
the compact convex sets Yi over-approximating the reachable sets RC([iτ, (i +
1)τ ],X ) as follows. Y0 is given by equation (1) and

Yi+1 = eτAYi ⊕ τU ⊕ βτB, i = 0, . . . , N − 2. (2)

Then, it follows from Lemmas 1 and 2:

Proposition 1. [9] Let us consider the sets Y0, . . . ,YN−1 defined by equations
(1) and (2); then, RC([0, T ],X ) ⊆ (Y0 ∪ · · · ∪ YN−1).

We refer the reader to our work in [9] for technical proofs and explicit bounds
on the approximation error.

3 Reachability Analysis of Hybrid Systems

In this paper, we consider a class of hybrid systems with continuous dynamics
described by linear differential inclusions, convex invariants and guards, and
linear reset maps. Formally, a hybrid system is a tuple H = (Rn, Q, E, F, I,G, R)
where R

n is the continuous state-space, Q is a finite set of locations and E ⊆
Q × Q is the set of discrete transitions. F = {Fq : q ∈ Q} is a collection of
continuous dynamics; for each q ∈ Q, Fq = (Aq,Uq) where Aq is a n × n matrix
and Uq ⊆ R

n is a compact convex set. I = {Iq : q ∈ Q} is a collection of
invariants; for each q ∈ Q, Iq ⊆ R

n is a compact convex set. G = {Ge : e ∈ E}
is a collection of guards; for each e ∈ E, Ge ⊆ R

n is either a compact convex set
or a hyperplane. R = {Re : e ∈ E} is a collection of reset maps; for each e ∈ E,
Re = (Be,Ve) where Be is a n×n matrix and Ve ⊆ R

n is a compact convex set.
Let us remark that the sets Uq, Iq, Ge and Ve are only assumed to be compact
and convex, these can be polyhedrons, ellipsoids or more complex convex sets.
We distinguish the case where Ge is a hyperplane; in this case, we shall see that
reachability analysis can be processed more accurately.

The state of the hybrid system at time t is a pair (q(t), x(t)) consisting of a
discrete state q(t) ∈ Q and a continuous state x(t) ∈ R

n. The state of the hybrid
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system can evolve in a continuous or discrete manner. During the continuous
evolution, the discrete state remains constant q(t) = q and the continuous state
evolves according to the linear differential inclusion:

ẋ(t) ∈ Aqx(t) ⊕ Uq and x(t) ∈ Iq.

The discrete evolution is enabled at time t if the state (q(t), x(t)) = (q, x) satisfies
x ∈ Ge for some e = (q, q′) ∈ E. Then, the transition e can occur instantaneously:
the state of the hybrid system jumps to (q(t), x(t)) = (q′, x′) where

x′ ∈ Bex ⊕ Ve.

In the following, for simplicity of the presentation, we consider reachability
analysis of hybrid systems on an unbounded time interval with the understanding
that the termination of the described algorithms is not ensured.

Let Σ0 =
⋃

q∈Q{q} × X0,q ⊆ Q × R
n be a set of initial states where, for

q ∈ Q, X0,q ⊆ R
n is a compact convex set. The set of states reachable under the

evolution of the hybrid system from this set of initial states is denoted RH(Σ0).
In a given location q, the set of continuous states reachable under the continuous
evolution from a set of continuous states X is

Rloc(q,X ) = {x(s) : s ≥ 0, ∀t ∈ [0, s], ẋ(t) ∈ Aqx(t) ⊕ Uq, x(t) ∈ Iq, x(0) ∈ X}

A transition e ∈ E of the form e = (q, q′) can occur if Rloc(q,X ) ∩ Ge 
= ∅, the
set of continuous states reachable just after the transition is

Rjump(e,X ) = Be (Rloc(q,X ) ∩ Ge) ⊕ Ve.

Then, the set of reachable states RH(Σ0) can be computed by Algorithm 1.

