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Abstract
In this paper, we address the problem of finite state machine (FSM) traver-

sal, a key step in most sequential verification and synthesis algorithms. We
propose the use of partitioned-ROBDDs to reduce the memory explosion
problem associated with symbolic state space exploration techniques.

In our technique, the reachable state set is represented as a partitioned-
ROBDD [26]. Different partitions of the Boolean space are allowed to have
different variable orderings and only one partition needs to be in memory at
any given time.

We show the effectiveness of our approachon a set of ISCAS89 benchmark
circuits. Our techniques result in a significant reduction in total memory
utilization. For a given memory limit, partitioned-ROBDD based method
can complete traversal for many circuits for which monolithic ROBDDs fail.
For circuits where both partitioned-ROBDDs as well as monolithic-ROBDDs
cannot complete traversal, partitioned-ROBDDs can reach a significantly
larger set of states.

1 Introduction
A large number of problems in VLSI-CAD including verification and

synthesis of sequential circuits require efficient techniques to perform state
enumeration of finite state machines (FSMs). For a given sequential circuit,
the number of reachable states can be exponential in the number of state
elements present in the circuit. A popular approach to deal with this ‘state
explosion problem’ consists of implicitly representing the set of reachable
states and the transition relation of an FSM as Reduced Ordered Binary
Decision Diagrams (ROBDDs) [5, 7, 12, 27, 32]. In many cases, ROBDDs
can representa large numberof states very compactly, thus allowing automatic
verification and synthesis of systems having large state spaces. However, in
many other cases, the ROBDD representation is not compact. In fact, the
size of an ROBDD representing the set of reachable states of a circuit can
be exponential in the number of state holding elements present in the circuit.
Unfortunately, circuits which exhibit this worst case complexity do frequently
arise in practice. This problem, commonly known as the ROBDD ‘memory
explosion problem’, places a limit on the complexity of circuits that can be
processed using ROBDDs.

Many researchers have addressed this problem of ROBDD memory ex-
plosion and have proposed alternative representations for Boolean functions
which are more compact than ROBDDs (sometimes exponentially so) on cer-
tain classes of functions. Some of these are Free BDDs [1, 14, 30], Functional
Decision Diagrams (FDDs) [22], ZBDDs [25], OKFDD [13], k-OBDDs [2],
IBDDs [19], partitioned-ROBDDs [20, 26], �-OBDDs [33], TBDDs [1],
Canonical TBDDs [15] etc.

In spite of the theoretical advances made in the area of Boolean function
representation, ROBDDs still remain the most popular representation for
many problems arising in sequential circuit verification and synthesis. One
important reason behind this is that the effectiveness of these alternative
representations has not been adequately demonstrated on practical problems.
In particular, nobody (to the best of our knowledge) has shown an application
of these representations in the context of sequential circuits.
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Recently, Narayan, Jain, Fujita and Sangiovanni-Vincentelli [26] dis-
cussed a representation for Boolean functions, called partitioned-ROBDDs.
Partitioned-ROBDDs, besides being canonical and efficiently manipulable,
can be exponentially more compact than monolithic ROBDDs in represent-
ing certain classes of Boolean functions. Experimental results on a set of
hard combinational circuits showed a significant improvement in memory
requirement.

In this paper, we show how partitioned-ROBDDs can be applied for per-
forming reachability analysis on sequential circuits. Reachability analysis
constitutes the core computation of many sequential synthesis and verifica-
tion algorithms. We present an algorithm to create the partitioned-ROBDD
representation for the set of reachable states starting from a sequential netlist.
The algorithm is built on top of a conventional reachability algorithm and can
fully leverage other advances made in the BDD technology and reachability
analysis. In this sense, it is backward compatible with other approaches. We
have implemented our algorithm in the VIS [16] environmentusing the CUDD
package from University of Colorado [31]. Experimental results on a set of
ISCAS89 and ISCAS89-addendum93 circuits show up to 2 orders of magni-
tude reduction in space required to represent the set of reachable states. For
a given memory limit, the partitioned-ROBDD based reachability algorithm
can complete traversal for many circuits on which monolithic-ROBDDs fail.
For hard circuits where both monolithic-ROBDDs and partitioned-ROBDDs
are unable to complete traversal, partitioned-ROBDDs are able to reach a
significantly larger number of states than monolithic ROBDDs.

