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Abstract

We introduce the notion of quantum Markov decision process
(qMDP) as a semantic model of nondeterministic and concurrent
quantum programs. It is shown by examples that qMDPs can be
used in analysis of quantum algorithms and protocols. We study
various reachability problems of qMDPs both for the finite-horizon
and for the infinite-horizon. The (un)decidability and complexity
of these problems are settled, or their relationships with certain
long-standing open problems are clarified. We also develop an al-
gorithm for finding optimal scheduler that attains the supremum
reachability probability.

Categories and Subject Descriptors F.1.1 [Computation by Ab-
stract Devices]: Models of Computation; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages - Pro-
gram Analysis

General Terms Algorithms, Theory, Verification

Keywords Quantum programming, semantic model, Markov de-
cision process, reachability

1. Introduction

As a generalisation of Markov chains, Markov decision processes
(MDPs) stemmed from operations research in 1950’s. Now they
have been successfully applied in various areas such as economics
and finance, manufacturing, control theory, robotics, artificial intel-
ligence and machine learning. Also, effective analysis and resolu-
tion techniques for MDPs like linear programming have been de-
veloped in the last six decades. Since Vardi [39] proposed to adopt
MDPs as a model of concurrent probabilistic programs, MDPs have
been widely used in analysis and verification of randomised algo-
rithms and probabilistic programs (see, for instance, [24]) as well
as model checking of probabilistic computing systems [2].

In this paper we introduce the notion of quantum Markov deci-
sion process (qMDP) as a model of nondeterministic and concur-
rent quantum programs. Research on quantum programming has
been intensively conducted in the last 18 years since Knill [21] in-
troduced the Quantum Random Access Machine model for quan-
tum computing and proposed a set of conventions for writing quan-
tum pseudocode. The research includes design of quantum pro-
gramming languages, e.g. QCL [26], qGCL [32], QPL [33] and
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Quipper [14], semantic models of quantum programs [10], and ver-
ification of quantum programs [40] (we refer the reader to [11] for
basic ideas of quantum programming and an excellent survey on
the early works in this area). In particular, quantum Markov chains
were defined in [41, 42] for modelling sequential quantum pro-
grams. This paper extends quantum Markov chains considered in
[41, 42] to qMDPs so that we can model nondeterministic and con-
current quantum programs [43, 46].

A classical MDP consists of a set S of states and a set Act of
actions. Each action α ∈ Act is modelled by a probabilistic tran-
sition function Pα : S × S → [0, 1] with Pα(s, s

′) being the
probability that the system moves from state s to s′ after action α.
A MDP allows not only probabilistic choice between the system
states as a result of performing an action but also a nondetermin-
istic choice between actions: there may be more than one action
enabled on entering a state s. Thus, the notion of scheduler was
introduced to resolve the nondeterministic choice between the en-
abled actions. A scheduler selects the next action according to the
previous and current states of the system. A qMDP is defined as
quantum generalisation of MDP with the set S of states replaced
by a Hilbert space H which always serves as the state space of a
quantum system in physics. Now each action α ∈ Act is described
by a super-operator Eα in H. Super-operators were recognised by
physicists as the most general mathematical formalism of physi-
cally realisable operations in quantum mechanics [25]. They were
also adopted as denotational semantics of quantum programs by
Selinger [33] and D’Hont and Panangaden [10] in their pioneering
works on quantum programming.

A major conceptual difference between classical MDPs and
qMDPs comes from the notion of scheduler. The information used
by a scheduler in a MDP to select the next action is the state of
the system. In the quantum case, however, we choose to introduce
a series of measurements at the middle of the evolution of a qMDP
and to define a scheduler as a function that selects the next action
according to the outcomes of these measurements.

This paper focuses on the aspect of qMDPs more related to pro-
gram analysis and verification, namely reachability analysis. As in
the case of classical MDPs, we consider the reachability probability
of a subspace B of the state Hilbert space of a qMDP with a fixed
scheduler and the supremum reachability probability of B over all
schedulers. Although the definition of reachability probabilities in
qMDPs looks similar to that of classical MDPs, their behaviours
are very different; for example, a MDP has an optimal scheduler
that can achieve the supremum reachability probability for all ini-
tial states. But it is not the case in a qMDP even for a given initial
state. It is also interesting to observe the difference between the
behaviour of qMDPs and that of quantum Markov chains. It was
proved in [42] that a quantum Markov chain eventually reaches a

subspace B for any initial state if the ortho-complement B⊥ of
B in the state Hilbert space H contains no bottom strongly con-
nected components (BSCCs). The corresponding notion of BSCC
in a qMDP is invariant subspace. However, it is possible that in
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a qMDP B⊥ contains no invariant subspaces but for some sched-
ulers, B is reached by a probability smaller than 1.

As indicated in Subsection 2.7, some problems in the analysis
of quantum algorithms can be properly formulated as the reacha-
bility problem of qMDPs. We believe that it will be inevitable to
develop effective techniques for reachability analysis of qMDPs
with applications in quantum program analysis and verification as
quantum algorithm and program design become more and more so-
phisticated.

The aspects of qMDPs more related to decision making and
machine learning are left for future research. In the last few years,
it has been found that probabilistic programming is very useful
in machine learning for describing probabilistic distributions and
Bayesian inference (see, for instance, [13]). On the other hand,
it was realised recently that a major application area of quantum
computing might be machine learning and big data analytics. We
expect that qMDPs will serve as a bridge between the researches
on quantum programming and quantum machine learning.

Contribution of the paper: This paper studies (un)decidability
and complexity of reachability analysis for qMDPs. In the case
of finite-horizon, it is proved that both quantitative reachability
and qualitative reachability of qMDPs are undecidable. In the case
of infinite-horizon, we show that it is EXPTIME-hard to decide
whether the supremum reachability probability of a qMDP is 1, and
if it is smaller than 1, then the supremum reachability probability
is uncomputable. It is further proved that a qMDP has an optimal
scheduler for reaching an invariant subspace of its state Hilbert
space if and only if the ortho-complement of the target subspace
contains no invariant subspaces. This result enables us to develop
an algorithm for finding an optimal scheduler. We also consider
the problem whether a qMDP always reach an invariant subspace
with probability 1, no matter what the scheduler is. A connection
between this problem and a long-standing open problem - the joint
spectral radius problem [8, 16, 37] - is observed.

Related work: Before this paper, a very interesting paper by
Barry, Barry and Aaronson [3] was recently posted at http://arxiv
.org/abs/1406.2858 where the notion of quantum partially observ-
able Markov decision process was introduced. It was proved in [3]
that reachability of a goal state is undecidable in the quantum case
but decidable in the classical case. The undecidability in the quan-
tum case is similar to our Theorem 3.2, but they are not the same
since we consider reachability of invariant subspaces rather than a
single state. Other results in [3] and ours are unrelated.

Organisation of the paper: The rest of this paper is organised
as follows. Section 2 gives formal definitions of qMDPs and their
reachability probabilities and invariant subspaces. It also presents
several examples to illustrate how can quantum algorithms and pro-
tocols be modelled as qMDPs and to show some essential differ-
ences between qMDPs and classical MDPs as well as quantum
Markov chains. All main results obtained in the paper are stated
in Section 3. Sections 4 and 5 are devoted to prove the results for
finite-horizon and infinite-horizon, respectively. A brief conclusion
is drawn in Section 6.

2. Definitions and Examples

2.1 Basics of Quantum Theory

For convenience of the reader, we very briefly recall some basic
notions in quantum theory with the main aim being fixing nota-
tions; see [25] for details. In this paper we always assume that the

state Hilbert space is d−dimensional, i.e. H = Cd where C is
the field of complex numbers. We use the Dirac notation and as-

sume that {|i〉}di=1 is an orthonormal basis of H. Then we have
H = span{|i〉}, a pure state inH can be written as |ψ〉 =∑αi|i〉
with

∑ |αi|2 = 1, and a mixed state is represented by a den-

sity matrix in H, i.e. a semi-definite positive d × d matrix with
trace 1. Write D(H) for the set of all density matrices in H. The
identity matrix is denoted I . If a density matrix can be written as
ρ =

∑

pi|ψi〉〈ψi|, where 〈ψi| stands for the transpose conjugate
of |ψi〉, then its support is supp(ρ) = span{|ψi〉 : pi > 0}.

The evolution of a closed quantum system is described by a d×d
unitary matrix: |φ〉 7→ U |φ〉. A super-operator E : D(H)→ D(H)
depicts the dynamics of a system which is realised with noise or
interacts with its environment, and it can always be represented

by E(ρ) =
∑

EiρE
†
i where all Ei are d × d matrices with

∑

E†
iEi = I and E†

i denotes the conjugate transpose of Ei.

