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ABSTRACT
A new technique for computing the reachable set of hybrid
systems with nonlinear continuous dynamics is presented.
Previous work showed that abstracting the nonlinear con-
tinuous dynamics to linear differential inclusions results in a
scalable approach for reachability analysis. However, when
the abstraction becomes inaccurate, linearization techniques
require splitting of reachable sets, resulting in an exponen-
tial growth of required linearizations. In this work, the non-
linearity of the dynamics is more accurately abstracted to
polynomial difference inclusions. As a consequence, it is no
longer guaranteed that reachable sets of consecutive time
steps are mapped to convex sets as typically used in previous
works. Thus, a non-convex set representation is developed
in order to better capture the nonlinear dynamics, requiring
no or much less splitting. The new approach has polynomial
complexity with respect to the number of continuous state
variables when splitting can be avoided and is thus promis-
ing when a linearization technique requires splitting for the
same problem. The benefits are presented by numerical ex-
amples.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General; I.6.4 [Simulation
and Modeling]: Model Validation and Analysis

Keywords
Reachability Analysis, Hybrid Systems, Nonlinear Dynam-
ics, Difference Inclusion, Polynomial Zonotopes

1. INTRODUCTION
Formal verification of hybrid systems has enormous prac-

tical relevance since in almost all engineering fields, complex
systems have a mixed discrete/continuous dynamics due to
the interplay of physical behavior and digital control. Those
systems are difficult to analyze, especially since disturbances
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and other uncertainties can lead to completely different be-
haviors. For this reason, formal verification techniques have
been developed in order to mathematically guarantee that
a system model satisfies a formalized specification.

Over the past years, a variety of formal methods for hy-
brid system verification have been developed: Reachabil-
ity analysis [6], theorem proving [33], barrier certificates
[34], simulation-based verification [23], abstraction to dis-
crete systems [14], constraint propagation [35], and many
more. Related topics are the falsification of systems [27,38],
i.e. finding solutions that violate a specification, and proba-
bilistic model checking [10,15], where a probability for satis-
fying a specification is computed. This work is about reach-
ability analysis so that the remainder of the literature review
is on this topic. Reachability analysis is concerned with the
problem of computing the set of discrete and continuous
states that a system can reach, making it possible to verify
if a state can avoid a set of unsafe states.

Early works on reachability analysis considered timed au-
tomata, i.e., automata with time as the only continuous vari-
able [5, 8]. This concept has been extended to linear hybrid
automata, where in each discrete mode, the derivative of
the continuous state vector is bounded by a hyperrectan-
gle [11] or a polytope [19]. Linear automata can also be
used to overapproximate the solutions of more complex sys-
tems, such as linear continuous systems (ẋ = Ax(t) + u(t),
A ∈ Rn×n, x, u ∈ Rn) [24]. However, this approach causes a
wrapping effect, i.e., the overapproximation increases since
reachable sets are computed based on sets of previous times
and the error accumulates for each iteration. A wrapping-
free approach for linear systems has first been published
in [22]. When using special set representations such as zono-
topes or support functions, linear systems with more than
1000 continuous state variables can be verified [21,22].

For hybrid systems with nonlinear continuous dynamics,
no wrapping-free algorithm exist, except when the dynam-
ics can be rewritten as a linear system in a new coordinate
system [37]. Approaches for nonlinear systems can be cate-
gorized into approaches that (1) reformulate the reachability
analysis as an optimization problem, (2) use the Picard it-
eration in combination with Taylor models, or (3) construct
mappings to propagate the set of reachable states. Reformu-
lation as an optimization problem is performed in [13] and
[31], where the first approach uses optimization to obtain
the outwards translation of halfspaces confining polytopical
reachable sets and the latter rewrites the entire reachable
set computation in the form of Hamilton-Jacobi equations.



Typically, approaches involving optimization techniques do
not scale well with the number of continuous state variables.
The Picard iteration in combination with rigorous Taylor

models is first proposed by Berz and Makino and adopted
by other researchers [25, 30, 32]. The main idea is to use
the Picard iteration to obtain a polynomial of given de-
gree that approximates the solution over time with respect
to varying initial states and other parameters. In order to
guarantee that the exact solution is captured, an uncertain
multidimensional interval is added to the polynomial solu-
tion, resulting in a so-called Taylor model. A Taylor model
is acceptable if it is contractive, i.e., running the Picard it-
eration with the suggested Taylor model has to result in a
Taylor model enclosed by the previous one. The approach
is extended to hybrid systems in [12].
Construction of mappings for the propagation of reachable

sets is well developed for linear systems with a large variety
of convex set representations (polytopes [13], zonotopes [22],
ellipsoids [29], support functions [21], oriented hyperrectan-
gles [39], and others). Those approaches do not require to
formulate solutions over time by polynomials as done for
Taylor model approaches. When the dynamics is nonlinear,
most approaches linearize the dynamics. Earlier approaches
define regions in which the original dynamics is linearized to
which a compensating linearization error is added, result-
ing in linear differential inclusions [7]. When the nonlinear
dynamics is a multi-affine system and the regions are hy-
perrectangles, it is sufficient to only consider the flow field
at the vertices to determine which cells of the partition are
reachable [28]. The disadvantage of fixed partitions is that
the number of required regions grows exponentially with re-
spect to the number of continuous state variables and most
approaches require intersection at the borders of the regions,
which is computationally expensive. More recent approaches
overcome this problem by defining overlapping linearization
regions that move along with the reachable set [4, 18]. The
main disadvantage of those approaches is that for large lin-
earization errors, the reachable set has to be split and one
has to continue with several reachable sets in parallel, caus-
ing exponential complexity in the number of variables con-
tributing to the linearization error.
In this work, the problem of avoiding or at least reducing

