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Abstract— Reinforcement learning for robotic applications
faces the challenge of constraint satisfaction, which currently
impedes its application to safety critical systems. Recent ap-
proaches successfully introduce safety based on reachability
analysis, determining a safe region of the state space where
the system can operate. However, overly constraining the
freedom of the system can negatively affect performance,
while attempting to learn less conservative safety constraints
might fail to preserve safety if the learned constraints are
inaccurate. We propose a novel method that uses a principled
approach to learn the system’s unknown dynamics based on
a Gaussian process model and iteratively approximates the
maximal safe set. A modified control strategy based on real-time
model validation preserves safety under weaker conditions than
current approaches. Our framework further incorporates safety
into the reinforcement learning performance metric, allowing
a better integration of safety and learning. We demonstrate
our algorithm on simulations of a cart-pole system and on
an experimental quadrotor application and show how our
proposed scheme succeeds in preserving safety where current
approaches fail to avoid an unsafe condition.

I. INTRODUCTION

Reinforcement Learning (RL) has proven to be a valu-

able tool in robotics, where pre-specifying a policy for a

robot to achieve a given task can be a major challenge.

Through trial-and-error interactions with its environment, a

robot can employ RL techniques online to find a control

policy for achieving its task. Examples include rotorcraft per-

forming aggressive maneuvers with high airflow interaction

[1],[2], autonomous driving in extreme conditions [3] or fast

quadruped locomotion through irregular terrain [4].

Traditional RL algorithms are not designed to guarantee

constraint satisfaction, which makes them unemployable in

safety-critical scenarios. For this reason, the past years have

seen a growing interest in combining online learning with a

supervisory framework that can guarantee the safety of the

dynamical system. We propose a safety framework that has

reduced interference with the learning process of the system.

Its novel control strategy can preserve safety under weaker

conditions than current safety approaches.
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Different frameworks have been proposed in recent years

using Lyapunov stability [5] or model predictive control with

a nominal linear model [6]. One particular technique that

has been explored recently for safe reinforcement learning

[7],[8] is known as Hamilton-Jacobi-Isaacs (HJI) reachability

analysis, a method that has been previously used to guarantee

safety in a variety of contexts within the robotics literature

[9]. By considering worst-case disturbances, this method

determines a safe region in the state space and provides a

control policy to stay within that region. The main advantage

is that in the interior of this region one can execute any

desired action as long as the safe control is applied at

the boundary, leading to a least restrictive control law. The

desired action can be specified by any method, including any

learning algorithm.

However, reachability-based algorithms are not without

shortcomings. First, in order to guarantee safety the system-

designer must often rely on a nominal model that assumes

conservative worst-case disturbances, which reduces the

computed safe region, and thereby the region where the

system can learn [8]. Second, the assumed bounds on the

disturbances may not globally capture the true disturbance of

the system, in which case current reachability-based methods

can no longer guarantee safety. Lastly, the least restrictive

control law framework decouples safety and learning, which

can lead to poor results, since the learning controller has

no notion of the unsafe regions of the state space and may

attempt to drive the system into them. Beyond chattering

due to controller switching, convergence of the learning

controller may be extremely slow, if the safety frequently

prevents the learning control from being applied.

The major contributions of this work address these three

issues. Learning the disturbances from the data prevents an

overly conservative reachability analysis, thus leading to a

larger region of operation for the system [8]. We introduce

a principled way of updating prior disturbance assumptions

based on online data by means of a Gaussian process (GP)

model. We propose a novel control strategy that validates

the model online and becomes more conservative if its

predictions account poorly for the observed dynamics. We

present a method to validate the model in real time and

provide an adapted control strategy, which can guarantee

safety under relaxed conditions, even if assumptions on the

disturbances are incorrect. This framework ultimately allows

a less conservative modeling of system uncertainty for the

reachability analysis. To our knowledge this is the first work

in the area of reachability analysis that cross-validates the

model online and proposes a solution for cases in which the
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model does not accurately explain the observations. Lastly,

we incorporate safety metrics in the learning algorithm that

reduce the amount of switching between controllers.