The d2 × d2 matrix M =
∑

(Ei ⊗ E∗
i ) is called the matrix

representation of E .
A quantum measurement in H is described by a set of d × d

matrices M = {Mm1
, · · · ,Mmk

} with
∑

M†
mi
Mmi

= I , where
mi’s denote the possible outcomes. If we perform measurement
M on a quantum system which is currently in state ρ, then the

probability that we get outcomemi is pi = tr(M†
mi
Mmi

ρ) and the

system’s after-measurement state is ρi =Mmi
ρM†

mi
/pi whenever

the outcome is mi. A measurement P = {Pm1
, · · · , Pmk

} is
projective if Pmi

Pmj
= δijPmi

.

2.2 Quantum Markov Decision Processes

In this subsection, we formally define our notions of qMDPs and
their schedulers.

Definition 2.1. A qMDP is a 4-tuple M = 〈H, Act,M, Q〉,
where:

• H is a d-dimensional Hilbert space, called the state space.
The dimension of H is also called the dimension of M, i.e.
dimM = dimH = d.

• Act is a finite set of action names. For each α ∈ Act, there is
a corresponding super-operator Eα that is used to describe the
evolution of the system caused by action α.

• M is a finite set of quantum measurements. We write Ω for the
set of all possible observations; that is,

Ω = {OM,m :M ∈M and m is a possible outcome of M}.
Intuitively, OM,m indicates that we perform the measurement
M on the system and obtain the outcome m.

• Q : Act ∪ M → 2Act∪M is a mapping. For each α ∈
Act (or M ∈ M), Q(α) (resp. Q(M)) stands for the set of
the available actions or measurements after α (resp. M ) is
performed. For the trivial case that Q(α) = Act ∪M for all
α, Q will be omitted, and the qMDPM will be simply written
as a triple 〈H, Act,M〉.

Definition 2.2. A scheduler for a qMDPM is a function

S : (Act ∪ Ω)∗ → Act ∪M.

For any sequence σ = α1...αn ∈ (Act ∪ Ω)∗, S(σ) indicates the
next action or measurement after actions or observations α1...αn

happen.

As pointed out in the introduction, a scheduler in a qMDP se-
lects the next action based on the outcomes of performed mea-
surements. Actually, in the above definition the performed actions
are also recorded as a part of the information for such a selection.
This design decision is motivated by several examples in Subsec-
tion 2.7. We now describe the evolution of a qMDP M with an
initial state ρ ∈ D(H) and a scheduler S. For simplicity, we write

W = (Act ∪ Ω)∗. For each word w ∈ W , the state ρSw of the

qMDPM and probability pSw that this state is reached inM after
sequence w of actions or observations are defined by induction on
the length of w:
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• ρSǫ = ρ and pSǫ = 1, where ǫ is the empty word.

• If S(w) = α ∈ Act, then ρSwα = Eα(ρSw) and pSwα = psw.
(Note that all the super-operators Eα (α ∈ Act) are assumed to
be trace-preserving.)

• If S(w) = α = OM,m ∈ Ω, then

ρSwα =Mmρ
S

wM
†
m/tr(Mmρ

S

wM
†
m)

and pSwα = pSw · tr(Mmρ
S

wM
†
m).

Furthermore, for each n ≥ 0, we can define the global state of the
qMDPM at step n according to scheduler S by

ρ(n,S) =
∑

w∈W s.t. |w|=n

pSwρ
S

w .

For a subspace B of H, the probability that B is reached at step n
with initial state ρ and scheduler S is defined by

Pr(ρ(n,S) � B) = tr(PBρ(n,S)) (1)

where PB is the projection onto B.

2.3 Invariant Subspaces

A key notion used in reachability analysis of quantum Markov
chains [42] is BSCC. A counterpart of BSCC in qMDPs is the
notion of (common) invariant subspace. Let B be a subspace
of Hilbert space H. We say that B is invariant under a super-
operator E if supp(E(ρ)) ⊆ B for all density matrices ρ with
supp(ρ) ⊆ B. Moreover, B is invariant under a measurement

M = {M1, · · · ,Mk} if supp(MiρM
†
i ) ⊆ B for all 1 ≤ i ≤ k

and all ρ with supp(ρ) ⊆ B.

Definition 2.3. Let M = 〈H, Act,M, Q〉 be a qMDP and B a
subspace of H. If B is invariant under super-operator Eα for all
α ∈ Act, and it is invariant under all measurement M ∈M, then
B is called an invariant subspace ofM.

The probability that an invariant subspace is reached is a non-
decreasing function of the number of steps.

Theorem 2.1. Let M be a qMDP with initial state ρ and B an
invariant subspace ofM. Then for any scheduler S and n ≥ 0, we
have:

Pr(ρ(n+ 1,S) � B) ≥ Pr(ρ(n,S) � B).

Proof. Induction on n by using Theorem 1 in [42].

2.4 Reachability Probability

The reachability probability of finite-horizon was defined in equa-
tion (1). Now we define the reachability probability of infinite-
horizon.

Definition 2.4. LetM be a qMDP with state Hilbert space H, ρ
an initial state, S a scheduler forM and B a subspace ofH. Then
reachability probability of B inM starting in ρ with scheduler S
is defined by

PrS(ρ � ♦B) = lim
n→∞

Pr(ρ(n,S) � B). (2)

It is worth noting that, in general, the limit in the above equation
does not necessarily exist. However, we have:

Lemma 2.1. If B is an invariant subspace of M, then for any
initial state ρ and any scheduler S, the reachability probability

PrS(ρ � ♦B) always exists.

Proof. Since Pr(ρ(n,S) � B) is bounded by 1, the conclusion
follows immediately from Theorem 2.1.

Definition 2.5. LetM be a qMDP with state Hilbert spaceH, ρ an
initial state and B a subspace of H. Then supremum reachability
probability of B inM starting in ρ is defined by

Prsup(ρ � ♦B) = sup
S

PrS(ρ � ♦B). (3)

If scheduler S0 satisfies that PrS0(ρ � ♦B) = Prmax(ρ � ♦B),
then S0 is called the optimal scheduler for the initial state ρ.

2.5 A Difference between Classical and Quantum Markov
Decision Processes

It is well-known [2, Lemma 10.102] that there exists a memoryless
scheduler S0 that is optimal for all initial states. In the quantum
case, however, it is possible that no optimal scheduler exists even
for a fixed initial state.

Example 2.1. Consider a quantum Markov decision processM =
〈H, Act,M〉, where H = span{|1〉, |2〉, |3〉, |4〉}, M = ∅, Act =
{α, β} and

Eα(ρ) = (|2〉〈1|ρ|1〉〈2| + |1〉〈1|ρ|1〉〈1|)/2 + |2〉〈2|ρ|2〉〈2|
+ |3〉〈3|ρ|3〉〈3| + |4〉〈4|ρ|4〉〈4|,

Eβ(ρ) = |4〉〈1|ρ|1〉〈4| + |3〉〈2|ρ|2〉〈3| + |3〉〈3|ρ|3〉〈3|
+ |4〉〈4|ρ|4〉〈4|.

Let ρ0 = |1〉〈1| and B = span{|3〉}. Then

PrP (ρ0 � ♦B) < sup
S

PrS(ρ0 � ♦B) = 1

for all schedulers P . Indeed, if P = αω , then PrS(ρ0 � ♦B) = 0.
Let P 6= αω be a scheduler and let k be the first index such

that ak = β where P = a1a2 . . . . Then PrP(ρ0 � ♦B) =
1− 0.5k−1 < 1.

One reason for nonexistence of the optimal scheduler is that the
current state of a quantum system usually cannot be known exactly
from the outside, and thus we often have no enough information
to choose the next action in a scheduler for a qMDP. In the above
example, whence we know the exact state of the system, we can
choose an appropriate action to reach the target state: if the state is
|1〉, we take α, and if the state is |2〉, we take β. However, consider
the case where the first action is α. The state of the system will
become ρ1 = (|1〉〈1|+ |2〉〈2|)/2. Then we do not know it is in |1〉
or |2〉 exactly, and we cannot decide which action should be taken.

However, the above is not the only reason for nonexistence of
the optimal scheduler. As shown in the following example, it is still
possible that a qMDP has no the optimal scheduler when we know
exactly its state.

Example 2.2. LetM = 〈H, Act,M〉 be a qMDP, ρ0 = |1〉〈1| an
initial state and B = span{|4〉}, where

• H = span{|1〉, |2〉, |3〉, |4〉} ;

• Act = {a, b} and M = ∅;
• Ea = A1 ·A†

1 + A2 · A†
2 + A3 ·A†

3, where

A1 =







cos θ sin θ
− sin θ cos θ

0
0






,

θ = 0.6, A2 = |3〉〈3| and A3 = |4〉〈4|;
• Eb =

∑4
i=1 Ci · C†

i , where C1 = |3〉〈1|, C2 = |4〉〈2|, C3 =
|3〉〈3|, C4 = |4〉〈4|.