splitting of map-based reachable set approaches is addressed.
Instead of applying linearization, the system dynamics is ab-
stracted to a nonlinear system with polynomial right-hand
side plus additive uncertainty, resulting in polynomial dif-
ferential inclusions. Unlike for linear systems, there ex-
ists no closed-form solution for polynomial differential in-
clusions, but a new tight overapproximation is presented
in the form of a polynomial difference inclusion x(tk+1) ∈
f(x(tk), u(tk))⊕W, where W is an additive uncertainty with
proper dimension and ⊕ denotes the Minkowski addition.
Thus, reachable sets which are represented by a convex set,
are now possibly mapped to non-convex sets. If one uses
a convex set representation as done by almost all previous
approaches, the benefit of capturing the nonlinearity by a
polynomial differential inclusion is lost. For this reason, a
new non-convex set representation called polynomial zono-
tope is proposed, which extends the definition of zonotopes,
and is as expressive as Taylor models. We demonstrate
the approach by numerical examples, compare the results
to the Taylor model tool flow* [12], and show the benefits
compared to map-based linearization procedures. Since the

overall complexity of the new approach is polynomial in the
number of continuous state variables, it is preferable over
linearization techniques for many problems which require
splitting.

In order to focus on the continuous dynamics of hybrid
systems, the approach is first developed for purely contin-
uous systems. In Sec. 3, the solution of a nonlinear differ-
ential equation is overapproximated by a polynomial differ-
ence inclusion. The abstraction is used in Sec. 4 to develop
the reachability algorithm. Polynomial zonotopes are intro-
duced as the set representation in Sec. 5. The paper finishes
with numerical examples in Sec. 6, where one example also
briefly presents the integration of the approach into hybrid
system reachability analysis.

2. BASIC PRINCIPLE
In this paper, nonlinear systems of the form

ẋ(t) = f(x(t), u(t)), x(t) ∈ Rn, u(t) ∈ Rm, (1)

are considered, where x is the state vector and u is the input
vector. The differential equation is required to be Lipschitz
continuous and the input trajectory u(·) is required to be
piecewise continuous so that a solution is guaranteed to ex-
ist. Let χ(t;x0, u(·)) denote the solution to (1) for an initial
state x(0) = x0 and the input trajectory u(·). For a set of
initial states R(0) ⊂ Rn and a set of possible input values
U ⊂ Rm, the set of reachable states is

Re([0, r]) :=
{
χ (t;x0, u(·))

∣∣∣x0 ∈ R(0), t ∈ [0, r],

∀τ ∈ [0, t]u(τ) ∈ U
}
.

The superscript e on Re([0, r]) denotes the exact reachable
set, which cannot be computed for general nonlinear sys-
tems. Therefore, an overapproximationR([0, r]) ⊇ Re([0, r])
is computed as accurately as possible, while at the same
time ensuring that the computations are efficient and scale
well with the system dimension n. As in many other works
(see e.g. [13, 16, 20, 39]), the reachable set is computed for
consecutive time intervals τs := [ts, ts+1], where ts = s · r,
r ∈ R+ is the time increment, and s ∈ N is the time
step. The reachable set for a user-defined time horizon tf is

R([0, tf ]) =
⋃tf/r−1

s=0 R(τs), where tf is a multiple of r.
As later shown, the wrapping effect in this work is almost

entirely determined by the accuracy of auxiliary sets R(ts)
at points in time ts since those sets are computed based on
the accuracy of the previous ones. In contrast to this, the
sets of time intervals R(τs) fill the ”time gaps” based on the
sets R(ts) as shown in Fig. 1, and are not used again in the
computation.

x1

x2

R(ts−1) R(ts) R(ts+1)

R(τs−1) R(τs)

Figure 1: Stepwise computation of the reachable set.



3. ABSTRACTION OF THE NONLINEAR
DYNAMICS

Nonlinear systems are hard to analyze since almost all of
them do not have a closed-form solution. In this work, their
solution is tightly overapproximated by first abstracting the
nonlinear differential equations to a polynomial differential
inclusion using a Taylor expansion. In a second step, a novel
approach is used to obtain a polynomial difference equation.

3.1 Abstraction to Polynomial Differential In-
clusions

For a concise notation, the combined state/input vector

z̃ =
[
xT uT

]T
∈ Ro (o = n + m) and the Nabla symbol

∇ =
∑o

i=1 e
(i) ∂

∂z̃i
, using orthogonal unit vectors e(i), are

introduced. Note that the superscript i is in parentheses to
avoid confusion with powers, which is a notation used for
other variables in this work, too. The nonlinear system in
(1) is abstracted by a Taylor expansion of order κ at point
z∗ with Lagrange remainder L (see [9]):

ẋi =fi(ẑ(t)) ∈
κ∑

ν=0

(
(ẑ(t)− z∗)T∇

)ν
fi(z̃)

ν!

∣∣∣∣∣
z̃=z∗

⊕ Li(t)

(2)

Li(t) =

{(
(ẑ(t)− z∗)T∇

)κ+1
fi(z̃)

(κ+ 1)!

∣∣∣∣∣

z̃ = z∗ + α(ẑ(t)− z∗), α ∈ [0, 1]

}
,

where A⊕B := {a+b|a ∈ A, b ∈ B} is a Minkowski addition
and for later derivations, set-based multiplication A⊗ B :=
{a b|a ∈ A, b ∈ B} is introduced, too. Note that set-based
multiplication has precedence over set-based multiplication,
expressions are evaluated from left to right, and the symbol
⊗ is sometimes omitted as for classical multiplications. For
subsequent derivations, the alternative notation of (2)

ẋi ∈wi +
1

1!

o∑

j=1

Cijzj(t) +
1

2!

o∑

j=1

o∑

k=1

Dijkzj(t)zk(t)

+
1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijklzj(t)zk(t)zl(t) + . . .⊕ Li(t)

(3)

is used, where z(t) = ẑ(t)− z∗ and

wi = fi(z
∗), Cij =

∂fi(z̃)

∂z̃j

∣∣∣
z̃=z∗

, Dijk =
∂2fi(z̃)

∂z̃j∂z̃k

∣∣∣
z̃=z∗

, . . .