Algorithm 1. Reachability analysis of a hybrid system
Input: Set of initial states Σ0 =

⋃
q∈Q{q} × X0,q

Output: R = RH(Σ0)
1: L← {(q,X0,q) : q ∈ Q}
2: Σ ← ∅
3: R ← ∅
4: while L �= ∅ do
5: Pick (q,X ) ∈ L
6: Σ ← Σ ∪ ({q} × X )
7: R← R∪ ({q} × Rloc(q,X )) � Reachable set by continuous evolution
8: for e ∈ E of the form e = (q, q′) do � Reachable set by discrete evolution
9: if {q′} ×Rjump(e,X ) �⊆ Σ then

10: Insert (q′,Rjump(e,X )) in L � Insert in L if not explored yet
11: end if
12: end for
13: end while
14: return R
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In the variable L, we store a list of sets from which reachability analysis has
to be processed. Σ ⊆ Q × R

n represents the set of explored states from which
reachability analysis has already been made.

It is clear that an algorithm for computing over-approximations of Rloc(q,X )
and Rjump(e,X ) is sufficient for conservative reachability analysis of the hybrid
system. This can be done using Algorithm 2 adapted from the method presented
in the previous section for reachability analysis of linear systems. For lighter
notations, the index q has been dropped. We use a discretization of time with a
step τ > 0. The real numbers ατ and βτ are those defined in Lemmas 1 and 2.
Note that Algorithm 2 takes a convex set X as input; therefore, in order to use
it in a straightforward implementation of Algorithm 1, it needs to compute a
convex over-approximation of Rjump(e,X ).

Algorithm 2. Reachability analysis in a given location q

Input: Convex set of states X , time step τ .
Output: R ⊇ Rloc(q,X ); convex Xe ⊇ Rjump(e,X ), for e ∈ E such that e = (q, q′)
1: Z0 ← CH

(X ∪ (eτAX ⊕ τU ⊕ ατB)
) ∩ I � Initialize the reachable set

2: R ← Z0

3: i← 0
4: while Zi �= ∅ do
5: Zi+1 ←

(
eτAZi ⊕ τU ⊕ βτB

) ∩ I � Propagate the reachable set
6: R← R∪Zi+1

7: i← i + 1
8: end while
9: for e ∈ E such that e = (q, q′) do

10: He ← CH(R∩ Ge) � Intersect with guards
11: Xe ← BeHe ⊕ Ve � Reachable set after the transition
12: end for
13: return R; Xe, for e ∈ E such that e = (q, q′)

Proposition 2. Let R; Xe, for e ∈ E such that e = (q, q′) be computed by
Algorithm 2. Then, Rloc(q,X ) ⊆ R and Rjump(e,X ) ⊆ Xe.

Proof. Let z ∈ Rloc(q,X ), then there exists s ≥ 0 and a function x(.) such that
x(s) = z, x(0) ∈ X and for all t ∈ [0, s], ẋ(t) ∈ Ax(t) ⊕ U and x(t) ∈ I. Let
i∗ ∈ N such that s ∈ [i∗τ, (i∗ + 1)τ ]. Let us remark that s − i∗τ ∈ [0, τ ], then
from Lemma 1 and since x(s − i∗τ) ∈ I, it follows that x(s − i∗τ) ∈ Z0. Let us
show, by induction, that for all i = 0, . . . , i∗, x(s + (i − i∗)τ) ∈ Zi. This is true
for i = 0; let us assume that it is true for some i ≤ i∗ − 1. Then, from Lemma 2
and since x(s + (i + 1 − i∗)τ) ∈ I, it follows that x(s + (i + 1 − i∗)τ) ∈ Zi+1.
Therefore, for all i = 0, . . . , i∗, x(s + (i − i∗)τ) ∈ Zi, which implies for i = i∗

that z = x(s) ∈ Zi∗ ⊆ R. The first part of the proposition is proved. It follows
that Rjump(e,X ) ⊆ (Be(R∩ Ge) ⊕ Ve) ⊆ Xe. �
In the following, we discuss the implementation of the Algorithm 2 based on the
notion of support functions.
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4 Support Functions of Convex Sets

The support function of a convex set is a classical tool of convex analysis. Support
functions can be used as a representation of arbitrary complex compact convex
sets. In this section, we present some properties of support functions and show
how they can be used for the computation of polyhedral over-approximations
of convex sets. The results are stated without the proofs that can be found in
several textbooks on convex analysis (see e.g. [11,12,13]).