Since θ = 0.6, the set {An
1 |1〉 : n ∈ N} is dense on the circle

{a|1〉+ b|2〉 : a, b ∈ R, a2 + b2 = 1}. For any ǫ > 0, there exists

n, such that Ena (|1〉〈1|) = |ψn〉〈ψn| with |〈2|ψn〉| >
√
1− ǫ.
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Thus PrS(ρ0 � B) > 1 − ǫ for S = (anb)ω . This leads to
Prsup(ρ0 � B) = 1. But since Am

1 |1〉 6= |2〉 for any m, there
is no optimal scheduler.

In the above example, we have complete information about the
state of the system after Ea: it is always a superposition a|1〉+ b|2〉
of |1〉, |2〉. But this does not help to derive an optimal scheduler
because only |2〉 can reach the supremum 1.

2.6 A Difference between Quantum Markov Chains and
Decision Processes

It was shown in [42] that a quantum Markov chain will eventually
reach a subspace B for any initial state if there is no BSCC con-

tained in the ortho-complement B⊥. The following question asks
whether a similar conclusion holds for qMDPs.

Problem 2.1. LetM be a qMDP with state space H, S a given
scheduler forM and B a subspace of H. Suppose thatM has no

invariant subspace contained in B⊥. WillM reach B eventually,

i.e. PrS(ρ � ♦B) = 1 for all initial states ρ?

This question is negatively answered by the following example.

Example 2.3. LetM = 〈H, Act,M〉withH = span{|1〉, |2〉, |3〉},
Act = {a, b} and M = ∅. The super-operators corresponding to
a and b are defined as follows:

Ea(ρ) = |3〉〈1|ρ|1〉〈3| + |1〉〈2|ρ|2〉〈1| + |3〉〈3|ρ|3〉〈3|,

Eb(ρ) = |2〉〈1|ρ|1〉〈2| + |3〉〈2|ρ|2〉〈3| + |3〉〈3|ρ|3〉〈3|
for any density operator ρ. Let B = span{|3〉}. It is easy to see

that Ea and Eb have no common invariant subspace in B⊥. We
consider initial state ρ0 = (|1〉〈1|+ |2〉〈2|)/2 and two schedulers

S1 = (ab)ω and S2 = (ab)kaa(ab)ω for some k. Then we have

PrS1(ρ0 � ♦B) = 1/2, but PrS2(ρ0 � ♦B) = 1.

2.7 Quantum Algorithms and Protocols as qMDPs

In this subsection, we show how can the existing quantum algo-
rithms and communication protocols be seen as examples of qMDP
by analysing their structures. The early quantum algorithms and
protocols can be roughly classified into three classes:

1. The first class applies a sequence of unitary operators followed
by a measurement. If the outcome of measurement is desir-
able, the algorithm terminates. Otherwise, the algorithm is re-
initialized and executed again; see Figure 1(a). Examples in-
clude the famous quantum order-finding and factoring algo-
rithms [25], the Grover search algorithm [15], several quantum-
walk-based algorithms [9, 20, 34] and the algorithm for solving
the expectation value of some operators of systems of linear
equations [18].

2. The second class repeatedly applies an action-measurement
loop until success; see Figure 1(b). One example is the routing
algorithm based on a many-measurement quantum walk in [20].

3. The structure of the third class looks like a decision tree; see
Figure 2. Examples are quantum teleportation [25], one-way
quantum computer [29]. These examples always terminate.

Recently, several algorithms have been developed with the
structures different from Figures 1 and 2. For example, a modi-
fied quantum factoring algorithm was experimentally realised in
[23], where in order to reduce the number of necessary entangled
qubits, the ancilla (control) qubits are recycled. The structure of this
algorithm is shown in Figure 3. Another example is the quantum
Metropolis sampling [36]. This algorithm can be used to prepare
the ground or thermal state of a quantum system. The structure
of this algorithm for reaching the ground state is shown in Figure

(a) (b)

Figure 1. EU represents the one or several sequential unitary op-
erators. ρ0 is the initial state. Einit represents re-initializing, i.e.,
restarting the algorithm. Eskip means maintaining the result for fur-
ther application. M represents measurements with observation oT
standing for success and oF for failure.

Figure 2. Structure of quantum decision trees.

4. It consists of decisions dependent on the history of actions and
measurement outcomes as well as repeated loops until success.

As indicated by Figures 1-4, all of the algorithms and protocols
mentioned above can be seen as qMDPs. Here we only elaborate
the qMDP model of quantum Metropolis sampling.

Figure 3. Structure of modified quantum factoring algorithm.

(a) The global view (b) The structure of Bi

(c) The structure of Bij

Figure 4. Structure of quantum Metropolis sampling in [36].

Example 2.4. The qMDP M = 〈H, Act,M〉 for the quantum
Metropolis algorithm [36] is defined as follows:
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• The state Hilbert space is the tensor product of five spaces,
H = HS ⊗HE1 ⊗HE2 ⊗Ha ⊗Hc, where

1. HS is the Hilbert space of the original system, whose
ground state is the target.

2. HE1 and HE2 are ancilla spaces, used to represent the
energies of the states in HS , where HE1 represents the
energy before updating in each round and HE2 represents
the new energy after updating.

3. Ha is 2−dimensional with its basis states represent the
success or failure of eigenstate updating.

4. Hc is used to implement the probabilistic choice of actions
C.

• Act consists of actions in the form of E∗ in Figure 4, where ERC

stands for probabilistic choice of unitary operators C in [36].

• M consists of measurements in the form of M∗ in Figure 4. Ω
is the set of observations.

The task of the algorithm is actually to find a scheduler that reaches
the ground state in this qMDP. One such scheduler is illustrated in
Figure 4.

Various generalisations and variants of quantum Metropolis
sampling have been proposed, e.g. quantum rejection sampling
[27], quantum-quantum Metropolis sampling [44] and comple-
menting quantum Metropolis algorithm [30]. An experiment for
preparing thermal states was realised [45] by employing some ideas
from quantum Metropolis sampling. The correctness of quantum
Metropolis algorithm and its variants can actually be seen as a
reachability problem for qMDPs. This motivates us to systemati-
cally develop techniques for reachability analysis of qMDPs.

2.8 A Concurrent Quantum Program

As one more example of qMDP, we consider a simple concurrent
quantum program consisting of n processes. Every process is a
quantum loop. We assume a yes/no measurement M = {P0, P1}
in the state Hilbert spaceH, which is projective; that is, bothP0 and
P1 are projections. For each 1 ≤ i ≤ n, the ith process behaves as
follows: it performs the measurement M , if the outcome is 0, then
it executes a unitary transformation Ui and enter the loop again;
if the outcome is 1 then it terminates. Note that the loop guard
(termination condition) of the n processes are the same, but their
loop bodies, namely unitary transformations Ui, are different.

This concurrent quantum program can be modelled as a qMDP
M with Act = {1, 2, ..., n}. For each i ∈ Act, the action super-
operator Ei is defined by

Ei(ρ) = P1ρP1 + UiP0ρP0U
†
i

for all density matrices ρ. If P1 is the projection onto the subspace
B of H, then the overall termination probability of the concurrent
program with initial state ρ is the supremum reachability Prsup(ρ �
♦B). The following proposition provides us with a method for

computing this termination probability. We write Ē for the average
super-operator of Ei (1 ≤ i ≤ n); that is,

Ē =
1

n

n
∑

i=1

Ei.

We further define

E∞ = lim
N→∞

1

N

N
∑

i=1

Ē i.

(It was shown in [41] that E∞ can be computed by Jordan decom-
position of the matrix representation of Ē .)

Proposition 2.1. 1. The overall termination probability

Prsup(ρ � ♦B) = 1− tr(ρPC),

where C = supp(E∞(IH)) and PC is the projection onto C.

2. There is a string s ∈ Act∗ such that the scheduler S = sω can
attain the overall termination probability; that is,

PrS(ρ � ♦B) = Prsup(ρ � ♦B).

Proof. Let Ya be an invariant subspace included in B⊥ of Ea.
Since Ya ⊥ B, we have Ya ⊇ Ea(Ya) = UaYa. As dimYa =
dim(UaYa), we have Ya = UaYa. Since unitary operators pre-
serves the orthogonality, we have tr(ρPYa) = tr(Ea(ρ)PYa). If
we write C = supp(E∞(IH)), then C is invariant by defini-

tion and we have PrS
′

(ρ � ♦C) = tr(ρPC) for any sched-
uler S

′. By Theorem 3.6 below, there exists S = sω such that

PrS(ρ � ♦B ∪ C) = 1. So,

PrS(ρ � ♦B) = Prsup(ρ � ♦B) = 1− tr(ρPC).

3. Statement of Main Results

The aim of this paper is to study decidability and complexity of
reachability analysis for qMDPs. For readability, we summarise the
main results in this section but postpone their proofs to the sequent
sections.