Note that z∗ is changed at times ts so that we have w(ts),
C(ts), D(ts), . . ., where the dependency on time is omitted
in the notation since for the remainder of this section it is
always assumed that t ∈ τs. For reachability analysis we
require a difference inclusion that encloses the solution of
the differential inclusion in (3).

3.2 Abstraction to Difference Inclusions
As a first step, all higher order terms in (3) are interpreted

as an input v to a linear system, where the matrices A ∈
Rn×n and B ∈ Rn×m are obtained from C =

[
A B

]
and z

is partially substituted by
[
xT uT

]T
:

ẋ ∈ Ax(t) + v(z(t), u(t))⊕ L(t) (4)

vi(z, u) = wi +

m∑

j=1

Bijuj +
1

2!

o∑

j=1

o∑

k=1

Dijkzjzk + . . .

In order to obtain a tight overapproximation, the auxiliary
variables u∆(t) = u(t) − uc, z∆(t) = z(t) − z(ts) are in-
troduced to split the input v(z(t), u(t)) for t ∈ τs into a
constant part v(z(ts), u

c) fixed at the specific point in time
ts and a time-varying part v∆(z∆(t), z(ts), u

∆(t)):

vi(z(t), u(t)) = wi +
m∑

j=1

Bij(u
c
j + u∆

j (t))

+
1

2!

o∑

j=1

o∑

k=1

Dijk (zj(ts) + z∆j (t))(zk(ts) + z∆k (t))︸ ︷︷ ︸
= zj(ts)zk(ts) + zj(ts)z

∆
k (t)

+ z∆j (t)zk(ts) + z∆j (t)z∆k (t)

+ . . .

= v(z(ts), u
c) + v∆(z∆(t), z(ts), u

∆(t))

where

v(z(ts), u
c) = wi +

m∑

j=1

Biju
c
j+

1

2!

o∑

j=1

o∑

k=1

Dijkzj(ts)zk(ts) + . . .

v∆(z∆(t), z(ts), u
∆(t)) =

m∑

j=1

Biju
∆
j (t) +

1

2!

o∑

j=1

o∑

k=1

Dijk

(
zj(ts)z

∆
k (t) + z∆j (t)zk(ts) + z∆j (t)z∆k (t)

)
+ . . .

(5)

After defining U∆ := U⊕(−uc) and assuming that the reach-
able set R(τs) and

R∆(τs) :=
{
χ (t;x(ts), u(·))− x(ts)

∣∣∣t ∈ τs,

x(ts) ∈ R(ts), ∀t ∈ τs u(t) ∈ U
} (6)

are already known (χ() was defined as the solution of (1)),
the set of possible values of v∆(z∆(t), z(ts), u

∆(t)) is bounded
by

V∆(τs) :=
{
v∆(z∆, z, u∆)

∣∣∣

z∆ ∈ R∆(τs)× U∆, z ∈ R(τs)× U , u∆ ∈ U∆
}
.
(7)

Using (4) - (7), the linear differential inclusion

ẋ ∈ Ax(t) + v(z(ts), u
c)⊕

(
V∆(τs)⊕ L(τs)

)

is obtained for t ∈ τs. Due to the superposition principle
of linear systems, the solution is obtained by adding the
solution of the homogeneous solution xh(ts+1), the input
solution due to constant input xp,c(r), where r = ts+1 −
ts, and the input solution set due to time-varying inputs
Rp,∆(V∆(τs)⊕ L(τs), r) to

x(ts+1) ∈ xh(ts+1)+xp,c(t)⊕Rp,∆(V∆(τs)⊕L(τs), r
)
. (8)



The well-known homogeneous solution is xh(ts+1) = eArx(ts),
the input solution due to constant input is

xp,c(r) = Γ(r) v(z(ts), u
c), Γ(r) :=

∫ r

0

eA(r−t)dt,

where Γ(r) = A−1(eAr − I) (I is the identity matrix) and
when A is not invertible, the approach in [3] is used. The
reachable set due to the set of uncertain time-varying inputs
within Ṽ(τs) := V∆(τs)⊕ L(τs) is computed as in [3] as

Rp,∆(Ṽ(τs), r) =
ν⊕

i=0

ti+1

(i+ 1)!
CH(Ai ⊗ Ṽ(τs))⊕ Ep,∆, (9)

where CH() is the operator returning the convex hull of a
set, and Ep,∆ is an interval vector which becomes arbitrarily
small for ν → ∞.
The difference to previous approaches (e.g. [4,18]) is that

due to the separation in a constant and a time-varying in-
put, nonlinear terms are saved from linearization at times
ts, while within τs, an abstracting linear differential inclu-
sion is used. Inserting v(z(ts), u

c) from (5) into the overall
solution (8) results in a nonlinear difference equation that
encloses the exact solution:

xi(ts+1) ∈
n∑

j=1

(eAr)ijxj(ts) +
n∑

j=1

Γij(r)
(
wj +

m∑

k=1

Bjku
c
k

+
1

2!

o∑

k=1

o∑

l=1

Djklzk(ts)zl(ts) + . . .
)

⊕Rp,∆
i (V∆(τs)⊕ L(τs), r)

(10)

The benefits of the above difference inclusion for reachability
analysis do not immediately show. Note that for small time
increments r, as typically used in reachability analysis, the
set Rp,∆

i becomes small, no matter how large the set of z(ts)
becomes during the reachability analysis (proof is omitted
due to space limitations). Thus, for large sets of z(ts), the
nonlinearity is well captured by all other terms, while the
abstractions in Rp,∆

i are not dominant.

4. REACHABLE SET COMPUTATIONS
This section describes Alg. 1 for computing the set of

reachable states when using the previously presented ab-
straction to difference inclusions. In order to focus on the
novel aspects, the possibility to split reachable sets is not
included. The algorithm consists of 2 parts as indicated in
Alg. 1:

➀ Computing a linearization and the corresponding set of
linearization errors denoted by Ψ(τs). The reachable
set R(τs) for the time interval τs is obtained as a by-
product.