The rest of the paper is organized as follows. In Section 2, we briefly re-
view partitioned-ROBDDs and show an example of a sequential circuit where
partitioned-ROBDDs can be exponentially more compact than monolithic
ROBDDs in representing the set of reachable states. In section 3, we briefly
review the monolithic ROBDD based FSM traversal algorithm and some pre-
vious approaches to deal with the memory explosion problem. In Section 4,
we present our algorithm of partitioned-ROBDD based FSM traversal and
discuss some implementation issues. Experimental results are presented in
Section 5.

2 Partitioned-ROBDDs
The idea of partitioning was used to discuss a function representation

scheme called partitioned-ROBDDs in [18, 20] which was then extensively
developed in [26]. In this section, we first briefly review the definition of
partitioned-ROBDDs and then show an example of sequential circuit verifi-
cation where the set of reachable states has an exponential ROBDD represen-
tation but can be efficiently represented by partitioned-ROBDDs using only
polynomial space.

2.1 Partitioned-ROBDDs: Definition
Assume that we are given a Boolean function f : Bn

! B, defined over
n inputs Xn = fx1; : : : ; xng. The partitioned-ROBDD representation,�f ,
of f is defined as follows [20, 26]:

Definition 1 Given a Boolean function f : Bn
! B defined over Xn,

a partitioned-ROBDD representation �f of f is a set of k function pairs,
�f = f(w1; f1); : : : ; (wk; fk)g where, wi : Bn

! B and fi : Bn
! B,

are also defined overXn and satisfy the following conditions:



� 1. wi and fi are represented as ROBDDs with the variable ordering
�i, for 1 � i � k.

� 2. w1 + w2 + : : :+ wk = 1

� 3. wi ^ wj = 0, for i 6= j

� 4. fi = wi ^ f , for 1 � i � k

Here, + and ^ represent Boolean OR and AND respectively. The set
fw1; : : : ; wkg is denoted by W . Each wi is called a window function
and represents a part of the Boolean space over which f is defined. Intu-
itively speaking, in partitioned-ROBDDs the Boolean space is divided into
k partitions (using the window functions wi 2 W ). The functionality of f
is represented over each partition as a separate ROBDD fi. ROBDDs for
different partitions can have different variable orders.

Partitioned-ROBDDs are canonical and various Boolean operations can
be efficiently performed on them just like ROBDDs. In addition, they can be
exponentially more compact than ROBDDs for certain classes of functions.
The practical utility of this representation was demonstrated by constructing
ROBDDs for the outputs of combinational circuits. Recently, it was proved
by Bollig and Wegener [4] that the class of partitioned-ROBDDs form a strict
hierarchy i.e. for any given k, there are functions which have a polynomial
(k+1)- partitioned-ROBDD representation but no polynomialk-partitioned-
ROBDD representation. Therefore, by increasing the number of partitions,
we can increase the class of functions that become tractable. An excellent
comparison of the computationalpower of various BDD based representations
and partitioned-ROBDDs can be found in [3].

2.2 Partitioned-ROBDD: An Example
The examples used in [26] to prove that partitioned-ROBDDs can be

exponentially more compact than monolithic ROBDDs are somewhat artificial
in the sense that one is unlikely to encounter these functions in real-life
circuits. Here we present a more realistic example of sequential circuit
verification where partitioned-ROBDD representation of the set of reachable
states is exponentially more compact than the monolithic representation. This
example is taken from [24] and consists of verifying whether two hardware
implementations of a bounded queue are equivalent (Figure 1). The first
implementation is a shift register in which the most recent item is always
stored in location 0, and all items shift over when a new item is inserted.
The second implementation is a ring buffer, where a “head pointer” points
to the oldest item, and the items themselves remain fixed. The two circuits
can be verified by constructing the product machine and checking that the
outputs of the two circuits are always equal [12]. To check this, we need to
construct the set of reachable states. To get a small ROBDD representation
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(in)

tail
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Figure 1: Two implementation of FIFO queue

for the reachable states, we need to put the related state variables together
in the variable order of the ROBDD representing the set of reachable states.
However, since the location of the head pointer is not fixed, we cannot fix an
order which keeps the related variables together. Notice that although there
is no order which is good for ROBDDs, if we fix the position of the head
pointer then there is a one-to-one correspondence between the locations of
the two queues. Therefore for a given location of the head pointer, we can
find an ordering which leads to a small ROBDD for the reachable state set.
Since ROBDDs are restricted to have only one order, any variable ordering
leads to an exponentially sized ROBDD. Partitioned-ROBDDs, on the other
hand can employ different orders for different partitions. Therefore, if we

select the different locations of the head pointer as our window functions,
then for each window function there is a one-to-one correspondence between
the state variables of the two implementations. For each window function
we can select the variable ordering which keeps these related state variables
together, resulting in a small partitioned-ROBDD representation.