The remainder of the paper is organized as follows. In

Section II we introduce the model and briefly explain the

employed tools, reachability analysis and GPs, which are at

the core of our algorithm. The problem statement is presented

in Section III, with a discussion of the limitations of state-

of-the-art reachability-based safety algorithms. Section IV

contains the proposed methodology to address these prob-

lems. Lastly, in Section V we demonstrate our framework

on both simulations (cart-pole swing-up) and experimental

results (quadrotor trajectory tracking).

II. PRELIMINARIES

Let x ∈ R
n be the state of the system evolving according

to dynamics ẋ = f (x,u,d). We restrict f to the class of

control-affine systems, for which parts of the dynamics are

assumed known (or already identified) while other parts

remain unknown1:

f (x,u,d) = h(x)+g(x)u+d, (1)

where h : Rn→ R
n and g : Rn→ R

n×m are locally Lipschitz

continuous functions representing the known parts of the dy-

namics, u is the control input belonging to some compact set

U ⊆R
m, and d : Rn→R

n is an unknown, but deterministic,

state dependent disturbance capturing unmodeled dynamics.

We assume that d(x) is a locally Lipschitz continuous func-

tion. Though d(x) is unknown, we bound it by a conservative

compact set D(x), which is allowed to vary in the state

space, and which in turn will be used in our initial safety

assessment. Later on, we will use a GP model to approximate

d(x) with a tighter bound D̂(x).

The model given by (1) captures an ample variety of

systems, where the actuation is understood, but there exist

uncertain factors such as air drag and turbulence for aircraft

at high velocities or contact forces between the tires of a

ground vehicle and spatially varying terrains.

A. Safety and Reachability Analysis

Consider the state constraint set K , a compact subset of

R
n that the system is required not to leave. Given some time

horizon τ (possibly infinite) the goal is to compute the set of

initial states of (1) for which there exists a control strategy

that takes value in U such that x(t) ∈K ∀t ∈ [0,τ] =: T

regardless of the actions of the disturbance in D(x). This

is known as the discriminating kernel of K denoted by

DiscT(K ,D) [10].

We can compute this set by solving the corresponding

modified terminal value HJI partial differential equation [11].

Define a bounded Lipschitz continuous function κ : Rn→R

such that K = {x ∈ R
n | κ(x) ≥ 0}. A common choice for

1The proposed method applies to more general dynamical systems, but
here we restrict our attention to classes of systems that can be addressed
with currently available computational tools.

κ is the signed distance2 to the set K C =R
n \K . Then the

viscosity solution V : Rn×T→ R of

∂V

∂ t
(x, t) =−min

{

0, sup
u∈U

inf
d∈D(x)

∂V

∂x
(x, t) f (x,u,d)

}

(2)

with V (x,τ) = κ(x) describes the discriminating kernel:

DiscT(K ,D) = {x ∈ R
n |V (x,0)≥ 0}. (3)

The optimal policy u∗(x), the optimizer of (2), attempts

to drive the system to the safest possible state always

assuming an adversarial disturbance. If the hypotheses of

the reachability analysis hold true (namely d ∈ D(x) ∀x ∈
K ), then one can allow the system to execute any desired

control (in particular, any control ul dictated by the learning

agent) while in the interior int(DiscT(K ,D)), as long as

the safety preserving action u∗(x) is taken whenever the

state reaches the boundary ∂ DiscT(K ,D); the system is

then guaranteed to remain inside K over T. Typically, the

level set computations will converge for a sufficiently large τ
and it is then possible to guarantee safety for all time using

the robust controlled invariant (henceforth simply controlled

invariant) set Disc(K ,D). For the rest of the paper we will

only consider the converged discriminating kernel, and refer

to V (x) as the safety value function. The least restrictive

control law for guaranteed safety under disturbance set D(x)
is then given by:

u ∈

{

U , if V (x)> 0

{u∗(x)}, otherwise
(4)

Lemma 1: Any nonnegative superlevel set of V (x) is

controlled invariant.