➁ Computing the reachable set at the next point in time
R(ts+1) by a set-based evaluation of (10).

Since the computations of each time interval τs are based
on the reachable set at points in time ts, the sets R(ts) are
foremost contributing to the wrapping effect. The setsR(τs)
are filling the gaps between points in time ts, which are not
used for subsequent computations (see Fig. 1).
For the remainder of the paper we focus on Taylor expan-

sions of second order with third order Lagrange remainder

since higher order terms do not require a modification of the
approach.

At the beginning of each time interval τs, the Taylor terms
are re-evaluated according to a new expansion point z∗,
which is indicated in line 3 of Alg. 1 by

taylor → z∗, w,A,B,D,E,

where the dependency on the time step is omitted in the
notation. The expansion point z∗ is chosen heuristically
as z∗(ts) = [x∗(ts), u

∗], where x∗(ts) = xc(ts) + 0.5 · r ·
f(xc(ts), u

c) ≈ xc(ts+0.5 ·r), u∗ = uc and xc(ts), u
c are the

volumetric centers of R(ts), U . Other linearization points
within R(τs) can be chosen, but better heuristics have not
been found so far. Next, the linearization error for the reach-
able set within time intervals is obtained.

4.1 Overapproximating the Linearization Er-
ror

To obtain the set of linearization errors for the time inter-
val solution R(τs), (4) is abstracted to a linear differential
inclusion

ẋ ∈ Ax(t)⊕Ψ(τs), Ψ(τs) = V(τs)⊕ L(τs), (11)

V(τs) := {v(z, u)|z ∈ R(τs)× U , u ∈ U}.

The computation of the set of linearization errors Ψ(τs) re-
quires the computation of the reachable set R(τs), which
in turn requires Ψ(τs). This mutual dependence is initially
resolved by an estimation of the set of linearization errors
Ψ(τs) with the goal that Ψ(τs) ⊆ Ψ(τs). This estimation is
used to compute the set of state differences R∆(τs) for (11)
using a slight modification of the standard techniques for
linear system reachability presented in [1, Chap. 3.2]. The
modification involves returning the set of state differences
R∆(τs) instead of the set of states R(τs). We denote this
standard operation (see line 6 of Alg. 1) by

R∆(τs) = post
∆(R(ts),Ψ(τs), A).

Using the definition of R∆(τs) in (6), the overapproxima-
tion of the time interval solution is obtained as R(τs) =
R(ts)⊕R∆(τs), where R(ts) is later represented by a non-
convex set, R∆(τs) by a convex set, and the overapprox-
imation R(τs) ⊆ CH

(
R(ts)

)
⊕ R∆(τs) is used in line 7 of

Alg. 1 for the efficient computation of R(τs), since R(τs)
contributes only marginally to the wrapping effect by en-
larging the overapproximation of the linearization error.

For a simple notation of subsequent computations, the
operations

sq(D,R1) :=

{
λ

∣∣∣∣λi=

o∑

j=1

o∑

k=1

Dijkzjzk, z ∈ R1

}
,

mu(D,R1,R2) :=

{
λ

∣∣∣∣λi=
o∑

j=1

o∑

k=1

Dijkzj ẑk, z ∈ R1, ẑ ∈ R2

}

are introduced. Using the definitions of the linearization
error in (11) and the function v(z, u) in (4), the set of lin-
earization errors is overapproximated in line 9 of Alg. 1 by

Ψ(τs) ⊆ w ⊕B ⊗ U ⊕
1

2
sq(D,R(τs)× U)⊕ L(τs).

The computation of B ⊗ U and sq(D,R(τs) × U) is later
presented for polynomial zonotopes. The Lagrangian re-
mainder L(τs) is small compared to the other sets and thus



less accurately overapproximated by obtaining the enclosing
boxes of all sets and applying interval arithmetic [26]. This
is denoted in line 8 of Alg. 1 by lagrangeRemainder(R(τs),
E(ts), z

∗(ts)).
In case Ψ(τs) * Ψ(τs), the result Ψ(τs) is uniformly en-

larged in each direction by a factor λ > 1 around its volumet-
ric center, denoted by Ψ(τs) = enlarge

(
Ψ(τs), λ

)
in line 5

of Alg. 1. Using the enlarged set Ψ(τs), the the linearization
error computation is started over.

4.2 Reachable Set at the Next Point in Time
The reachable set at the next point in time is obtained by

a set-based computation of (10). Thereto, it is first required
to compute V∆(τs) in line 12 of Alg. 1 using (5), for which
the sets R∆

z (τs) = R∆(τs)×U∆ and Rz(ts) = R(ts)×U are
introduced:

V∆(τs) =varInputs(Rz(ts),R
∆
z (τs),U

∆, B,D)

:=B ⊗ U∆ ⊕
1

2!

(
mu(D,Rz(ts),R

∆
z (τs))

⊕mu(D,R∆
z (τs),Rz(ts))⊕ sq(D,R∆

z (τs)
)

The operator post() computes R(ts+1) in line 13 of Alg. 1
by replacing exact values with sets in (10):

R(ts+1) =post(R(ts),Rz(ts), w,A,B,D,V∆(τs),L(τs))

:= eArR(ts)︸ ︷︷ ︸
=:PZ1

⊕Rp,∆(V∆(τs)⊕ L(τs), r)

⊕Γ(r)
(
w ⊕Buc ⊕

1

2!
sq(D,Rz(ts))

)

︸ ︷︷ ︸
=:PZ2

(12)

As previously mentioned, for small time steps r as typically
used in reachability analysis, the set Rp,∆ is small compared
to the set R and Rz. From this follows that the nonlin-
ear terms capturing the original nonlinear dynamics are not
marginalized by the abstractions applied to compute Rp,∆.
The new algorithm includes nonlinear mappings so that in

general convex sets are no longer mapped to convex sets as in
other works, requiring a new non-convex set representation
as presented in the following section.