3.1 Results for the Finite-Horizon

We first examine the case of finite-horizon and consider the follow-
ing:

Problem 3.1. Given a qMDPM, an initial state ρ, a subspace B
of H and 0 ≤ p ≤ 1, are there a scheduler S and a non-negative
integer n such that

Pr(ρ(n,S) � B)△p
where△ ∈ {>,≥, <,≤}?
Theorem 3.1. Problem 3.1 is undecidable for any△.

Now let us consider a qualitative variant of Problem 3.1.

Problem 3.2. Given a qMDP M with the state Hilbert space H
and a subspace B ofH.

1. Are there a scheduler S and an integer n such that supp(ρ(n,S))
⊆ B for all initial states ρ?

2. Are there a scheduler S and an integer n such that supp(ρ0(n,S))
⊆ B for a given initial state ρ0?

The counterpart of Problem 3.2.2 for classical MDPs can be
stated as follows: given a MDPM with a finite set S of states, an
initial state s0 and B ⊆ S, decide whether there exists a scheduler
S and an integer N such that for any possible sequence of states
s0s1s2 · · · under S, there exists j < N such that sj ∈ B. The
polynomial-time decidability of this problem immediately follows
the fact that an optimal scheduler for maximum reachability prob-
lem of a MDP can be found in polynomial time [2]. The only thing
we need to do is to check whether there exists a cycle in all states
reachable from s0 in S\B, if Pr(s0 � ♦B) = 1. The same result is
true for the counterpart of Problem 3.2.1 for classical MDPs. This
idea also applies to partially observable MDPs with a technique for
reducing them to MDPs [1].

However, undecidability of Problem 3.2 was proved in [4] if
subspace B is allowed to be not invariant. We prove undecidability
of the problem for invariant subspace B and thus significantly
improve the main result of [4].

Theorem 3.2. Both Problems 3.2.1 and 3.2.2 with |Act|+|M| ≥ 2
and B invariant are undecidable.
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3.2 Results for the Infinite-Horizon

Let us turn to the case of infinite-horizon. If the target subspace B
is allowed to be not an invariant subspace, then the limit in equation
(2) does not necessarily exists, and we consider the corresponding
upper limit:

Theorem 3.3. Given a qMDP M, an initial state ρ0 and a sub-
space B (not necessarily invariant ofM), then it is undecidable to
determine whether

sup
S

lim sup
n→∞

Pr(ρ(n,S) � B) = 1.

In the remainder of this section, we only consider invariant
subspace B of M, since the supremum reachability probability
is not well-defined for those subspaces that are not invariant (see
Definition 2.4 and Lemma 2.1). As for classical MDPs, a major
reachability problem for qMDPs is the following:

Problem 3.3. Given a qMDPM, an initial state ρ0 and an invari-
ant subspace B.

1. Decide whether Prsup(ρ0 � ♦B) = 1.

2. Furthermore what is the exact value of Prsup(ρ0 � ♦B)?

Theorem 3.4. Given a qMDP M, an initial state ρ0 and an
invariant subspace B.

1. It is EXPTIME-hard to decide whether Prsup(ρ0 � ♦B) = 1
even forM whose actions are all unitary.

2. The value of Prsup(ρ0 � ♦B) is uncomputable, if Prsup(ρ0 �
♦B) < 1.

For a special class of super-operators and measurements opera-
tors, Theorem 3.4.1 can be significantly improved:

Theorem 3.5. LetM, ρ0, B be as in Theorem 3.4. We assume:

1. for each α ∈ Act, Eα(ρ) =
∑nα

i=1AαiρA
†
αi with allAαi being

of the form a · |ϕ〉〈ψ|;
2. for Mβ ∈ M, Mβ = {Mβ1, ...,Mβkβ

} with all Mβj being

also of form a · |ϕ〉〈ψ|.
LetN = max({nα : α ∈ Act}∪{kβ :Mβ ∈M}). Then whether
Prsup(ρ0 � ♦B) = 1 can be decided in time O(poly((|Act| +
|M|)2N )).

A variant of Problem 3.3 is the following:

Problem 3.4. Given a qMDPM, and an invariant subspace B, is

there a scheduler S, such that PrS(ρ � ♦B) = 1 for all initial
states ρ?

The difference between this problem and Problem 3.3 is that
the initial state is arbitrary in the former but it is fixed in the latter.
It is worth noting that the counterparts of these two problems for
classical MDPs are similar because they have only a finite number
of states which can be checked one by one. However, the quantum
versions are very different due to the fact that the state Hilbert space
of a qMDP is a continuum. It is also worth carefully comparing
this problem with Problem 2.1: scheduler S is given in the latter,
whereas we want to find a special scheduler S in the former.

Theorem 3.6. For a given qMDP M = 〈H, Act,M〉 and an
invariant subspace B of M, the following two statements are
equivalent:

1. There exists a scheduler S such that PrS(ρ � ♦B) = 1 for all
initial states ρ;

2. There is no invariant subspace C ofM included in B⊥.

Furthermore, if there is no invariant subspace C ofM included in

B⊥, then there exists an optimal finite-memory scheduler S = sω

with s ∈ Act∗.

Based on the above theorem, we develop Algorithm 1 for check-
ing existence of the optimal scheduler, of which the correctness and
complexity are presented in the next theorem.

input : A quantum Markov decision provessM, the Hilbert
space H, a subspace B ( H

output: A string s ∈ (Act ∪M)∗

* s = ǫ means no such scheduler.*
begin

s = ǫ;
Act′ ←− Act;
E ←− Ei, for all i ∈ Act;
t←− |Act′|;
for any M ∈M do

t←− t+ 1;

Et ←−
∑

Mi ·M†
i , for all measurement operators

Mi of M ;

E ←− E ∪ {Et};
Act′ ←− Act′ ∪ {t};

end

F = 1
t

∑

Ei∈E Ei;
if F(IB) 6⊆ B then

return s;

end

G ←− F|B⊥ ;

N ←− null space of G(x)− x = 0;

if N ! = {0} then
return s;

end

d←− dim(H);
S ←− ∪d−1

i=1Act
′i;

T ←− B⊥;

b←− dim(T );
while b > 0 do

for v ∈ S do
w←− s · v;

Y ←− (E∗w(T⊥))⊥;

if dim(Y ) < b then
b←− dim(Y );
s←− w;

break;

end

end

end

return s;

end

Algorithm 1: Find an optimal scheduler

Theorem 3.7. 1. Algorithm 1 returns ǫ if there is no such a sched-
uler, otherwise it returns s 6= ǫ such that S = sω is an optimal
scheduler.

2. The time complexity of Algorithm 1 is O(d9td), where d =
dimH and t = |Act|+ |M|.
We now consider another variant of Problem 3.3, where not only

the initial state ρ but also the scheduler S can be arbitrary.

Problem 3.5. Given a qMDPM, and an invariant subspace B, is

the reachability probability always 1, i.e. PrS(ρ � ♦B) = 1 for
all initial states ρ and all schedulers S?

For this problem, we only have an answer in a special case.
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Theorem 3.8. LetM be a qMDP with M = ∅ and B an invariant

subspace of H. Then PrS(ρ � ♦B) = 1 holds for all schedulers
S and all initial states ρ if and only if it holds for all initial states
and all schedulers of the form S = sω with |s| ≤ Ld, where Ld is
inductively defined as follows:

• L0 = 1 and K0 = k, where k = |Act|.
• Li+1 = (Ki + 1)Li and Ki+1 = kLi+1 for any i ≥ 0.

We can develop an algorithm to check whether PrS(ρ �
♦B) = 1 holds for all initial states and all schedulers S. By
Theorem 3.8, we only need to examine all schedulers of the form
S = sω with |s| ≤ Ld. There are totally Kd such schedulers,

and for each one, it costs at most O(d6Ld) arithmetic operations
to check the conclusion. Thus, the complexity of the algorithm is
O(d6LdKd). For the special class of qMDPs considered in Theo-
rem 3.5, we can significantly reduce this complexity.

Theorem 3.9. Let M, B and N be as in Theorem 3.5. Then
whether PrS(ρ � ♦B) = 1 holds for all schedulers S and all

initial states ρ can be decided in time O(poly((|Act|+ |M|)2N ))
.

To conclude this section, we point out a link from Problems 3.4
and 3.5 to a long-standing problem in matrix analysis and control
theory, namely the joint spectral radius problem [8, 16, 37]. For a
given set of square matrices Σ = {Ai : i = 1, · · · , t}, the discrete
linear inclusion of Σ is defined to be the set

DLI(Σ) = {xn = Asn · · ·As1x0 : x0 ∈ C
d, n ≥ 0

and Asj ∈ Σ (1 ≤ j ≤ n)}.
The set Σ is said to be absolutely asymptotically stable (AAS) if
limn→∞Asn · · ·As1 = 0 for any infinite sequences As1As2 ...
in Σ. The joint spectral radius and lower spectral radius of Σ are
defined as

¯̺(Σ) = lim sup
k→∞

¯̺k(Σ), ̺(Σ) = lim inf
k→∞

̺
k
(Σ)

respectively, where for every k ≥ 1,

¯̺k(Σ) = sup{‖A‖1/k : A ∈ Σk},

̺
k
(Σ) = inf{‖A‖1/k : A ∈ Σk}.