Proof: By Lipschitz continuity of f and κ , we have that

V is Lipschitz continuous [12] and hence, by Rademacher’s

theorem, almost everywhere differentiable. The convergence

of V in (2) implies that ∂V
∂ t
(x, t) = 0. Therefore, ∀α ≥ 0

∀x ∈ {x |V (x)≥ α} ∃u∗ such that ∀d ∂V
∂x
(x, t) f (x,u∗,d)≥ 0

(otherwise r.h.s. would be non-zero). Then, the value of V

along the trajectory is always non-decreasing, so V ≥ α .

Proposition 1: Consider two disturbance sets D1(x) and

D2(x), and a compact set M ⊂R
n that is controlled invariant

under D1(x). If D2(x) ⊆ D1(x) ∀x ∈ ∂M , then M is

controlled invariant also under D2(x).
Proof: For the sake of contradiction, assume that under

the disturbance set D2(x) there exists some trajectory starting

at x0 ∈M such that for some T < ∞, x(T ) 6∈M . Since f is

locally Lipschitz, the trajectory x : t 7→ R
n is continuous for

x∈M , and thus ∃t ′ ∈ [t0,T ] such that x(t ′)∈ ∂M . However,

since M is controlled invariant under D1(x), we know that

∀x ∈ ∂M ∃u∗(x) ∈U such that no possible disturbance d ∈
D1(x) can drive the system out of M . Since D2(x)⊆D1(x)
∀x ∈ ∂M the same control policy u∗(x) on the boundary

guarantees that no disturbance d ∈D2(x)⊆D1(x) can drive

the system out of M . Hence, M is a controlled invariant set

under D2(x).

2For a given norm ‖·‖ on R
n, the signed distance from x∈Rn to A ⊂R

n

is inf{‖x−y‖,y∈A } for x 6∈A , and − inf{‖x−y‖,y∈Rn \A } for x∈A .
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Corollary 1: Let Q be a nonnegative superlevel set of

the safety function V (x) computed for some disturbance set

D(x). If d(x) ∈ D(x) ∀x ∈ ∂Q, then Q is an invariant set

under the optimal safe control policy u∗(x) given by the HJI

reachability analysis, even if d(x) 6∈D(x) ∀x ∈ int(Q).
This corollary, which follows from Proposition 1 by con-

sidering the singleton {d(x)}, is an important result that will

be at the core of the modified safety control policy presented

in Section IV-B.

Finally, we define a safe set as any controlled invariant set

S such that S ∩K C = /0. Therefore, any level set satisfying

Corollary 1 is a safe set of the true system. Furthermore, if

D(x)= {d(x)} ∀x∈Rn then Disc(K ,D) is the maximal safe

set. In this case, the system dynamics are known completely

and the disturbance set reduces to a singleton.

B. Gaussian Process

To estimate the disturbance function d(x) over the state

space we make use of GP regression. This is a powerful

nonparametric regression technique that extends multivariate

Gaussian regression to the infinite-dimensional space of

functions and provides a closed form expression for Bayesian

inference. Informally, a GP is a distribution over functions

defined by a mean function µ(x) and a covariance kernel

function k(x,x′):

d(x)∼ G P(µ(x),k(x,x′)). (5)