5. POLYNOMIAL ZONOTOPES
Set representations in most previous works are convex

since they are easy to represent and manipulate (see e.g.
[4, 6, 7, 13, 21, 22, 29, 39]). However, the convexity property
makes the efforts in capturing the nonlinear dynamics ob-
solete, since convex sets only work well for linear maps. A
new non-convex set representation is proposed, which can
be efficiently stored and manipulated. The new represen-
tation shares many similarities with Taylor models [25] (as
shortly discussed later) and is a generalization of zonotopes,
which have shown great performance for linear and nonlin-
ear reachability analysis [4, 22].

Definition 1 (Polynomial Zonotope): Given a starting point

c ∈ Rn, multi-indexed generators f ([i],j,k,...,m) ∈ Rn, and
single-indexed generators g(i) ∈ Rn, a polynomial zonotope

Algorithm 1 reach(R(0), tf , ...)

Require: Initial set R(0), input set U , time horizon tf ,
time step r, factor λ

Ensure: R([0, tf ])
1: t0 = 0, s = 0, Ψ(τ0) = {0}, Runion = ∅, U∆ = U⊕(−uc)
2: while ts < tf do
3: taylor → z∗, w,A,B,D,E
4: repeat
5: Ψ(τs) = enlarge

(
Ψ(τs), λ

)

6: R∆(τs) = post
∆(R(ts),Ψ(τs), A)

7: R(τs) = CH
(
R(ts)

)
⊕R∆(τs)

8: L(τs) = lagrangeRemainder(R(τs), E, z∗)
9: Ψ(τs) = w ⊕B ⊗ U ⊕ 1

2
sq(D,R(τs)× U)⊕ L(τs)

10: until Ψ(τs) ⊆ Ψ(τs)
11: Rz(ts) = R(ts)× U , R∆

z (τs) = R∆(τs)× U∆

12: V∆(τs) = varInputs(Rz(ts),R
∆
z (τs),U

∆, B,D)
13: R(ts+1) = post(R(ts),Rz(ts), w,A,B,D,
14: V∆(τs),L(τs))
15: Runion = Runion ∪R(τs)
16: ts+1 = ts + r, s := s+ 1
17: end while
18: R([0, tf ]) = Runion

➀

➁

is defined as

PZ =
{
c+

p∑

j=1

βjf
([1],j) +

p∑

j=1

p∑

k=j

βjβkf
([2],j,k)

+ . . .+

p∑

j=1

p∑

k=j

. . .

p∑

m=l

βjβk . . . βm︸ ︷︷ ︸
η factors

f ([η],j,k,...,m) (13)

+

q∑

i=1

γig
(i)
∣∣∣βi, γi ∈ [−1, 1]

}
.

The scalars βi are called dependent factors, since changing
their value does not only affect the multiplication with one
generator, but other generators, too. On the other hand, the
scalars γi only affect the multiplication with one generator,
so that they are called independent factors. The number of
dependent factors is p, the number of independent factors
is q, and the polynomial order η is the maximum power of
the scalar factors βi. The order of a polynomial zonotope
is defined as the number of generators ξ divided by the di-
mension, which is ρ = ξ

n
. For a concise notation and later

derivations, we introduce the matrices

E[i] = [ f ([i],1,1,...,1)

︸ ︷︷ ︸
=:e([i],1)

. . . f ([i],p,p,...,p)

︸ ︷︷ ︸
=:e([i],p)

] (equal indices),

F [i] = [f ([i],1,1,...,1,2) f ([i],1,1,...,1,3) . . . f ([i],1,1,...,1,p)

f ([i],1,1,...,2,2) f ([i],1,1,...,2,3) . . . f ([i],1,1,...,2,p)

f ([i],1,1,...,3,3) . . .] (unequal indices),

G = [g(1) . . . g(q)],

and E =
[
E[1] . . . E[η]

]
, F =

[
F [2] . . . F [η]

]
(F [i] is

only defined for i ≥ 2). Note that the indices in F [i] are as-
cending due to the nested summations in (13). In short form,
a polynomial zonotope is written as PZ = (c, E, F,G). �

For a given polynomial order i, the total number of gener-



ators in E[i] and F [i] is derived using the number
(
p+i−1

i

)
of

combinations of the scalar factors β with replacement (i.e.
the same factor can be used again). Adding the numbers for
all polynomial orders and adding the number of independent
generators q, results in ξ =

∑η
i=1

(
p+i−1

i

)
+ q generators,

which is in O(pη) with respect to p. The non-convex shape
of a polynomial zonotope with polynomial order 2 is shown
in Fig. 2.
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E[1] =

[
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0 0.5
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[
1 1
0.5 0.3

]

F [2] =

[
−0.5
1

]

G =

[
0.3
0.3

]

3

2

1

0

−1

0 2 4

Figure 2: Overapproximative plot of a polynomial
zonotope as specified in the figure. Random samples
of possible values demonstrate the accuracy of the
overapproximative plot.

A zonotope Z is a special case of a polynomial zonotope
that has only generators g(i), which is denoted by Z =
(c,G). Due to the absence of E[i], F [i] a zonotope is cen-
trally symmetric to c so that for zonotopes, c is referred to
as the center and not the starting point.
Although a Taylor model [25] is not a set, but a mul-

tidimensional polynomial plus a multidimensional interval,
they can represent exactly the same sets than polynomial
zonotopes when the input of the Taylor models is a mul-
tidimensional interval. The different organization of poly-
nomial zonotopes, separating dependent from independent
variables, makes it easier to overapproximate them by zono-
topes or perform the order reduction techniques presented
subsequently.