It is known [8, 16] that Σ is AAS if and only if the joint spectral ra-
dius ¯̺(Σ) < 1. It was shown in [37] that unless P = NP , there are
no polynomial-time approximate algorithms for computing ¯̺(Σ).
The problem “̺(Σ) < 1” and “ ¯̺(Σ) ≤ 1” were proved to be un-

decidable in [5, 37]. However, the problem whether “ ¯̺(Σ) < 1” is
decidable is still open although the notion of joint spectral radius
was introduced more than fifty years ago [31].

Theorem 3.10. Let M be a qMDP with M = ∅ and B an
invariant subspace of M. For each α ∈ Act, let Mα be the

matrix representation of PT Eα(·)PT , where T = B⊥. We write
ΣM = {Mα : α ∈ Act}. Then:

1. ̺(ΣM) < 1 if and only if there exists a scheduler S such that

for any initial state ρ, it holds that PrS(ρ � ♦B) = 1.

2. ¯̺(ΣM) < 1 if and only if for any scheduler S and any initial

state ρ, it holds that PrS(ρ � ♦B) = 1.

4. Finite-Horizon Problems

In this section, we prove the theorems for finite-horizon stated in
Subsection 3.1.

4.1 Proof of Theorem 3.1

We prove this theorem by an easy reduction from the empti-
ness problem of cut-point languages for probabilistic finite au-

tomata (PFA) to Problem 3.1. For a given MO-1gQFA M′ =
〈H,Σ, ρ0, {Eσ}σ∈Σ, Pacc〉 [19], we can construct a qMDPM =
〈H, Act,M〉 such that Act = Σ, and M = Ω = ∅. Let B =
supp(Pacc). Then these exist S and n such that Pr(ρ(n,S) �
B)△p if and only if there exists a word σ1 · · ·σn such that
tr(PaccEσn ◦ · · · ◦ Eσ1

(ρ0))△p. Since MO-1gQFA can simulate
any PFA [19] and the emptiness problem for PFA is undecidable
[4], Problem 3.1 is undecidable too.

4.2 Proof of Theorem 3.2

Our proof technique is a reduction from the matrix mortality prob-
lem to Problem 3.2. The matrix mortality problem can be simply
stated as follows:

• Given a finite set of matrices G = {Mi ∈ Z
n×n : i ∈

{1, 2, · · · , k}}, is there any sequence j1, · · · , jm such that
MjmMjm−1

· · ·Mj1 = 0?

It is known [17, Theorem 3.2] that the matrix mortality problem is
undecidable for k = 2.

We now prove Theorem 3.2. For a set G of matrices as above,
we construct a qMDPM = 〈H, Act,M〉 from it as follows:

• The state space isH = span{|1〉, · · · , |2n〉}.
• Let Act = {1, 2, · · · , n}. For each i ∈ Act, we construct a

super-operator Ei from Mi:

Ei(ρ) = AiρA
†
i +BiρB

†
i + CiρC

†
i ,

where

Ai =

(

ai 0
0 0

)

, Bi =

(

0 0
0 In×n

)

, Ci =

(

0 0
ci 0

)

,

and

ai =
1

ri
Mi, ci =

√

I −M†
i Mi/r2i .

In the defining equation of ai, ri is a positive integer such that

I −M†
i Mi/r

2
i ≥ 0.

• M = ∅.
Now, it is easy to show that for any state

σ =

(

σa ∗
∗ σb

)

,

we have

Ei(σ) =
(

aiσaa
†
i 0

0 σb + ciσac
†
i

)

.

Therefore, for any initial state

ρ0 =

(

ρa ∗
∗ ρb

)

,

it holds that

ρ(m,S) =

(

AρaA
† 0

0 ∗

)

,

where A = ajm · · · aj1 . Now let B = span{|n + 1〉, · · · , |2n〉}.
Then

∀ρ0,∃n,S s.t. ρ(n,S) ⊆ B
⇔∃jm, · · · , j1 s.t. ajm · · · aj1 = 0

⇔∃jm, · · · , j1 s.t. Mjm · · ·Mj1/(rjm · · · rj1)2 = 0

⇔∃jm, · · · , j1 s.t. Mjm · · ·Mj1 = 0.

Since the matrix mortality problem is undecidable for k = 2,
Problem 3.2.1 with M = ∅ and B invariant is undecidable for
dimension |Act|+ |M| ≥ 2.
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Note in the above reduction, AρaA
† will always be rational, if

ρ0 is rational. Since for any σ ≥ 0, supp(σ) ⊆ B holds if and only
if σa = 0, we only compute the upper left corner and leave ci as a
symbol in the lower right corner when computing ρ(m,S). (There
are at most O(m) ci’s.) Thus this reduction does not employ any
operation on irrational numbers.

The reduction still works if we fix the initial state ρ0 to be I/2n,
which is one special case of Problem 3.2.2. Therefore Problem
3.2.2 is undecidable too.

5. Infinite-Horizon Problems

In this section, we prove the theorems for infinite-horizon stated in
Subsection 3.2.

5.1 Proof of Theorem 3.3

This theorem can be proved by reduction from the value 1 prob-
lem of probabilistic automata on finite words in [12]. The value 1

problem asks whether supw∈Σ∗ Pr(q0
w→ F ) = 1 for a proba-

bilistic finite automaton, where q0 is the initial state, F is the set
of accept states and w is a finite word over the input symbols Σ.
We can reduce this automaton to a qMDP with M = ∅, Act = Σ,
ρ0 = |q0〉〈q0| and B = span{|q〉 : q ∈ F}. The reduction tech-
nique is the similar as in the proof of Theorem 3.1. Thus we have

sup
s∈Act∗

Prs
ω

(ρ(|s|, sω) � B) = 1 (4)

is undecidable. Since M = ∅, all schedulers are of form S = sω

or S ∈ Actω. Therefore equation (4) is equivalent to

sup
S

lim sup
n→∞

PrS(ρ(n,S) � B) = 1.

This completes the proof.

5.2 Proof of Theorem 3.4

We prove part 1 of the theorem by a reduction from an EXPTIME-
complete game in [35] to the problem of deciding whether Prsup(ρ0 �
♦B) = 1. Some ideas are similar to those used in [6, 28].

• The game is a two-player game on a propositional formula
F (X,Y ) in the conjunctive normal form (CNF). Player 1(resp.
2) changes at most one variable in X (resp. Y) at each move,
alternately. Once F becomes true, Player 1 wins.

It is known [35] that the following problem is EXPTIME-
complete: given an input string w encoding a position of this game,
decide whether Play 1 has a strategy to win definitely, where a po-
sition is a tuple (τ, F (X,Y ), α), where τ ∈ {1, 2} denotes the
current player, F is a formula, and α is an assignment.

Now we start to construct the reduction. LetX = {x1, · · · , xn},
Y = {y1, · · · , yn}, α ∈ {0, 1}n+m and F =

∧c
i=1 Ci, where

Ci = ∨k
j=1zi,j , and zi,j is one of xt,¬xt, yt,¬yt for some t. We

define a qMDP as follows:
State space. The state space H = HS ⊗ HC ⊗ HF ⊗ HR,

where HS = H⊗(n+m)
2 , HC = H⊗c

k+1, HF = Hc+1, HR =
Hm+2, where Hi = span{|0〉, · · · , |i〉}. The intuition behind the
definition of these spaces is:

• HS encodes the assignment α;

• HC is the work space for clauses;

• HF is the work space for the formula;

• HR encodes the randomness of Player 2’s choice.

Initial state. The initial state is |ψ0〉 = |α(x1)〉 · · · |α(ym)〉
|0C〉|0F 〉|0R〉. We will see that the state of the system can always
be represented in such a separable form during the computation of
this qMDP.

S1: Unitary operators for modelling actions by Player 1.
Since Player 1 can change at most 1 valuable, there are n + 1
choices/actions:

• Do nothing: this can be described by the identity operator I ;

• Change the i-th valuable xi: this can be realised by the NOT
gate X = |0〉〈1| + |1〉〈0| operator on i-th space of HS , i.e.,
U1,i = Uxi

⊗ IC ⊗ IF ⊗ IR, where

Uxi
= IS,1 ⊗ · · · ⊗ IS,i−1 ⊗X ⊗ IS,i+1 ⊗ · · · ⊗ IS,n+m.