Definition 1. Let S ⊆ R
n be a compact convex set; the support function of S

is ρS : R
n → R defined by ρS(	) = maxx∈S 	 · x.

The notion of support function is illustrated in Figure 1.

�1

�2

�4

F1 : �1 · x = ρS(�1)

F2 : �2 · x = ρS(�2)

F3 : �3 · x = ρS(�3)

F4 : �4 · x = ρS(�4)

S �3

Fig. 1. Illustration of the notion of support function of a convex set S

4.1 Properties of Support Functions

It can be shown that the support function of a compact convex set is a convex
function. For two compact convex sets, S and S′, it is easy to see that S ⊆ S′ if
and only if ρS(	) ≤ ρS′(	) for all 	 ∈ R

n. It is to be noted that a compact convex
set S is uniquely determined by its support function as the following equality
holds:

S =
⋂

�∈Rn

{x ∈ R
n : 	 · x ≤ ρS(	)}.

From the previous equation, it is clear that a polyhedral over-approximation of
a compact convex set can be obtained by “sampling” its support function:

Proposition 3. Let S be a compact convex set and 	1, . . . , 	r ∈ R
n be arbitrarily

chosen vectors; let us define the following polyhedron:

S = {x ∈ R
n : 	k · x ≤ ρS(	k), k = 1, . . . , r}.

Then, S ⊆ S. Moreover, we say that this over-approximation is tight as S touches
the faces F1, . . . ,Fr of S.
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An example of such polyhedral over-approximation of a convex set can be seen
in Figure 1. The support function can be computed efficiently for a large class
of compact convex sets. Let B1, B2, B∞ denote the unit balls for the 1, 2 and
∞ norms. Then, ρB1(	) = ‖	‖∞, ρB2(	) = ‖	‖2 and ρB∞(	) = ‖	‖1. Let Q be a
n × n positive definite symmetric matrix, then for the ellipsoid:

E =
{
x ∈ R

n : x�Q−1x ≤ 1
}

, ρE(	) =
√

	�Q	.

Let g1, . . . , gr ∈ R
n, then for the zonotope:

Z = {α1g1 + · · · + αrgr : αj ∈ [−1, 1], j = 1, . . . , r} , ρZ(	) =
r∑

j=1

|gj · 	|.

Let c1, . . . , cr ∈ R
n and d1, . . . , dr ∈ R, then for the polyhedron

P = {x ∈ Rn : cj · x ≤ dj , j = 1, . . . , r} ,

ρP(	) can be determined by solving the linear program
{

maximize 	 · x
subject to cj · x ≤ dj , j = 1, . . . , r

More complex sets can be considered using the following operations on elemen-
tary compact convex sets:

Proposition 4. For all compact convex sets S, S′ ⊆ R
n, for all matrices M , all

positive scalars λ, and all vectors 	 of suitable dimension, the following assertions
hold:

ρMS(	) = ρS(M�	)
ρλS(	) = ρS(λ	) = λρS(	)

ρCH(S∪S′)(	) = max(ρS(	), ρS′(	))
ρS⊕S′(	) = ρS(	) + ρS′(	)
ρS∩S′(	) ≤ min (ρS(	), ρS′(	))

Except for the last property, these relations are all exact. For the intersection, we
only have an over-approximation relation. The inequality comes from the fact
that the function min (ρS(	), ρS′(	)) may not be a convex function. An exact
relation between ρS∩S′ , ρS and ρS′ exists1; unfortunately, this relation is not
effective from the computational point of view. Let us remark, though, that for
a convex set K, such that ρK(	) ≤ min (ρS(	), ρS′(	)), for all 	 ∈ R

n, it follows
that K ⊆ S and K ⊆ S′, thus K ⊆ S ∩ S′.