5.1 Operations on Polynomial Zonotopes
It is often required to overapproximate a polynomial zono-

tope by a zonotope:

Proposition 1 (Overapproximation by a Zonotope): A poly-
nomial zonotope PZ = (c, E, F,G) can be overapproximated

by a zonotope Z = zonotope(PZ) = (c̃, G̃) so that PZ ⊆ Z,
by choosing

c̃ = c+
1

2

⌊η/2⌋∑

i=1

p∑

j=1

e([2i],j),

G̃ =
[
1
2
E[2] 1

2
E[4] . . . E[1] E[3] . . . F [1] F [2] . . . G

]
,

where ⌊η/2⌋ returns the lowest integer of η/2. The compu-
tational complexity for a given polynomial zonotope order ρ
with respect to n is O(n2). �

The proof is omitted due to limited space. A sketch of the
proof is as follows: Generators with dependent factors are
made independent by moving them into the generator ma-
trix G, which always results in an overapproximation. De-
pendent factors βi with even powers are within [0, 1] (e.g.

β2
1 ∈ [0, 1]) instead of [−1, 1] so that E[2], E[4], . . . can be

multiplied by 0.5 and their mean is added to c.
The multiplication of a matrix M ∈ Ro×n with a polyno-

mial zonotope PZ = (c, E, F,G) and the Minkowski addi-

tion of a zonotope Z = (c̃, G̃) with PZ follow directly from
the definition of polynomial zonotopes:

M ⊗ PZ = (Mc,ME,MF,MG),

PZ ⊕ Z = (c+ c̃, E, F, [G, G̃]).
(14)

For a given polynomial zonotope order ρ, the computational
complexity with respect to n is O(n3) for the multiplication
and O(n) for the addition. Note that the Minkowski ad-
dition of two polynomial zonotopes is never required since
R∆ and Rp,∆ are represented by zonotopes. The only addi-
tion between two polynomial zonotopes is between PZ1 =
(c1, E1, F1, G1) and PZ2 = (c2, E2, F2, G2) in (12). Since
both summands have the same dependent factors (proof
omitted), one can apply an exact set addition, where the
resulting polynomial zonotope is (c1 + c2, E1 + E2, F1 +
F2, [G1, G2]). The generators with independent factors in
G1 and G2 are added by concatenation as for the Minkowski
addition in (14).

The reachability algorithm in Alg. 1 require set-based
evaluations of higher order terms, such as the quadratic map
sq(D, R̃). When R̃ is a zonotope, the result is exactly en-
closed by a polynomial zonotope as shown by the following
theorem.

Theorem 1 (Quadratic Map of a Zonotope): Given a zono-

tope Z = (d, g(1), . . . , g(h)) and a discrete set of matrices

Q(i) ∈ Rn×n, i = 1 . . . n, the set

PZ = sq(Q,Z) = {ϕ|ϕi = xTQ(i)x, x ∈ Z}

is a polynomial zonotope (c, E, F,G), where the center is

computed as ci = dTQ(i)d, the generators of E and F are
computed for j = 1..h, k = j..h as

e
([1],j)
i = dTQ(i)g(j) + g(j)

T
Q(i)d, e

([2],j)
i = g(j)

T
Q(i)g(j),

f
([2],j,k)
i = g(j)

T
Q(i)g(k) + g(k)

T
Q(i)g(j),

and G = ∅. The complexity of constructing this polynomial
zonotope with respect to the dimension n is O(n5). �

Proof: Inserting the definition of a zonotope into the set
PZ = {ϕ|ϕi = xTQ(i)x, x ∈ Z} yields

{
ϕ
∣∣∣ϕi =

(
d+

h∑

j=1

βjg
(j)
)T

Q(i)
(
d+

h∑

j=1

βjg
(j)
)
, βj ∈ [−1, 1]

}
,

which can be rearranged to

{
ϕ
∣∣∣ϕi = dTQ(i)d︸ ︷︷ ︸

ci

+
h∑

j=1

βj (d
TQ(i)g(j) + g(j)

T
Q(i)d)︸ ︷︷ ︸

e
([1],j)
i

+

h−1∑

j=1

h∑

k=j+1

βjβk (g
(j)TQ(i)g(k) + g(k)

T
Q(i)g(j))︸ ︷︷ ︸

f
([2],j,k)
i

+
h∑

j=1

β2
j g

(j)TQ(i)g(j)︸ ︷︷ ︸
e
([2],j)
i

, βi ∈ [−1, 1]
}
.



Comparing the structure of the above terms with the def-
inition of a polynomial zonotope in Def. 1 shows that the
structure is identical and thus a polynomial zonotope.
It remains to derive the complexity. Quadratic operations

such as g(j)
T
Q(i)g(k) have complexity O(n2). The number

h of generators of Z can be expressed by its order as ρn,
such that the resulting polynomial zonotope has

(
(ρ n)+2

2

)
−1

generators, a number which can be bounded by O(n2), such
that we have O(n4) for all generator computations for each
dimension and O(n5) for all dimensions. �

Corollary 1 (Quadratic Map of a Polynomial Zonotope):
Given is a polynomial zonotope PZ = (c, E, F,G) and the

enclosing zonotope Z = zonotope(PZ) = (c, h(1), . . . , h(σ))
according to Prop. 1. The quadratic map is overapproxi-
mated by

sq(Q,Z) ⊆ sq(Q,ZEF )⊕ zonotope(sq(Q,ZG)),

where ZEF = (c, h(1), .., h(p)) and ZG = (0, h(p+1), .., h(σ)),
and 0 is a vector of zeros of proper dimension. The addition
is performed according to (14) and the result has the same
dependent factors as PZ. The computational complexity
for a given order ρ is identical to Theorem 1 (O(n5)). �

Proof: The zonotope Z is split into Z = ZEF ⊕ ZG, where
the first one has p generators, which equals the number of
generators in E[1]. Ignoring dependencies always results in
an overapproximation, such that

sq(Q,Z) ⊆ sq(Q,ZEF )⊕ sq(Q,ZG)︸ ︷︷ ︸
⊆zonotope(sq(Q,ZG))

. �

In order to make the above quadratic map accurate, the
generators in ZEF have to be dominant since sq(Q,ZEF ) is
computed exactly, while sq(Q,ZG) is overapproximated by a
zonotope. This is achieved by the order reduction technique
described in the next subsection.
The operation mu(D, R̃) is similar to sq(D, R̃), which is

the reason for omitting a detailed description.