All these operators can be represented in this form using space
O(n(n+m+ c+ k)).
S2: Randomness of Player 2’s choice. First we split the state

|0〉〈0| inHR into 1√
m+1

∑m+1
i=1 |i〉 by a unitary

UR = IS ⊗ IC ⊗ IF ⊗ (
1√
m+ 1

m+1
∑

i=1

|i〉〈0|+ · · · ).

Then we apply

U2 =
m
∑

i=1

Uy,i ⊗ IC ⊗ IF ⊗ |i〉〈i|+ IS ⊗ IC ⊗ IF⊗

|m+ 1〉〈m+ 1|+ IS ⊗ IC ⊗ IF ⊗ |0〉〈0|.
At last, we apply a measurement MR = {MR,i : i = 0, · · · ,m +
1}, where MR,i = IS ⊗ IC ⊗ IF ⊗ |0〉〈i|. These step can be

encoded in space O(m2(n+m+ c+ k)).
SC : Checking the formula. This can be done by the following

steps:

1. First, we check each clause. A clauseCi = ∨k
j=1zi,j is checked

via each of its literals. For instance, if zi,j is xt, we apply

Uz,i,j = IS,1 ⊗ · · · ⊗ IS,t−1 ⊗ |1〉〈1| ⊗ IS,t+1 ⊗ · · · ⊗ IS,n+m

⊗ Ushift,i ⊗ IF ⊗ IR
+ IS,1 ⊗ · · · ⊗ IS,t−1 ⊗ |0〉〈0| ⊗ IS,t+1 ⊗ · · · ⊗ IS,n+m

⊗ IC ⊗ IF ⊗ IR,
where Ushift,i = IC,1 ⊗ · · · ⊗ IC,i−1 ⊗ (

∑k−1
v=0 |v + 1〉〈v|+

|0〉〈k|)⊗ IC,t+1 ⊗ · · · ⊗ IC,c is the shift operator on subspace
HCi

. The case of zi,j being ¬xt, yt,¬yt is similar. This step
means that zi,j is true, and we shift one level inHCi

.

2. Second, we compute the value of the whole formula. This is
similar the first step. If the state is HCi

is shifted at least once;
that is, it is not |0〉〈0|, then we shiftHF once.

3. Third, we take a projective measurement PF = {P1, P0} on
HF , where P1 = IS⊗ IC ⊗|c〉〈c|⊗ IR represents the fact that
all c clauses are true, i.e. F is true, and

P0 = IS ⊗ IC ⊗
c−1
∑

i=0

|i〉〈i| ⊗ IR,

indicates that F is false. If the outcome is 1, we terminate.

4. Forth, we undo the first two steps if the result is false. Let U
denote the unitary operator of the first two steps. If the projec-
tive measurement gives result 0, the state remains unchanged
because of the separable form of the initial state. Thus we can

apply U† to undo U .

The above four steps can be represented in space O(k2c(n+m+
c+ k)).

Schedulers. If the input τ = 1, i.e. Player 1 first moves,
then we execute sequence (S1SCS2SC)

ω of steps; otherwise
(S2SCS1SC)

ω. This is realised by the mapping Q in Definition
2.1. The decision is made in step S1 (Player 1’s turn).
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Target and reachability probability. The target is to reach the
outcome 1; that is, P1 appears in SC . Because of the separable
form of the initial state, the state of the system is of the form |ψ〉 =
|α′(x1)〉 · · · |α′(ym)〉|0C〉|0F 〉|0R〉 after each step. Thus any step
can be computed in polynomial time of n,m, c, k. Therefore, this
is a polynomial time reduction. Furthermore, it is easy to see that
Player 1 has a “forced win” strategy if and only if there is a
scheduler (for decisions in step S1) with reachability probability
is 1.

Remark: The target space B may not be invariant. But we can
easily modify the spaceHF so that B becomes invariant. What we
need to do is:

• extend HF to k + 2 level space;

• change P1 to |k + 1〉〈k|, and add P2 = |k + 1〉〈k + 1|;
• make all unitary operators to be a controlled operator by HF .

After the modification, the system state remains unchanged in each
decision branching unless it reaches the target.

We now turn to prove part 2 of the theorem; that is, Prsup(ρ0 �
♦B) is uncomputable. This can be done simply by a reduction
from probabilistic automata on infinite words. In [7], it was shown
that the following quantitative value problem is undecidable: for
any ǫ > 0, does there exist a word w such that the reachability
probability in acceptance absorbing automata is greater than λ− ǫ,
for a given rational number 0 < λ < 1. We reduce this problem
to the supremum reachability problem for qMDPs. The reduction
technique is similar to the proofs of Theorems 3.1 and 3.3. Since
the automata are acceptance absorbing, B is invariant. Thus, it is

undecidable whether there exists S ∈ Actω , such that PrS(ρ0 �
♦B) > λ − ǫ. Since this is equivalent to decide sup

S
PrS(ρ0 �

♦B) = λ, we complete the proof.

5.3 Proof of Theorem 3.5

By the assumption, Eα can be written as Eα(ρ) =
∑nα

i=1 aα,iAα,iρ

A†
α,i, where Aα,i = aα,i|ϕα,i〉〈ψα,i|. Then for any state ρ, we

have Eα(ρ) =
∑

i cα,i|ϕα,i〉〈ϕα,i| for some cα,i ≥ 0. Define

Y (α, ρ) , supp(Eα(ρ)) = span{|ϕα,i〉 : cα,i > 0}. It is easy
to see that there are at most 2nα different Y (α, ρ)’s ranging over
all ρ for an given α. Then the total number of Y (α, ρ)’s with

all actions α is at most |Act|2N . Similarly, we define Z(β, j, ρ) ,
supp(MβjρM

†
βj). If probability tr(MβjρM

†
βj) > 0, thenZ(β, j, ρ)

= span{|ϕβj〉}. Otherwise it equals {0}. The total number of
Z(β, i, ρ)’s is at most |M|N . Thus there are at most (|Act| +
|M|)2N possible different supports of resulting states. Let Y to be
the set of all these supports. Now we reduce this problem to the
supremum-1 reachability problem of a classical Markov decision
processM′ = 〈S,Act′, T, s0〉:
• each state corresponds to a possible support, i.e. S = {sy : y ∈
Y } ∪ {s0};

• s0 = s{supp(ρ0)};

• Act′ = Act ∪ {β :Mβ ∈M};
• for each α ∈ Act, the transition function T maps sx to sy with

probability 1, where Eα(x) = y;

• for each Mβ ∈M, T maps sx to sy with probability 1/l(β, x),
where y ∈ {z : z = Z(β, i, x)} and l(β, y) is the number of
elements in this set;

• the target states B′ = {sy : y ⊆ B ∧ y ∈ Y }.
For this classical Markov decision process, it is known [2] that there
is an optimal memoryless scheduler S0 such that

Pmax , PrS0(s0 � ♦B′) = Prsup(s0 � ♦B′).

If Pmax = 1, then S0 can be converted to a scheduler ofM, whose
decisions are based on supports of states. We immediately have
Prsup(ρ0 � ♦B) = 1. Conversely, if Prsup(ρ0 � ♦B) = 1,
then for any ǫ > 0 there exists a history-dependent scheduler Sǫ

convertible to that ofM′ such that PrSǫ(s0 � ♦B′) > 1−ǫ. Thus
Pmax = 1. This completes the reduction. The proof is finished by
the fact from [2] that the maximum reachability of a classical MDP
can be solved in polynomial time of the size ofM′.

5.4 Proofs of Theorems 3.6 and 3.7

We first present several technical lemmas. For a super-operator E ,
we define:

XE = span
(

⋃

{supp(ρ) : tr(PBE(ρ)) = 0}
)

. (5)

Since B is invariant, XE is obviously a subspace of B⊥.

Lemma 5.1. For any density operator ρ, tr(PBE(ρ)) = 0 if and
only if supp(ρ) ⊆ XE .

Proof. The “only if” part is by definition. We now prove the
“if” part. If supp(ρ) ⊆ XE , then there exist σ1, · · · , σk with
supp(σi) ⊆ XE and supp(ρ) ⊆ ∨ supp(σi), i.e. ρ ≤ γ

∑

σi for
some γ > 0. Thus

γ
∑

σi − ρ ≥ 0⇒E(γ
∑

σi − ρ) ≥ 0

⇒PBE(γ
∑

σi − ρ)PB ≥ 0

⇒PBE(γ
∑

σi)PB ≥ PBE(ρ)PB.

By definition, we have PBE(γ
∑

σi)PB = 0 andPBE(ρ)PB ≥ 0.
Therefore PBE(ρ)PB = 0. This implies supp(ρ) ⊆ X .