We shall see, further in the paper, how the properties presented in this section
allow us to compute an over-approximation of the set Rloc(q,X ), given as the
union of convex polyhedrons.
1 Indeed, it can be shown [13] that ρS∩S′(�) = infw∈Rn (ρS(�− w) + ρS′(w)).
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4.2 Intersection of a Compact Convex Set and a Hyperplane

We now consider the problem of computing the support function of the inter-
section of a compact convex set S, given by its support function ρS , and a
hyperplane G = {x ∈ R

n : c · x = d} where c ∈ R
n and d ∈ R. This will be use-

ful to compute a polyhedral over-approximation of the intersection of Rloc(q,X )
with a guard of the hybrid system given by a hyperplane. First of all, let us
remark that checking whether S ∩ G is empty is an easy problem. Indeed, it is
straightforward (see Figure 2) that S∩G 
= ∅ if and only if −ρS(−c) ≤ d ≤ ρS(c).

S

G

c

c · x = d c · x = ρS (c)c · x = −ρS(−c)

Fig. 2. Checking emptiness of S ∩ G

In the following, we shall assume that S ∩ G 
= ∅. Let 	 ∈ R
n, we consider the

problem of computing an accurate over-approximation of ρS∩G(	). The following
result, adapted from [14], shows that the problem can be reduced to a two-
dimensional problem by projecting on the subspace spanned by c and 	.

Proposition 5. [14] Let Π : R
n → R

2 be the projection operator defined by
Πx = (c · x, 	 · x). Then, ρS∩G(	) = max{y2 ∈ R : (d, y2) ∈ ΠS}.
Thus, the computation of ρS∩G(	) is reduced to a two dimensional optimization
problem which essentially consists in computing the intersection of the two di-
mensional compact convex set ΠS with the line D = {(y1, y2) ∈ R

2 : y1 = d}.
We shall further reduce the problem. Let θ ∈ ]0, π[ and vθ = (cos θ, sin θ), the
equation of the line supporting ΠS in the direction vθ is y1 cos θ + y2 sin θ =
ρΠS(vθ) = ρS(Π�vθ). This line intersects the line D at the point of coordinates
(y1, y2) with y1 = d, y2 = (ρS(Π�vθ) − d cos θ)/ sin θ, as shown on Figure 3.
Then, let us define the function f : ]0, π[→ R given by

f(θ) =
ρS(Π�vθ) − d cos θ

sin θ
.

It is easy to see that f is unimodal and that infθ∈]0,π[ f(θ) = sup{y2 ∈ R :
(d, y2) ∈ ΠS}. Therefore, using a minimization algorithm for unimodal functions
such as the golden section search algorithm [15], one can compute an accurate
over-approximation of the minimal value of f and therefore of ρS∩G(	).
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D : y1 = d

y1 cos θ + y2 sin θ = ρS(Π�vθ)

(d, f(θ))

ΠS

θ
vθ

Fig. 3. Definition of the function f(θ)

5 Support Functions Based Reachability Analysis

We now discuss effective reachability analysis in a location q ∈ Q using support
functions. For lighter notations, the index q has been dropped again. Let ρX ,
ρU , ρI denote the support functions of the sets X , U , I; ρB denote the support
function of the unit ball for the considered norm.

5.1 Over-Approximation of Rloc(q, X )

We first determine a union of convex polyhedrons over-approximatingRloc(q,X ).

Proposition 6. Let Zi be the sets defined in Algorithm 2, then

∀	 ∈ R
n, ρZi(	) ≤ min

(
ρYi(	),

i
min
k=0

ρIk
(	)

)
, where

ρY0(	) = max
(
ρX (	), ρX (eτA�

	) + τρU (	) + ατρB(	)
)

,

ρYi(	) = ρY0(e
iτA�

	) +
i−1∑

k=0

(
τρU (ekτA�

	) + βτρB(ekτA�
	)

)
, (3)

ρIi(	) = ρI(eiτA�
	) +

i−1∑

k=0

(
τρU (ekτA�

	) + βτρB(ekτA�
	)

)
. (4)

Proof. For i = 0, by applying the rules of Proposition 4, it is straightforward
to check that ρZ0(	) ≤ min (ρY0(	), ρI0(	)). Hence, the property holds for i = 0.
Let us assume that it holds for some i, then by definition of Zi+1 and from
Proposition 4, we have ρZi+1(	) ≤ min(ρZi(eτA�

	) + τρU (	) + βτρB(	), ρI(	)).
Then, by assumption

ρZi(e
τA�

	) + τρU (	) + βτρB(	) ≤
min

(
ρYi(e

τA�
	) + τρU (	) + βτρB(	),

i
min
k=0

ρIk
(eτA�

	) + τρU (	) + βτρB(	)
)
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Further, by equation (3)

ρYi(e
τA�

	) = ρY0(e
(i+1)τA�

	) +
i−1∑

k=0

(
τρU (e(k+1)τA�

	) + βτρB(e(k+1)τA�
	)

)

= ρY0(e
(i+1)τA�

	) +
i∑

k=1

(
τρU (ekτA�

	) + βτρB(ekτA�
	)

)
.

Therefore, it follows that ρYi(e
τA�

	) + τρU (	) + βτρB(	) = ρYi+1(	). Similarly,
we can show from equation (4) that ρIk

(eτA�
	) + τρU (	) + βτρB(	) = ρIk+1(	).

This leads to

ρZi(e
τA�

	) + τρU (	) + βτρB(	) ≤ min
(

ρYi+1(	),
i

min
k=0

ρIk+1(	)
)

which implies that

ρZi+1(	) ≤ min
(

ρYi+1(	),
i

min
k=0

ρIk+1(	), ρI(	)
)

= min
(

ρYi+1(	),
i+1
min
k=0

ρIk
(	)

)

Hence, by induction, the proposition is proved. �

It follows from the previous proposition that Zi ⊆ Yi ∩ Ii ∩ · · · ∩ I0 where
Yi, Ii, . . . , I0 are the convex sets determined by their support functions ρYi ,
ρIi , . . . , ρI0 . Let us remark that the sets Yi are actually the same than those
in section 2 and thus give an over-approximation of the states reachable from
X under the dynamics of the linear differential inclusion. The sets Ii, . . . , I0

allow us to take into account the constraint that the trajectories must remain
in the invariant I during the evolution. We shall not discuss the efficient imple-
mentation of the evaluation of the support functions, this can be found for ρYi ,
in [9]. A similar approach based on ideas from [7] can be used for the functions
ρIi , . . . , ρI0 .

We can now compute polyhedral over-approximationsZi of the sets Zi defined
in Algorithm 2. Let 	1, . . . , 	r ∈ R

n be a set of directions used for approximation.
Let

γi,j = min
(

ρYi(	j),
i

min
k=0

ρIk
(	j)

)
, j = 1, . . . r.

Then, it follows from Propositions 3 and 6 that

Zi ⊆ Zi = {x ∈ Rn : 	j · x ≤ γi,j , j = 1, . . . , r} .

Then, Proposition 2 leads to the following result:

Theorem 1. Let Zi be the polyhedrons defined above, let i∗ ∈ N be the smallest
index such that Zi∗ = ∅. Then, Rloc(q,X ) ⊆ Z0 ∪ · · · ∪ Zi∗−1.

The choice of the vectors 	1, . . . , 	r ∈ R
n is important for the quality of approxi-

mation. If the invariant is a polyhedron I = {x ∈ R
d : cj ·x ≤ dj , j = 1, . . . , m}
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where c1, . . . , cm ∈ R
n and d1, . . . , dm ∈ R, it is useful to include the vec-

tors c1, . . . , cm. This way, it is ensured that Z0 ∪ · · · ∪ Zi∗−1 ⊆ I. Also, by
considering vectors of the form e−kτA�

c1, . . . , e
−kτA�

cm, for some values of
k ∈ {1, . . . , i∗ − 1}, the constraints imposed by the invariant on the reachable
set at a given time step are also taken into account k time steps further.

5.2 Over-Approximation of Rjump(e, X )

Let He = CH(R ∩ Ge) be the set defined in Algorithm 2. Let us remark that
He = CH(He,0 ∪ · · · ∪ He,i∗) where He,i = Zi ∩ Ge.

Over-approximation of He,i. If Ge is a compact convex set defined by its
support function ρGe , let

δe,i,j = min
(

ρGe(	j), ρYi(	j),
i

min
k=0

ρIk
(	j)

)
, j = 1, . . . r.