5.2 Order Reduction of Polynomial Zonotopes
Many of the previously presented operations increase the

order of polynomial zonotopes due to added generators. As
a consequence, an order reduction technique has to be ap-
plied to limit the representation size and the computational
costs. Most techniques for classical zonotopes remove gener-
ators and add new, but fewer ones that capture the spanned
set of the removed generators (see e.g. [20]). This results in
a reordering of the generators, which is no problem for zono-
topes since the ordering of generators is irrelevant. However,
generators of polynomial zonotopes can only be reordered
within G, where generators are multiplied by independent
factors γi. For this reason, a new order reduction technique
is developed that does not change the ordering of generators
in E and F .
The size of E and F is fixed and only G grows after

performing the required operations presented in this work.
Thus, it is required to remove generators from G and stretch
the generators in E and F such that the ones removed
from G are compensated in an overapproximative way. As
for most applied order reduction techniques of zonotopes,
heuristics are used rather than strict optimization techniques
due to their favorable ratio of computational costs to ob-
tained overapproximation.

Proposition 2 (Overapproximative Generator Removal):
Given is PZ = (c, E, F,G) of which n linearly independent

generators with indices ind1, . . . indn are picked from E[1]

and stored in P = [e([1],ind1) . . . e([1],indn)] (det(P ) 6= 0). The

overapproximating polynomial zonotope P̂Z = (c, Ê, F, Ĝ)

from which the generator g(i) is removed, is computed as

Ĝ =
[
g(1) . . . g(i−1), g(i+1), . . . g(q)

]
,

Ê =
[
Ê[1] E[2] . . . E[η]

]
,

ê[1],j =

{
(1 + (P−1g(i))j)e

([1],j) for j ∈ {ind1, . . . , indn},

e([1],j) otherwise.

The computational complexity is O(n3) due to the matrix
inversion when using the Gauss-Jordan elimination. �

Proof: The generator g(i) can be composed from the gener-
ators in P :

g(i) = e([1],ind1)φ1 + . . .+ e([1],indn)φn = Pφ → φ = P−1g(i).

Note that P−1 can always be computed since det(P ) 6= 0.

Thus, g(i) can be replaced by n new generators e([1],ind1)φ1,
. . ., e([1],indn)φn, which causes an overapproximation since
each generator has an independent factor γq+j :

{
γig

(i)
∣∣∣γi ∈ [−1, 1]

}
⊆
{ n∑

j=1

γq+je
([1],indj)φj

∣∣∣γq+j ∈ [−1, 1]
}

The n new generators are aligned with the corresponding
generators in E[1] and can be removed by stretching each
e([1],indj) by the factor

‖e([1],indj)‖2 + ‖e([1],indj)φj‖2

‖e([1],indj)‖2
= 1+φj = 1+(P−1g(i))j . �

In this work, the longest generators g(i) (maximum 2-
norm) are removed from G so that the generators in E are
more dominant than the ones in G, which is required since
only the generators in E are used for the exact computa-
tion of quadratic maps. The heuristic for choosing the set
of picked generators P in Prop. 2 is as follows: The first
generator is the one in E[1] that is best aligned with the re-
moved generator g(i), and the other n−1 generators are the
ones which have the least alignment with g(i) and among
each other. The alignment is measured by the normalized

scalar product |g(i)
T
e([1],indi)|

‖g(i)‖2‖e
([1],indi)‖2

, where a value of 1 occurs

when the vectors are aligned and 0 for perpendicular vec-
tors. The generators g(i) are removed until the order is less
than a user-defined order. Without giving the proof, the
complexity of the order reduction heuristic is O(n3).

For a given order ρ of the polynomial zonotopes, no re-
quired operation has a complexity exceeding O(n5) when a
second order Taylor expansion with third order Lagrangian
remainder is used. The scalability of the approach is demon-
strated by the subsequent numerical examples.

6. NUMERICAL EXAMPLES
The approach is demonstrated for three examples. In all

examples, the nonlinear dynamics is abstracted by a differ-
ence inclusion of second order with third order Lagrange
remainder. The first example is a Van-der-Pol oscillator,



which is a standard example for nonlinear systems that have
a limit cycle:

ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1

The reachable sets are computed with a time step of r =
0.005, p = 20 dependent factors (resulting in 230 genera-
tors with dependent factors), and 100 generators with in-
dependent factors. The initial set is a rectangle, where
x1 ∈ [1.25, 1.55] and x2 ∈ [2.28, 2.32]. When using poly-
nomial zonotopes of polynomial order η = 2, a complete
cycle can be computed without splitting, while with con-
ventional zonotopes, the reachable set grows over all limits
when splitting is not enforced, see Fig. 3. For a fair com-
parison, the maximum number of used generators are equal
for the polynomial and the classical zonotope. We addition-
ally plotted the results of the tool flow* [12] based on Taylor
models, which has similar accuracy than the approach using
polynomial zonotopes. The computational time in MAT-
LAB is 23.2 seconds for polynomial zonotopes and similar
for zonotopes since the total number of generators is equal.
The computational time in flow* is 46.1 seconds, but an
improved and faster version will soon be released. The com-
putations have been performed on an Intel XEON X5690
processor with 3.47 Ghz. An advantage of this approach
compared to Taylor models is that unlike Taylor models,
arbitrarily time-varying uncertain inputs can be considered.
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Figure 3: Reachable sets of the Van-der-Pol oscilla-
tor.