We now consider a special qMDPM = 〈H, Act,M〉 without
measurements: |M| = ∅. We write Es = Esk ◦ · · · ◦ Es2 ◦ Es1 for a
finite sequence s = s1s2...sk ∈ Act∗. Since 〈H, Es〉 can be seen a

quantum Markov chain, we know from [42] that PrS(ρ � ♦B) =
1 if and only if there is no invariant subspace inB⊥, where S = sω

is a periodic scheduler. For any s ∈ Act∗, we simply write Xs for
XEs defined by equation (5) from super-operator Es.

Lemma 5.2. Let S = sω. If Xs = {0}, then PrS(ρ � ♦B) = 1
for any ρ.

Proof. We prove it by contradiction. Suppose Xs = {0} and

PrS(ρ � ♦B) < 1 for some ρ. Since 〈H, Es〉 is a quantum Markov
chain, the scheduler S is a actually repeated application of Es, we

have from Theorems 4 and 6 in [42] that PrS(ρ � ♦B) < 1
if and only if there exists a (non-empty) BSCC C of T = B⊥

under Es. Corresponding to this BSCC, there exists a minimal
fixed point state ρ with Es(ρ) = ρ and supp(ρ) = C ⊆ T =
B⊥. By definition, we get {0} ( supp(ρ) ⊆ Xs = {0}. A
contradiction!

Lemma 5.3. For any s, v ∈ Act∗ and w = sv, we have Xw ⊆
Xs. In particular, if dimXw = dimXs, then we have Es(Xs) ⊆
Xv .

Proof. For any ρwith supp(ρ) ⊆ Xw, we have 0 = PBEw(ρ)PB =
PBEv(Es(ρ))PB . Thus supp(Es(ρ)) ⊆ Xv ⊆ B⊥. This im-
plies PBEs(ρ)PB = 0, and supp(ρ) ⊆ Xs. Therefore, it
holds that Xw ⊆ Xs. We now turn to prove the second part. If
dimXw = dimXs, then for any ρ with supp(ρ) ⊆ Xs, we have
supp(ρ) ⊆ Xw. This means supp(Es(ρ)) ⊆ Xv as B is invari-
ant.

Now we are ready to prove Theorems 3.6 and 3.7.
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Proof of Theorem 3.6. The proof of (1) ⇒ (2) is easy. Suppose

that there is an invariant subspace C of M included in B⊥, then

PrS(ρ � ♦B) = 0 for any ρ in C and for any scheduler S.
We now prove (2) ⇒ (1). For the special case of M = ∅,

assume that there is no invariant subspace C of M included in

B⊥. Let D = {dimXu : u ∈ Act∗} and let dmin = minD. Then
there exists s ∈ Act∗ such that dimXs = dmin. We assert that
dmin = 0. Indeed, if dmin > 0, then for each word v ∈ Act∗, we
put w = sv. By Lemma 5.3, we have Xw ⊆ Xs. Then it follows
from the definition of dmin that Xw = Xs. As a consequence,

Y
△
= Es(Xs) ⊆ Xv . This implies Ev(Y ) ⊆ B⊥. For a super-

operator E , we write RE(Y ) for the transitive closure of Y under
E , i.e.

RE(Y )
△
=

d−1
∨

i=0

E i(Y ).

Let F = 1
t

∑

α∈Act Eα, where t = |Act|. We have:

RF (Y ) =
d−1
∨

i=0

∨

x∈Acti

Ex(Y ) ⊆ B⊥.

It is clear that RF (Y ) is invariant under F , and thus invariant
under any Ei. So, RF (Y ) is an invariant subspace ofM included

in B⊥ under M.This contradicts to the assumption. So, we have
dmin = 0, and it follows from Lemma 5.2 that S = sω is a optimal
scheduler.

For the general case of M 6= ∅, we define a super-operator

EMβ
=
∑

Mm · M†
m for each Mβ ∈ M. Furthermore, we

can construct a new qMDP M′ = 〈H, Act′,M′〉 with Act′ =
Act ∪ {β : Mβ ∈M} and M

′ = ∅. Then we complete the proof
by applying the above argument toM′.

It is worth noting that the optimal scheduler given in the proof
of the above theorem depends on which measurement is chosen in
each step but not its outcome.

Proof of Theorem 3.7. The design idea of Algorithm 1 is to see

whether there exists an invariant subspace of B⊥ under super-
operator

F =
1

K
(
∑

α∈Act

Eα +
∑

M∈M

∑

Mi∈M

Mi ·M†
i ),

where K = |Act| + |M|. A crucial part of the algorithm is to
compute Xs for each s ∈ Act∗. By definition, we have Es(V ) ⊆
B⊥ whenever V = supp(ρ) ⊆ Xs. Therefore,

Xs = span
(

⋃

{supp(ρ) : PBEs(ρ)PB = 0}
)

=
∨

{V : Es(V ) ⊆ B⊥} = E−1
s (B⊥) = (E∗s (B))⊥,

where E∗ stands for the dual of super-operator E , i.e. E∗ =
∑

A†
i ·

Ai when E =
∑

Ai ·A†
i .

1. The correctness of the algorithm is essentially based on the
proof of Theorem 3.6. Here we give a detailed argument. The
algorithm returns s = ǫ at the first two “return” statements where
B is not invariant or there is an invariant subspace ofM included

inB⊥. Otherwise b is initialized as b > 0, and the algorithm enters
the “while” loop. During the loop, bmust decrease at least 1. If not,
we have found some s such that bs > 0, and for any v ∈ Act′∗,
it holds that bs·v = bs. By Lemma 5.3, we have Xs = Xs·v and

Es(Xs) ⊆ Xv ⊆ B⊥ for all v. Therefore, Es(Xs) is an invariant

subspace ofM included inB⊥, which is a contradiction. So, bwill
be 0 finally and S = sω is then an optimal scheduler.

2. We note that the algorithm will run the “while” loop at most
d times and each time it will run the “for” loop within the body

of the “while” loop at most td times. So the length of s will

be at most d2, as it increases at most d in each running of the
“while” loop. In the “for” loop, the complexity mainly comes from
computing Ew. It costs at most O(d8) because the length of w
(i.e. the number of matrix multiplications) is at most O(d2) and

each matrix multiplication costs O(d6). So the complexity of the

algorithm is O(d · td · d8) = O(d9td).

5.5 Proofs of Theorems 3.8 and 3.9

We first introduce an auxiliary tool.

Definition 5.1. For any sequence s ∈ Act∗, its repetition degree
rd(s) is inductively defined as follows:

1. If there does not exist t ∈ Act+ and a, b, c ∈ Act∗, such that
s = a · t · b · t · c, then rd(s) = 0.

2. In general, rd(s) = max{rd(t) + 1 : s = a · t · b · t · c, t ∈
Act+, a, b, c ∈ Act∗}.
It is clear that rd(s) = 0 for any s ∈ {ǫ} ∪Act. The following

lemma provides a way to estimate the repetition degree rd(s).

Lemma 5.4. LetM be a qMDP with M = ∅ and B an invariant
subspace of H. Assume |Act| = k and dimH = d. Then for any

sequence s ∈ Act+ and any x ≥ 0,

|s| ≥ Lx ⇒ rd(s) ≥ x.
Here, Lx is as the same as in Theorem 3.8.

Proof. We prove it by induction on x. For the case of x = 0,
it is obvious. For x = 1, assume s is a sequence with length
|s| ≥ L1 = k + 1. Since there is only k possible actions, there
must be two different integers p, q ∈ [1, k + 1] such that sp = sq .
Then by definition, rd(s) ≥ 1.

Now we suppose that for all x ≤ i we have |t| ≥ Lx ⇒
rd(t) ≥ x. Assume |s| ≥ Li+1 = (Ki + 1)Li. Then s can be
rewritten as s = v1 · · · vKi+1 · · · , where for u ∈ [1, Ki + 1],
vu = s(u−1)∗Li+1 · · · su∗Li

is a subsequence of length Li. Since

there are only Ki = kLi different possible sequences of length Li,
there must be two different integers p, q ∈ [1, Ki + 1] such that
vp = vq . By induction assumption, we rd(vp) ≥ i. Therefore,
rd(s) ≥ i+ 1. This completes the proof.

Now we can establish a connection between rd(s) and dimXs.

Lemma 5.5. LetM be a qMDP with M = ∅ and B an invariant
subspace of H. If for any s′ ∈ Act∗ with 0 < |s′| ≤ Lq

and q = maxa∈Act dim(Xa), and for any initial state ρ, the

scheduler scheduler S = s′ω satisfies PrS(ρ � ♦B) = 1,
then for any sequence s ∈ Act∗ with |s| ≤ Lq , there exists a
non-empty subsequence v of s = f · v · g such that dimXv ≤
max{q − rd(s), 0}.

Proof. We prove it by induction on rd(s).
(1) For swith rd(s) = 0 and 0 < |s| ≤ Lq , we haveXs ⊆ Xs1

by Lemma 5.3. So, dimXs ≤ dimXs1 ≤ q.