Then, it follows from Propositions 3 and 6 that

He,i ⊆ He,i = {x ∈ Rn : 	j · x ≤ δe,i,j , j = 1, . . . , r} .

If Ge is a hyperplane we can use the method presented in section 4.2 to com-
pute a more accurate over-approximation of He,i. First of all, let us remark that
the over-approximation of the support function ρZi given by Proposition 6 is pos-
sibly non-convex. Then, it cannot be used to compute an over-approximation of
ρZi∩Ge by the method explained in section 4.2 as the function to minimize might
not be unimodal. However, from Proposition 6, it follows that

He,i ⊆ (Yi ∩ I0 ∩ · · · ∩ Ii) ∩ Ge = (Yi ∩ Ge) ∩ (I0 ∩ Ge) ∩ · · · ∩ (Ii ∩ Ge). (5)

We can check the emptiness of Yi ∩ Ge, I0 ∩ Ge,..., Ii ∩ Ge using the simple test
described in section 4.2. If one of these sets is empty, then He,i ⊆ He,i = ∅.
Otherwise, let

δe,i,j = min
(

ρYi∩Ge(	j),
i

min
k=0

ρIk∩Ge(	j)
)

, j = 1, . . . r

where the support functions ρYi∩Ge , ρI0∩Ge , . . . , ρIi∩Ge can be computed by the
method explained in section 4.2. Then, from Proposition 3 and equation (5), it
follows that

He,i ⊆ He,i = {x ∈ Rn : 	j · x ≤ δe,i,j , j = 1, . . . , r} .

Over-approximation of He. Let He,0 . . .He,i∗ be computed by one of the
two methods described in the previous paragraph, let I = {i : He,i 
= ∅}. Let
δe,j = maxi∈I δe,i,j , then we have

He ⊆ CH(He,0 ∪ · · · ∪ He,i∗) ⊆ He = {x ∈ Rn : 	j · x ≤ δe,j , j = 1, . . . , r} .

Proposition 2 leads to the following result:
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Theorem 2. Let He be the polyhedron defined above, let X e = CeHe⊕Ve. Then,
Rjump(e,X ) ⊆ X e.

Let us remark that X e need not be effectively computed as it can be represented
by its support function ρXe

(	) = ρHe
(C�

e 	) + ρVe(	).

6 Examples

In this section, we show the effectiveness of our approach on some examples. All
computations were performed on a Pentium IV, 3.2 GHz with 1 GB RAM.

5-dimensional benchmark. We propose to evaluate the over-approximation
due to our way of handling hybrid dynamics. For that purpose, we consider
the 5-dimensional linear differential inclusion from [6]. This artificial system was
generated from a block diagonal matrix and a random change of variables. The
initial set X0 is a cube of side 0.05 centered at (1, 0, 0, 0, 0)� and the set of inputs
U is a ball of radius 0.01 centered at the origin.

By introducing a switching hyperplane, we artificially build a hybrid system
that has the same set of reachable continuous states. The hybrid system has two
locations 1 and 2 and one discrete transition (1, 2). The continuous dynamics is
the same in each location, given by the 5-dimensional linear differential inclusion.
The invariants are I1 = {x ∈ R

5 : c · x ≤ d} where c ∈ R
5 and d ∈ R, and

I2 = R
5. The guard G(1,2) = {x ∈ R

5 : c · x = d} and the reset map R(1,2) is
the identity map. We assume that the initial location is 1. We computed the
reachable sets of the linear differential inclusion and of the hybrid system over
800 time steps τ = 0.005. Their projection on the first two continuous variables
are shown in Figure 4, for two different choices of c and d.

We can see that hybrid dynamics introduces an additional over-approximation,
especially for the second system where the reachable set intersects the guard
almost tangentially. The accuracy can be improved in two ways, we can reduce
the time step and we can consider more vectors for computing the polyhedral

Fig. 4. Reachable set of the hybrid system in the first (dark grey), and second (light
grey) locations, and reachable set of the equivalent linear differential inclusion (in black)
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over-approximations. However, as we use a convex hull over-approximation of
the intersection of the reachable set in the first location with the guard (see
Algorithm 2), we will not reach the accuracy of the reachable set of the linear
differential inclusion.