Notice that a free-BDD representation of the above example is also polyno-
mial. However, using free-BDDs in sequential verification is difficult because
of the inherent difficulties associated in performing existential quantification
on them.

3 Reachability Analysis: Monolithic ROBDDs
In this section, we discuss the standard monolithic algorithm for reacha-

bility analysis and some improvements that have been proposed for it. The
partitioned-ROBDD based traversal algorithm uses the monolithic ROBDD
based algorithm in its inner loop (to perform fixed point on individual parti-
tions). Therefore, it is able to take advantage of all of these improvements.

3.1 Standard Algorithm
The standard reachability algorithm is based on a breadth-first traversal

of finite-state machines [12, 23, 32]. The algorithm takes as inputs the set of
initial states, I(s), expressed in terms of the present state variables, s, and a
transition relation, T (s; s0; i), which represents the valid state transitions in
the FSM. Given a set of states, R(s), that the system can reach, the set of next
states, N(s0), is calculated by taking the image of R(s) under T (s; s0; i)
(referred to as IMAGE(R(s); T (s; s0; i)) in the algorithms). Figure 2
shows the outline of this algorithm.

FSM TRAVERSAL(I(s), T (s; s0; i) ) f
R(s) = F (s) = I(s)

while (F (s) 6= 0) f
N(s0) = IMAGE[F (s); T (s; s0; i)]

F (s) = N(s0  s) ^R(s)

R(s) = R(s) + F (s)

g

g

Figure 2: Standard Reachability Algorithm

3.2 Enhancements to the Standard Algorithm
The FSM traversal algorithm presented in Figure 2 needs the ROBDD

representations of T (s; s
0

; i) and R(s). The algorithm will not be able to
terminate if either of the two ROBDDs become very large. Many techniques
have been proposed which can substantially reduce the memory required to
represent T (s; s

0

; i) and R(s) as ROBDDs.

3.2.1 Partitioned Transition Relation

To control the size of transition relations, Burch, Clarke and Long [6] propose
the use of partitioned transition relations. In this method, instead of using
a monolithic ROBDD representation of the transition relation, the transition
relations of different latches are kept as separate ROBDDs (or clustered into
small groups of latches [28]). Since ROBDDs representing the individual latch
transition relations are typically much smaller than when they are combined,
this method can result in substantial memory savings. In addition, it allows
for early quantification of variables which are not present in the support
of other transition relations [17, 8, 32]. This technique can also result in
substantial savings in memory during image computation. Notice though, that
the term ‘partitioning’ is being used here in a totally different context; in the
partitioned-transition relation approach, the set of latches are being partitioned
into different groups while in partitioned-ROBDDs, it is the Boolean space
which is being partitioned. In fact, the two approaches are orthogonal and
partitioned-transition relations are used in the inner loop of our approach.

For large circuits, even the ROBDDs of the individual latches can become
very large. In these cases [9, 21] suggest the use of intermediate variables
to control the size of transition relations . These intermediate variables can



be quantified out along with the present state variables during the image
computation step.

3.2.2 Reducing Intermediate Memory Requirements

Most of the techniques for controlling the size of the ROBDD representation
of R(s) are based on the observation that the set of reachable states usually
has a much smaller representation at the fixed-point as compared to the peak
size observed during the intermediate stages of computation. These tech-
niques [29, 10, 11] try to reduce the intermediate peak memory requirement
by changing the order in which the states are visited during traversal. Of
these, [10, 11] is the most closely related to our approach. We will do a more
detailed comparison with their work in section 6.

4 Reachability Analysis: Partitioned-ROBDDs
In this section, we describe our partitioned-ROBDD based reachability

analysis algorithms in detail. This algorithms is built on top of the standard
BFS algorithm and thus benefits from the improvements discussed in the
previous section.