The class of the prior mean function and kernel function is

chosen to capture the characteristics of the model (linearity,

periodicity, etc), and is defined by a set of hyperparameters

θp. These are typically set to maximize the marginal like-

lihood of an available set of training data, or alternatively

to reflect some prior belief on the system. For a detailed

description of GPs, see [13].
Given N measurements for the jth component of d(x),

i.e. d̂j =
[

d̂
j
1 . . . d̂

j
N

]T

, observed with zero-mean Gaussian

noise ε j with variance σ2
n at the points X =

[

x1 . . . xN

]T
,

i.e. d̂
j
i = d j(xi)+ε j, and the Gaussian prior distribution, the

posterior distribution of the function value d j(x∗) at a new
point x∗ is again a Gaussian distribution:

d̄ j(x∗) = µ(x∗)+K(x∗,X)(K(X ,X)+σnI)−1(d̂j(x)−µ(X)),

var(d j(x∗)) = K(x∗,x∗)−K(x∗,X)(K(X ,X)+σnI)−1K(X ,x∗),
(6)

where Ki j(X ,X ′) = k(xi,x
′
j), and µi(X) = µ(xi). Therefore

the GP provides both the expected value of the disturbance

function at any arbitrary point x∗ and a notion of the

uncertainty of this estimate.

III. PROBLEM STATEMENT

Given that d(x) is unknown, reachability analysis is com-

puted with an estimated disturbance set D̂(x) that attempts

to provide a bound for d(x). Since the maximal safe set

of the system is given by Disc(K ,{d(x)}), a necessary

condition to guarantee safety through (4) is Disc(K ,D̂) ⊆
Disc(K ,{d(x)}).

A. Safety and Learning Trade-Off

Ideally, Disc(K ,D̂) = Disc(K ,{d(x)}), yielding a con-

trol strategy that would allow the system to learn in the max-

imal safe set. Given prior observations of the disturbances

our objective is to infer a small set that contains d(x).
The approach in [8] begins with a conservative bound

on the disturbance and then less conservative bounds are

inferred from the data online (gradually growing the dis-

criminating kernel). However, no principled way of updating

the disturbance set is presented considering treatment of

outliers, measurement noise, extrapolation, and interpolation.

The technique proposed in this paper provides a principled

inference method and additionally allows incorporation of

prior beliefs in the model characteristics by employing a GP

model.

B. Assumption Violations and Safety

A sufficient condition for safety under control strategy (4)

is that d(x) be captured by the estimated disturbance set.

In the literature this has typically been achieved by using

conservative bounds on the disturbance [7]. However, this

approach generally produces a small (or even worse, empty)

discriminating kernel.

Our objective, instead, is to infer d(x), or at least to derive

a tight bound, so as to have a control strategy that guarantees

safety under less restrictive conditions, by monitoring the

consistency between the model used for reachability and the

observed system dynamics.

C. Integrating Safety Metric into Learning

The desired action in (4), applied in the interior of the

safe set, is specified by a learning algorithm that has some

performance objective typically not including safety [7], [8].

This causes the reachability analysis and the learning algo-

rithm to be disjoint with respect to one another. Switching

control from the learning algorithm can cause the system to

chatter or stall.

In addition, RL algorithms use the feedback obtained from

the environment to specify the next action that should be

taken, which seeks to converge to or execute an optimal pol-

icy [14]. This is particularly critical for on-policy algorithms,

which require that the specified learning control be the one

executed by the system. Therefore, failing to incorporate

safety metrics in the learning algorithm can degrade the

convergence and performance. The objective here is to unify

learning and safety by incorporating safety metrics in the

learning.

IV. METHODOLOGY

The overall scheme of the proposed algorithm is as fol-

lows. GP regression is used to infer the disturbance set D̂(x)
from past observations of the dynamics; this disturbance set

D̂(x) is used to conduct reachability analysis3 and obtain

a safety function V (x) and an optimal safe control policy

u∗(x). Online, we implement a modified control law, which

3If no data has yet been collected we use an initial disturbance model.
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combines the least restrictive control with a novel safety

strategy based on online model validation. Whenever the

safety control law is not applied, the system applies the

control specified by a safety-aware learning algorithm. Once

a new batch of data of arbitrary size is available, the process

is repeated.