The second example is a biological model taken out of [17]
with strong nonlinearity measure for studying the mitochon-
drial theory of aging. Due to the strong nonlinear nature,
the auxiliary variables

S =
x9

x9 +ATPc

k1
1 + ( x9

ATPc
)3

1

x1 +
2x2

GDF+1
+ x3+x4+x5+x6

GDF

B =
PAOx

x8(x1 + x2 + x3) +RDF x8(x4 + x5 + x6)

are introduced. The differential equations of the model are

ẋ1 =Sx1 +
2Sx2

GDF + 1
− (α+ (kM + kD)x8)x1,

ẋ2 =
−2Sx2

GDF + 1
+

2Sx3

GDF
+ kMx8x1 − (β + (kM + kD)x8)x1,

ẋ3 =
−2Sx3

GDF
+ kMx8x2 − (γ + kDx8)x3,

ẋ4 =
S(x4 + x5)

GDF
+ kDx8x1 − (α+ kMRDFx8)x4,

ẋ5 =
−Sx5

GDF
+

2Sx6

GDF
+ kDx8x2

+ kMRDFx8x1 − (β + kMRDFx8)x5,

ẋ6 =
−2Sx6

GDF
+ kDx8x3 + kMRDFx8x5 − γx6,

ẋ7 =
x9

x9 +ATPc

k2
1 +B

− δx7,

ẋ8 =kR −
k3(x7x8)

x1 + x2 + x3 + x4 + x5 + x6
,

ẋ9 =kATPx1 + 0.5kATPx2 −
x9

x9 +ATPc(
kEMk1

1 + ( x9
ATPc

)3
+ kEC +

kEP k2
1 +B

)
,

where x1-x9 are the continuous state variables and the re-
maining variables are parameters whose values are as listed
in [17]. The initial set has the same center as the one
in [17], but the size of the initial set is 20 times larger for
each coordinate, so that the volume is 209 times larger than
in [17]. The initial set is bounded by a hyperrectangle, where
x1 − x3 ∈ [481, 521], x4 − x6 ∈ [81, 121], x7 ∈ [181, 221],
x8 ∈ [481, 521], and x9 ∈ [0, 40]. The time increment is
chosen as r = 1.5 · 10−5 and the time horizon tf = 0.01 is
as in [17]. For the reachable set computations, polynomial
zonotopes with p = 9 dependent factors (resulting in 54
generators with dependent factors) and 90 generators with
independent factors are used.

The results are compared for 3 approaches: Polynomial-
ization with polynomial zonotopes, polynomialization with
classical zonotopes, and linearization with classical zono-
topes, which is the approach in [4]. For this example, it
is not possible to compare the results with flow* since the
tool does not yet support non-polynomial differential equa-
tions. When using polynomialization with polynomial zono-
topes, the reachable set for the entire time horizon is com-
puted without splitting. For polynomialization in combina-
tion with conventional zonotopes, the reachable set has to be
split for the first time at t = 0.0050 and 6 parallel computa-
tions are required in the end. The linearization with classical
zonotopes already requires the first split at time t = 9 ·10−5

and 98 parallel reachable set computations are performed in
the end. Due to the possibility of splitting reachable sets,
all approaches provide similar accuracy. However, the ap-
proach using polynomial zonotopes results in the tightest
overapproximation.

Selected projections of the reachable set using polynomial
zonotopes are shown in Fig. 4. For a fair comparison, the
total number of used generators for the polynomial and the
classical zonotope are chosen equal. The computation time
is 1180 s using polynomial zonotopes, while almost all the
time (1121 s) is spent on evaluating the third order Lagrange
remainder using the interval arithmetic toolbox INTLAB



[36] for MATLAB. Since this toolbox is only efficient when
matrix operations are used, the performance can be dras-
tically improved when the interval computations are per-
formed by precompiled code using e.g. C++. When using
polynomialization in combination with classical zonotopes,
the computation takes 4121 s, which is more than 3 times
longer compared to polynomial zonotopes. For the lineariza-
tion approach, the total computation time is even 18316 s,
which is more than 15 times longer compared to polynomi-
alization in combination with polynomial zonotopes. Note
that for the specific example, the variable x9 dominates the
linearization error and thus splitting is mainly performed in
one direction only. Otherwise, splits in many more direc-
tions are required, resulting in an exponential complexity
with respect to the variables that have to be split.
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Figure 4: Reachable sets (gray area) of the biologi-
cal aging model starting from a set of initial states
(white area). Black lines show possible trajectories.

Finally, it is demonstrated by a third example that the
proposed approach can be directly applied to hybrid sys-
tems. Thereto, the aging model is made hybrid by chang-
ing the parameter kATP from 1200 to 120 when the value
x9 = 100 is reached. As a consequence, the state x9 con-
verges to a different steady state, while the other states are
only marginally affected, see Fig. 5. The extension to hybrid
systems is performed as in [1], which computes the intersec-
tion with the guard set x9 = 100 geometrically. Integrating
the nonlinear reachability into a more efficient approach [2],
which avoids computationally expensive guard intersections,
is part of future work. The computation time is 1296 s,
where again almost all the time (1155 s) is spent on inter-
val arithmetic. The computation has been performed on the
same machine as used for the previous experiments.

7. CONCLUSIONS
This work presents a new approach for reachability anal-

ysis of hybrid systems with nonlinear continuous dynamics.
The new method successfully improves the major problem
of linearization-based approaches: When the linearization
error becomes too large, the linearization region has to be
split, resulting in many regions that have to be considered
simultaneously. Splitting results in an exponential complex-
ity in the number of continuous state variables contributing
to the linearization error.
By improving the accuracy of the approach, due to ab-

stracting to polynomial difference inclusions instead of lin-
ear difference inclusions, splitting is avoided in the presented
examples, saving computation time and improving accuracy.
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Figure 5: Reachable sets (gray area) of the hybrid
biological aging model starting from a set of initial
states (white area). Black lines show possible tra-
jectories.

The new approach requires the use of a non-convex set rep-
resentations, which is newly developed in this work. Since
many aspects are implemented for the first time, there is a
lot of potential for future improvements. For instance, one
could compute with Taylor expansions of order greater than
two and also use polynomial zonotopes with polynomial or-
der η > 2, making it possible to compute with even larger
sets of initial states in the future.
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