Before describing the algorithm in detail, let us first take a look
at image computation step for partitioned-ROBDDs. Suppose we are
given the partitioned-ROBDD representation, �R, of R(s) where, �R =

f(wj(s);Rj)j1 � j � kg satisfying conditions 1-4 in Definition 1. We
want to get the partitioned-ROBDD representation, �N , of the set of next
states. Suppose we take the image of Rj under T (s; s0; i) to obtain Nj for
1 � j � k. These Nj’s obtained under the image of T (s; s0; i) are not
disjoint and hence cannot be used in the partitioned-ROBDD representation
of N(s) (Definition 1). There are two simple solutions to this problem. One
is that we re-partition these Nj’s according to the window function W and
assign the min-terms in wi ^ Nj to partition i. However, since we want
to maintain different orders for different partitions, this computation can be
expensive if performed at every step of image computation. Another solu-
tion is that we continue with the reachability analysis on the Nj’s obtained
for a few more steps and then re-partition to obtain a partitioned-ROBDD
representation. The problem with this approach is that in the intermediate
stages of computation, the same stages can be visited multiple times making
it hard to detect when a fixed point is reached and leading to unnecessary extra
computation.

We propose an alternative solution to the above based on the following
observation. Let us assume that we are given a partitioned-ROBDD represen-
tation �R = f(wj(s); Rj)j1 � j � kg. If we take the image of Rj under
Tjj(s; s

0; i), where Tjj(s; s0; i) = wj(s)wj(s
0)T (s; s0; i), we get,

Nj(s
0) = 9s;i[wj(s)wj(s

0)T (s; s0; i)Rj(s)] (1)

Since wj(s0) is independent of the variables to be quantified, it can be taken
out of existential quantification, giving us the following equation:

Nj(s
0) = wj(s

0)[ 9s;i[wj(s)T (s; s
0; i)Rj(s)] ] (2)

Equation 2 shows that the image ofRj underTjj(s; s0; i) lies completely
within the partition j. Similarly, the image, Nl of Rj under Tjl(s; s0; i)
where Tjl(s; s0; i) = wj(s)wl(s

0)T (s; s0; i), will lie completely within the
partition l. This simple observation forms the basis of our algorithm. We
perform multiple steps of image computation on each Rj under Tjj. Since
these steps of image computation add states only within the same partition,
and since different partitions are disjoint, we are guaranteed that the same
state is not being visited multiple times within different partitions. Once a
fixed-point is reached within a partition j, transition relationsTjl(s; s0; i) are
used to communicate the new set of states to the partition l for 1 � l � k

and l 6= j. The overall flow of the partitioned-ROBDD based algorithm is
outlined in Figure 3.

The POBDD REACH algorithm takes BDDs representing the transition
relation T (s; s0; i), the set of initial states I(s) of an FSM M and an integer
k. The result of the algorithm is the set of reachable states ofM represented as
POBDD: �R = f(wj(s); Rj)j1 � j � kg. Associated with each partition,
j, is a bddMgrj . Each BDD manager is free to choose a unique ordering that
minimizes the number of nodes in its partition. In addition to Rj(s), each

partition utilizesk transition relations. These transition relations are computed
for each j using Tjl(s; s

0; i) = wj(s)wl(s
0)T (s; s0; i) (1 � l � k).

Intuitively, Tjl represents the transitions from states in window j to states
in window l. POBDD REACH attempts to minimize memory usage by only
keeping the reachable state set and transition relations associated with one
partition in memory at a given time. The reachable state sets for partitions
not being processed are saved on disk. The transition relations for partitions
not being processed are freed and recomputed when needed.

POBDD REACH( I(s), T (s; s0; i), k ) f

fwj(s)g = COMPUTE WINDOWS( T (s; s0; i) )
fbddMgrj g = CREATE BDD MANAGERS( k )
eventQueue = INITIALIZE QUEUE( fwj(s); I(s); T (s; s0; i)g )
fCj(s) = �g

while(jeventQueuej 6= 0 ) f
newQueue = �

foreach (j 2 eventQueue) f
Rj(s) = LOAD FROM DISK( bddMgrj; j)) + Cj(s)

FREE( Cj(s) )
fTjl(s; s

0; i)g = MAKE TRs( bddMgrj; j )
Nj(s) =FSM TRAVERSAL( Rj(s); Tjj(s; s

0; i) )
Fj(s) = Rj(s)^Nj(s)