A. Gaussian Process and Model Inference

Starting from a prior disturbance set, we use a GP

to approximate the disturbance function d(x) yielding a

probabilistic bound D̂(x). The objective is to obtain an

estimated safe set Disc(K ,D̂) that approaches the maximal

safe set while providing safety guarantees. We assume that

an approximation of the state derivatives is available (e.g.

obtained by numerical differentiation), which is denoted by

f̂ (x,u). Since the disturbance considered in our formulation

is additive, we can construct measurements of d(x) for any

state-input pair that has been visited as the residuals between

the observed dynamics and the model’s prediction:

d̂(x) = f̂ (x,u(x))−h(x)−g(x)u(x). (7)

The residuals are used to infer a distribution over d(x),
and this distribution is used to construct the disturbance set

D̂(x) at every point x. We define the jth component of the

disturbance, d j(x) ∈ R, as a GP with a zero mean function

and squared exponential covariance function.

k(x,x′) = σ2
f exp

(

(x− x′)T L−1(x− x′)

2

)

, (8)

where L is a diagonal matrix, with Li as the ith diagonal

element, and θp =
[

σ2
f ,σ

2
n ,L1, . . . ,Ln

]

are the hyperparame-

ters, σ2
f being the signal variance, σ2

n being the measurement

noise variance, and Li being the squared exponential’s char-

acteristic length for the ith state. The hyperparameters are

chosen to maximize the marginal likelihood of the training

data set, and are thus recomputed for each new batch of data.

We denote by X =
[

x1 · · · xN

]T
the training data given

by a subset of the measured states. We define the observed

disturbance vector d̂j(X), where the ith element is given by

d j(xi). Assuming that the disturbance is observed with Gaus-

sian uncertainty and given the Gaussian prior distribution, the

posterior distribution of d j(x∗) at any given state x∗ can be

obtained from (6).

The expected value d̄ j(x∗) and the standard deviation

σ∗ =
√

var(d j(x∗)) of the disturbance can thus be computed

for every point of interest x∗, and therefore the expected

dynamics in (1) can be evaluated at any given state for the

reachability analysis. A probabilistic bound is chosen for the

maximum and minimum values of the disturbance, e.g. a ±2-

sigma bound for 95.5% confidence or ±3-sigma for 99.7%.

This results in the disturbance set:

D̂(x) = [d̄(x∗)−mσ∗(x), d̄(x∗)+mσ∗(x)] with m≥ 0. (9)

B. Safety through Online Model Validation

A key contribution of this paper is providing a method

to anticipate and react to inaccuracies in the dynamic model

that could invalidate reachability-based guarantees. The pro-

posed algorithm uses online measurements of the system’s

evolution to monitor the local value of the disturbance d(x)
in real time using (7). We define the model reliability margin

λ (x) as:

λ (x) =
dist

(

d(x),D̂(x)C
)

max
δ∈D̂(x)

dist
(

δ ,D̂(x)C
) , (10)

where dist(·, ·) :Rn×2R
n
→R is the signed distance function.

The model reliability margin is therefore a normalized signed

distance function, with range [0,1] on the inside of D̂(x)
and negative outside, which provides a metric for confidence

in the GP model along the system’s trajectory. Given (9)

with sufficiently large m, the probability of the disturbance

function d(x) taking values near or outside the boundary of

D̂(x) is arbitrarily low. Obtaining a measurement with small

λ (x)> 0 indicates that the model is performing poorly, but its

bound on the disturbance (on which reachability guarantees

are based) is still correct locally. Conversely, if λ (x)< 0, then

all theoretical safety guarantees are lost (the disturbance is

playing an unexpected value for which the control action is

not guaranteed to win the differential HJI game).