(2) Suppose for any s′ ∈ Act+ with rd(s′) = i and |s′| ≤ Lq ,
there exists a non-empty subsequence v of s′, such that dimXv ≤
max{q − i, 0}. Now assume s is a sequence with rd(s) = i + 1
and |s| ≤ Lq . If dimXs = 0, the claim is true. Otherwise, by
definition, there exists a non-empty subsequence t of s such that
s = a · t · b · t · c and rd(t) = i. By the induction assumption,
there exists a non-empty subsequence u of t = f · u · g such
that dimXu ≤ q − i. Here dimXu > 0, since dimXs > 0.
Therefore, s can be rewritten as s = a · f · u · g · b · f · u · g · c.
Let f ′ = a · f , v = u · g · b · f · u and g′ = g · c. Now
we prove dimXv ≤ q − i − 1. Since dimXu ≤ q − i and
Xv ⊆ Xu 6= ∅, we only need to prove Xv ( Xu. We do this
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by refutation. Suppose Xv = Xu. Then by Lemma 5.3, we have
Xu = Xu·g·b·f and Eu·g·b·f (Xu) = Eu·g·b·f (Xu·g·b·f ) ⊆ Xu.
Thus, Xu is an invariant subspace under super-operator Eu·g·b·f .

As Xu ⊥ B, by definition, we have PrS(ρ0 � B) = 0 for
S = (u · g · b · f)ω and ρ0 = IXu/ dimXu. Since |s| ≤ Lq , we
have |u · g · b · f | ≤ |s| ≤ Lq . This is a contradiction! Therefore,
it must be that Xv ( Xu, and we complete the proof.

Now we can prove Theorems 3.8 and 3.9.

Proof of Theorem 3.8. We only need to prove the “if” part because

the “only if” is obvious. Assume that PrS(ρ � ♦B) = 1 holds for
any initial state and any scheduler S = sω with |s| ≤ Lq , where
q = maxa∈Act dim(Xa). By Lemma 5.4, we have rd(s) ≥ q
for all s with |s| = Lq . Furthermore, by Lemma 5.5 and the
assumption, we have dimXs ≤ max{q − rd(s), 0} = 0 for
any sequence s with |s| = Lq . Thus tr(PBEs(ρ)) > 0 for any

ρ. Since tr(PBEs(ρ)) = tr(E∗s (PB)ρ) and E∗s (PB) = UsDsU
†
s

where Ds = diag{λs,1, · · · , λs,d}, we have λs,i > 0 for any i.
Then tr(PBEs(ρ)) ≥ ms > 0 for any trace-1 operator ρ, where
ms = minλs,i. Consequently, for any scheduler S, it holds that

PrS(ρ � ♦B) ≥ 1− lim
t→∞

(1−m)t = 1,

where m = min|s|=Lq
ms > 0. This completes the proof by

q ≤ d = dimH.

Proof of Theorem 3.9. This proof is similar to the proof of Theo-
rem 3.5. We can construct a classical MDP with S = {sx : x ∈ Y }
and check whether PrS(sx � ♦B) = 1 for all sx by noting the fol-
lowing two simple facts:

• for any initial state ρ and any scheduler S, the support of the
resulting state after first action/measurement will be in Y ;

• for any sx ∈ S, we can construct an initial state ρ =
Px/tr(Px).

5.6 Proof of Theorem 3.10

LetM be a qMDP with state Hilbert space H and B an invariant
subspace ofM. For each α ∈ Act, we define a new super-operator:

Fα(·) = PT Eα(·)PT from Eα, where T = B⊥ is the ortho-
complement of B in H and PT is the projection operator onto T .
Furthermore, let Mα be the matrix representation of Fα.

Lemma 5.6. LetM be a qMDP with M = ∅ and B an invariant
subspace ofM. Then:

1. The following two statements are equivalent:

(a) There exists a scheduler S such that PrS(ρ � ♦B) = 1 for
all initial states ρ.

(b) There exists α1α2 · · · ∈ Actω such that limn→∞Mαn · · ·
Mα1

= 0.
2. The following two statements are equivalent:

(a) For any scheduler S and any initial state ρ, it holds that

PrS(ρ � ♦B) = 1.

(b) For any α1α2 · · · ∈ Actω , it holds that limn→∞Mαn · · ·
Mα1

= 0.

Proof. 1. It is obvious that (b)⇒ (a) because tr(ρ(n,S)) = 1 and
the probability in T goes to 0. We now prove (a) ⇒ (b). Suppose
that S is a scheduler required in (a). Let T = span{|1〉, · · · , |k〉}

and B = span{|k + 1〉, · · · , |d〉}. As M = ∅, S is a sequence of
actions, i.e. S = s1s2 · · · with si ∈ Act for all i. Since

Eα(ρ) =
∑

Eα,iρE
†
α,i

=
∑

(

aα,i 0
cα,i bα,i

)(

ρT ∗
∗ ρB

)

(

a†α,i c†α,i

0 b†α,i

)

=
∑

(

aα,iρTa
†
α,i ∗

∗ ∗

)

and

Fα(ρ) = PT

(

∑

(

aα,i 0
cα,i bα,i

)

ρ

(

a†α,i c†α,i

0 b†α,i

))

PT

=
∑

(

aα,i 0
0 0

)

ρ

(

a†α,i 0
0 0

)

,

we have σ(n,S) ≡ PT ρ(n,S)PT = Fsn · · · Fs1(ρ). Moreover,

as PrS(ρ � ♦B) = 1, we have limn→∞ tr(σ(n,S)) = 0. As
σ(n,S) is a density operator, it follows that limn→∞ σ(n,S) =
0.

Let Gn(·) △
= Fsn · · · Fs1(·). Since Gn(·) is completely positive,

we have Gn(ρ) ≤ Gn(I) as I ≥ ρ for any density operator ρ. If we
use the matrix norm

‖A‖ = sup
‖x‖2=1

‖Ax‖2 =
√

λmax(A†A),

then it holds that ‖ρ‖ = λmax(ρ) ≤ ‖σ‖ when ρ ≤ σ. As a
consequence, we obtain

‖Gn(I/d)‖ < ǫ

4d
⇒ ‖Gn(ρ)‖ ≤ ‖Gn(I)‖ < ǫ

4
.

For any matrix R, we have R = a+ − a− + i(b+ − b−), where
a+, a−, b+, b− ≥ 0 and a+a− = b+b− = 0. Furthermore,

‖a+‖ ≤ ‖a+ − a−‖ = ‖R +R†

2
‖ ≤ ‖R‖+ ‖R

†‖
2

= ‖R‖.

The first inequality is because a+ and a− are both positive and their
supports are orthogonal . Therefore, we have

∀ǫ > 0,∃N ∈ N, ∀n > N,∀R ∈Mn(C),

‖Gn(R)‖ ≤ ‖Gn(a+)‖+ ‖Gn(a−)‖+ ‖Gn(b+)‖+ ‖Gn(b−)‖
< ǫ‖R‖.

Thus, for the matrix represents An of Gn, it holds that limn→∞ An =
0, and we complete the proof of part 1.

2. We actually proved that for each scheduler S and its corre-
sponding sequence A1,A2, . . . ,

∀ρ,PrS(ρ � ♦B) = 1⇔ lim
n→∞

An = 0

in the proof of part 1. Hence, the conclusion of part 2 follows
immediately.

With the help of the above lemma, we are now able to prove
Theorem 3.10.

Proof of Theorem 3.10. 1. If ̺(ΣM) < 1, then by definition, there

exists a sequence A1,A2, · · · such that

lim
n→∞

‖An‖1/n ≤ ̺(ΣM) + ǫ < 1.

This implies limn→∞ An = 0. Conversely, if there exists A1,A2, · · ·
such that limn→∞ An = 0, then we can find A ∈ Σm with

‖A‖ 1
m < 1 for somem. Thus, ̺(ΣM) ≤ limn→∞ ‖An‖ 1

nm < 1.

2. By Theorem 3.10 in [8], we know that DLI(ΣM) is AAS if
and only if ¯̺(ΣM) < 1. Together with Lemma 5.6, it completes
the proof.
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6. Conclusions

In this paper, we introduced the notion of quantum Markov decision
process (qMDP). Several examples were presented to illustrate how
can qMPD serve as a formal model in the analysis of nondetermin-
istic and concurrent quantum programs. The (un)decidability and
complexity of a series of reachability problems for qMDPs were
settled, but several others left unsolved (the exact complexity of
Problem 3.3.1 and the general case of Problem 3.5).

Developing automatic tools for reachability analysis of qMDPs
is a research line certainly worth to pursue because these tools
can be used in verification and analysis of programs for future
quantm computers. Another interesting topic for further studies is
applications of qMDPs in developing machine learning techniques
for quantum physics and control theory of quantum systems.
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