Rj(s) = Rj(s) + Fj(s)

if(Fj(s) 6= 0 ) f
foreach ( l s.t. ( (1 � l � k) & (l 6= j))) f

Nl(s
0
 s) =IMAGE(Rj; Tjl(s; s

0; i) )
Cl(s) = MGR COMM(Nl(s);

bddMgrj; bddMgrl; �) + Cl(s)

if(jCl(s)j 6= 0) l! newQueue

g

g

SAVE TO DISK( bddMgrj;Rj(s) )
FREE( Rj(s) )
FREE( fTjl(s; s0; i)g )

g

eventQueue = newQueue

g

g

Figure 3: POBDD REACH Algorithm

Given I(s), T (s; s0; i) and k, function COMPUTE WINDOWS returns a set
of window functions fwj(s)g. The heuristic used to determine these window
functions is discussed in Section 4.1.

The algorithm maintains an array, eventQueue, which keeps track of the
partitions on which reachability has to be performed. This array is initialized
using the function INITIALIZE QUEUE, which computes the set of initial
states for each partition. Each Il(s) is computed by taking the image of I(s)
under Tjl(s; s0; i) for 1 � j � k and adding it to wl(s) ^ I(s). Note that
taking this image is necessary in the present form of the algorithm in order
to account for cases where Tjj ^ wj(s) ^ I(s) = �. Partition l is inserted
into eventQueue only if Il(s) is non empty. INITIALIZE QUEUE initially
saves all partitions to disk.

Once the initial states of each partition are computed, the algorithm pro-
ceeds by loading Rj(s) from disk and then performing a fixed point com-
putation using Tjj . Next, k � 1 image computations are performed under
Tjl (for l 6= j) to communicate the information about the new states, Fj(s),
added in partition j. For this communication between managers, we keep a
communication cache, Cl , which is a BDD in memory that keeps the states
that can be reached from the new states Fj(s) of other partitions j, j 6= l

under the image of Tjl(s; s0; i). Note that since Cl is defined in bddMgrl,



MGR COMM must be called using bddMgrj and bddMgrl as arguments.
Each Cl is saved in memory and added to the set of reachable states in l the
next time it is loaded from disk. The sets Partition l is added to thenewQueue
if Cl is non-empty. The algorithm continues until no new partitions need to
be processed.

The function MGR COMM (Figure 4) takes a BDD f that is defined
in the BDD manager srcMgr, and returns a BDD g that is functionally
equivalent to f but defined in the BDD managerdestMgr. The function also
takes the table computedTable as an argument which maps BDD nodes in
the srcMgr to equivalent nodes in the destMgr that have been previously
computed by the function. Initially, the computedTable is empty. Note
that MGR COMM does not require srcMgr and destMgr to have the same
variable orderings. Although this computation can be expensive in the worst
case, we have not found this to be a bottleneck in the examples that we have
run.

MGR COMM(f , srcMgr, destMgr, computedTable )f
if( f == 0 ) return bdd zero(destMgr)

if( f == 1 ) return bdd one(destMgr)

if( g = computedTable(f) ) return g
t = MGR COMM( bdd then(srcMgr; f),

srcMgr, destMgr, computedTable )
e = MGR COMM( bdd else(srcMgr; f),

srcMgr, destMgr, computedTable )
g = ite(topV ar(f); t; e)

(f; g)! computedTable

(f; g)! computedTable

return g
g

Figure 4: Algorithm to convert between BDD managers

4.1 Partitioning Heuristic
Currently we use a static algorithm to obtain the window functions in

which the number of partitions is specified a priori. Window functions,
w(s)’s, are cubes on the present state variables. The algorithm assigns a
cost to each variable and selects the best log2k variables (for k partitions)
for partitioning. From these log2k variables k partitions are created which
correspond to all the binary assignments of these variables. Our goal is to
create small and balanced partitions. For this we define the cost of partitioning
a transition relation T (s; s0; i) on variable s as

costs(T ) = �[ps(T )] + �[rs(T )] (3)

where ps(T ) represents the partitioning factor and is given by,

ps(T ) = max(jTsj; jTsj) (4)

and rs(T ) represents the redundancy factor and is given by,

rs(T ) = jTsj+ jTsj (5)

Here, Ts and Ts represent the positive and the negative cofactors of T with
respect to s respectively. Notice that a lower partitioning factor is good as
it implies that the worst of the two partitions is small and similarly a lower
redundancy factor is good since it implies that the total work involved in
creating the two partitions is less.