Navigation benchmark. We now consider the navigation benchmark for hy-
brid systems verification proposed in [10]. It models an object moving in a plane,
whose position and velocities are denoted x(t) and v(t). The plane is partitioned
into cubes, each cube corresponds to one location of the hybrid system. At time
t, a location q is active if x(t) is in the associated cube; there, the object fol-
lows dynamically a desired velocity vq ∈ R

2. We use the instances NAV01 and
NAV04 from [16]. We render the problem slightly more challenging by including
an additional continuous input u(t) modelling disturbances. In the location q,
the four-dimensional continuous dynamics is given by

ẋ(t) = v(t), v̇(t) = A(v(t) − vq − u(t)), ‖u(t)‖2 ≤ 0.1 where A =
(−1.2 0.1

0.1 −1.2

)
.

In Figure 5, we represented the projection of the reachable sets on the position
variables as well as the partition of the plane and, in each cube of the partition
the set of velocities vq ⊕ 0.1B in the associated location.

One can check in Figure 5(b) that the intersection of the over-approximation
Zi of the reachable sets in one location with the guards does not coincide with
the over-approximationHe of the intersection of the reachable set in one location
with the guards. The latter is more accurate because of the use of the method
presented in section 4.2 for computing the support function of the intersection
of a convex set with a hyperplane.

In Figures 5(c) and 5(d), the support function of the intersection is sampled
in 6 directions which results in He defined as an interval hull. We need to add 12
sampling directions to get an octagon, used in Figures 5(a) and 5(b). The benefit
of using more sampling directions for approximation is clearly seen for NAV04
where the reachable set appears to be actually much smaller in Figure 5(b)
than in Figure 5(d). However, the support function of an interval hull can be
computed very efficiently whereas the support function of an octagon requires
solving a linear program. This explains the huge differences in execution times
reported in Table 1.

Table 1 also contains time and memory used by the optimized tool PHAVer
on a similar computer as reported in [16]. One should be careful when compar-
ing these results. On one hand the navigation problem we consider here is more
challenging than the original one since we add disturbances on the input. These
disturbances add, in several locations, chattering effects that cannot occur with-
out them, and produces larger reachable sets. On the other hand PHAVer uses
exact arithmetic.

We believe that the performances of our algorithm can be significantly im-
proved. First of all, our algorithm is slowed down due to an inefficient interface
between our reachability algorithm and the LP solver used to evaluate support
functions. Also, there is a lot of room for improvements in the implementation.
A first improvement would be to initialize the LP solver with the last computed
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(a) NAV01 – octagon (b) NAV04 – octagon

(c) NAV01 – interval hull (d) NAV04 – interval hull

Fig. 5. Two navigation benchmarks with perturbations. In (a) and (b) the intersections
with the guards are over-approximated by octagons, whereas in (c) and (d) they are
over-approximated by their interval hulls. Dark grey: initial set. Grey: reachable sets.
Light grey: Target State. Black: Forbidden State.

Table 1. Time and memory needed for reachability analysis of NAV01 and NAV04

NAV01 NAV04
time (s) memory (MB) time (s) memory (MB)

octagon 10.28 0.24 54.77 0.47
interval hull 0.11 0.24 0.88 0.47
PHAVer 8.7 29.0 13.6 47.6

optimizer, because 	 and eτA�
	 are almost the same. Another improvement

would be to over-approximate the intersections with the guards by several sets
whose support function have growing complexity in order to avoid calling the
LP solver as much as possible.

7 Conclusion

In this paper we presented a new method for conservative reachability analysis
of a class of hybrid systems. The use of support functions allows us to consider
a wide class of input sets, invariants, and guards. For the special case of guards



554 C. Le Guernic and A. Girard

defined by hyperplanes we showed how to transform the problem of intersecting
the reachable set with a guard to the minimization of a unimodal function. Our
algorithms have been implemented in a prototype tool that shows promising
results on non-trivial examples. There is still a lot of room for improvements,
future work should focus on the choice of the directions of approximation and
LP optimizations.
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