If T (s; s0; i) =
Q

m

k=1
Tk(s; s

0; i) is a ‘partitioned-Transition Relation’
(see Section 3.2.1), then the cost of partitioning for a variable s is defined as:

costs(T ) =

mX

k=1

costs(Tk)

Tk
(6)

Notice that although our current heuristic for window function selection only
gives window functions which are cubes on the present state variables, in
the algorithm or implementation there is nothing which restricts us from
using more general window functions (which can be arbitrary functions of s).
Also, our current heuristic for window function selection is based on only the
transition relation. We are currently implementing another heuristic which
dynamically increases the number of partitions if the partitions become very
large.

4.2 Use of wj as Don’t Cares
In our algorithm, the part of the Boolean space covered by wj(s) is used

as don’t cares while performing traversal in partition j. Since we use only
Tjj while traversing partition j, it ensures that no extra states are added to
this partition if we use the space wj(s) as don’t cares. This don’t care set,
wj(s), is used to minimize the BDDs of R(s),N(s) and F (s) inside the
FSM TRAVERSAL routine. A good heuristic to minimize BDDs f in the
presence of don’t cares wj(s), is to take the cofactor of f with respect to
wj(s). Since, in the present implementation wj(s) is a cube, taking the
cofactor of f with respect to it is guaranteed to reduce the size of the BDDs
in the intermediate steps. Before communicating the new states to other
partitions under Tjl(s; s0; i), we take the conjunction of Rj returned by the
FSM TRAVERSAL algorithm (which uses don’t cares) with wj(s) to ensure
that no extra states are added to partition l.

4.3 Use of Size and Depth Thresholds
The POBDD REACH algorithm presented in Figure 3 provides us with

considerable flexibility in terms of changing the order in which the state
space is traversed. This can be done by choosing different schedules for
processing the eventQueue, imposing a ‘size’ threshold such that BDDs of
any one partition do not become very large or placing a depth threshold for
the number of steps of reachability that are performed for each partition.

5 Experimental Results
We have implemented our algorithm of Section 4 in the VIS [16] environ-

ment using the BDD package from the University of Colorado at Boulder [31]
which incorporates state-of-the-art algorithms for dynamic reordering. All
results are reported using DEC Alpha architecture with 250MHz clock. The
data-size limit was set to 128Mb (except for s1423 in Table 2 for which we
used a DEC Alpha with 300MHz clock and a data-size limit of 256Mb was
set).

In Table 1 and Table 2 we compare the results of reachability using mono-
lithic ROBDDs and partitioned-ROBDDs. We use the algorithm proposed
by Ranjan, Aziz, Brayton, Plessier and Pixley [28] as the reference algo-
rithm for monolithic ROBDDs. We use the same algorithm with exactly the
same parameter settings in the inner-loop of partitioned-ROBDDs to perform
fixed-point computation on each partition. We present two sets of result with
different values of the parameter image cluster size [28] to test the robust-
ness of our results. The image cluster size represents the maximum number
of BDD nodes allowed in each cluster of the partitioned transition relation
(see Section 3.2.1). Dynamic reordering was enabled at all times with the
default settings of the parameters. Column 3 (labeled ROBDD) reports the
memory and time resource used in generating the monolithic ROBDD rep-
resentation. Column 4 (labeled Partitioned-ROBDD) reports the results for
the partitioned-ROBDD based reachability analysis algorithm. The columns
labeled |S| represent the number of states that could be reached using the
respective approach before the memory limit was exceeded and the columns
labeled Size report the memory required in representing the state set and
is measured in terms of the number of nodes in the BDD representation.
For partitioned-ROBDDs, the size refers to the size of the largest partition
since only one partition needs to be active in the memory at a given time.
The column labeled ‘k’ represents the number of partitions constructed for
partitioned-ROBDDs. The column labeled ‘Time’ reports the total time taken
for cases where traversal could be completed.

As the tables clearly indicate, partitioned-ROBDD based traversal is al-
ways able to reach more states and the representation in terms of BDDs
is always smaller than monolithic ROBDDs. Given the memory-limit of
128Mb, partitioned-ROBDDs are able to complete traversal for s1269, s1512
and s3330 while monolithic ROBDDs are able to complete traversal only for
one of these circuits, namely s1512. Even in this case, partitioned-ROBDDs
are able to finish traversal in significantly less time. The gains in memory are
even more impressive. Partitioned-ROBDDs are almost always an order of
magnitude more compact than monolithic ROBDDs (even while representing
a larger state space). In particular, for s3330, monolithic ROBDD based repre-
sentation requires more than 400000 nodes to represent 1.17x1017 states (for
image cluster size = 100) while partitioned-ROBDDs can complete traversal
and represent all 7.2778x1017 states in about 4000 nodes; a factor of 100



reduction. This is surprising because the reduction was achieved by creating
only 4 partitions.

We have plotted the BDD size profile, as a function of the number of states
reached for s3330 to check whether the intermediate memory requirement of
partitioned-ROBDDs is also small or not. Again, partitioned-ROBDDs have a
much better behavior compared to monolithic ROBDDs as shown in Figure 5.
Similar results were obtained for other circuits. In particular, for s1423 we
observed that by making only 4 partitions, the partitioned-ROBDD algorithm
was able to reach a significantly more number of states. In fact, the partitioned-
ROBDD based algorithm was able to reach more states (8.0554x1010) than
monolithic ROBDD based algorithm in just a few seconds and needed only
14151 nodes to represent them. Once again over a factor of 100 improvement
in representing a state set of comparable size.
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Figure 5: BDD Profile of s3330

6 Comment on Related Work
Cabodi, Camurati and Quer [10, 11] also use a notion of partitioning to

represent the set of reachable states. At the first glance, their approach appears
to be somewhat similar to ours. However, there are significant differences
between the two works. In their approach, when the set of reached states
becomes larger than a certain threshold, it is split into two or more partitions.
Reachability is then performed on these partitions separately after which the
sets are combined to obtain a monolithic representation of the reachable state
set. The goal here is to reduce the intermediate memory requirement in-
stead of creating a partitioned-ROBDD representation. Since, reachability is
performed on the different partitions using T (s; s0; i) (unlike our approach
where we use Tjj(s; s

0; i) for the jth partition), it suffers from the same
problems as were discussed in the beginning of section 4. Further, since the
partitions have to be combined later on, their approach is not able to use (at
least in the present form) different orders for different partitions. As most of
the gains in cube based partitioning come from the fact that different partitions
can have different orders, this poses a serious restriction on the effectiveness
of their approach. It can be proved, in fact, that for input variable based
partitioning, without allowing different partitions to have different variable
orderings, partitioning can achieve only linear reduction in space as opposed
to partitioned-ROBDDs where the gains can be exponential. An example of
such a case is the buffer-queue verification example of section 2. In addition
to these, differences exist in the details of the algorithms and their imple-
mentations. These include our use of an event queue, a different partitioning
heuristic, our use of don’t cares, communication between managers with dif-
ferent orderingsand control on the schedulingof the partitions. Unfortunately,
a direct comparison of results could not be made since we did not have a copy
of their package.

7 Conclusions
In this paper, the use of partitioned-ROBDDs for performing reachabil-

ity analysis on sequential circuits has been proposed. We have shown, by
means of an example, that compared to monolithic ROBDDs, partitioned-
ROBDDs can represent the reachable state set of some circuits in exponen-
tially less space. In addition, we have presented an algorithm to construct
the partitioned-ROBDD representation of the set of reachable states starting
from the set of initial states and the transition relation of a system. Our
algorithm allows different partitions to have different variable orderings and
only one partition needs to be present in memory at any given time. Further,
multiple steps of reachability can be performed independently before any
communication between partitions is needed.

Experimental results have been very encouraging. Our algorithm has
been implemented in the VIS environment and we have observed up to two
orders of magnitude reduction in memory usage. For a given memory limit,
the partitioned-ROBDD based algorithm was able to complete traversal for
many circuits on which monolithic ROBDDs failed. For circuits where both
monolithic ROBDDs and partitioned-ROBDDs could not complete traversal,
partitioned-ROBDDs were able to cover a significantly larger state space.

Future research is directed towards improving the efficiency of our algo-
rithm. In particular, we are experimenting with different partitioning heuris-
tics. We are currently implementing a dynamic partitioning algorithm, which
increases the number of partitions whenever the size of a particular partition
crosses a certain threshold. Finally, since reachability can be performed on
each partition separately, with only minimal communication between parti-
tions, we feel that our algorithm is particularly suitable for parallel implemen-
tation.
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