The new control strategy is given as follows:

VL =

{

max(V (x),VL) if λ (x)≤ λL

VL, otherwise
(11a)

u ∈

{

U if V (x)−VL > 0

{u∗(x)}, otherwise
, (11b)

where the critical safety level VL is initialized to 0 whenever a

new disturbance model is produced by the GP, and λL ∈ (0,1)
is a predefined threshold; the criteria to select its value will

be discussed later in this section. We refer to the compact

set {x : V (x)−VL > 0} as the critical level set; note that

this set is initialized to Disc(K ,D̂), and updated by the

control strategy when the model reliability margin reaches

λL. The purpose of the above control strategy is to keep the

system within the critical level set. Effectively, the algorithm

shrinks the allowed region of operation by pruning away

those states potentially admitting disturbances that are not

likely according to the model. The principle by which the

new allowed operating region is chosen to be the critical

level set is based on the following result.

Proposition 2: If a state z is reached such that λL ≥
λ (z) > 0 and ∃VS ∈ [0,V (z)] such that d(x) ∈ D̂(x) ∀x ∈
{x : V (x) =VS }, then the strategy given by (11) is guaranteed

to keep the system safe.

Proof: Since ∀x ∈ {x : V (x) =VS }, d(x) ∈ D̂(x), by

Corollary 1 the level set associated with VS is indeed a

controlled invariant set of the true system under control

policy u∗(x). Since the control strategy given by (11) will

apply the control u∗(x) for all x such that V (x) ≤ VL, then

the system cannot leave the level set {x : V (x) ≥ VS}, and

therefore safety is guaranteed.

Note that the conditions for guaranteeing safety under the

control strategy in (11) are much less stringent than those

1427



required by current reachability-based safety algorithms.

In order to preserve safety, these frameworks require that

the estimated disturbance set capture the true disturbance

at least on the boundary of the computed discriminating

kernel. Conversely, our algorithm guarantees safety as long

as there exists some super-zero level set {x : V (x) = VS},
0≤VS ≤VL of the computed safety function V (x) such that

the disturbance is captured by the computed disturbance set

on the boundary of the said set. In a continuous state space,

there are an infinite number of candidate level set boundaries

and it suffices that one of them satisfies the condition for

safety guarantees to hold.

It is important to note that the choice of λL determines the

conservativeness of the control strategy: a larger value of λL

leads the algorithm to start applying the safe control policy

u∗(x) for smaller deviations in the measured disturbance with

respect to its expected value as predicted by the GP. The

likelihood of there existing a candidate level set boundary

where the disturbance lies within the specified bounds is

therefore larger for larger values of λL, but the algorithm will

also be more sensitive to modeling error and become more

restrictive for smaller inconsistencies with observations.

Moreover, Proposition 2 provides a sufficient condition

for safety when implementing our proposed control strategy:

safety may still be provided even when its premises do not

hold. An example of this will be shown in Section V-B

through an experiment.

C. Safety Metric Integration into Learning Algorithm

The goal is to reduce switching between the safe control

and learning control, or equivalently minimize the number

of times the system reaches the boundary of the critical

level set. On the interior of the critical level set, the safety

function V (x)−VL can be viewed as a measure of how far

a state is from reaching the boundary of the set. The safety

function is incorporated as a metric in the learning algorithm

to discourage the system from reaching the boundary. This

idea will be exemplified with the learning algorithm Policy

Gradient via the Signed Derivative (PGSD).

PGSD is a model-free policy search algorithm introduced

in [15]. We present the algorithm here briefly and refer the

reader to [15] for a more detailed description. In policy

gradient learning algorithms, a parametrized control policy

is updated in order to optimize a given cost function over

the state-action pair, C(x,u). As an example, we consider a

quadratic cost and a control that is linear in the state features

C(x,u) =
1

2
(x− x∗)⊤Q(x− x∗)+

1

2
u⊤Ru, u = Θφ(x).

(12)

where x∗ is the desired state, Q and R are diagonal posi-

tive semidefinite matrices penalizing deviation from x∗ and

control input respectively, φ(x) ∈ R
k is a vector of features,

each of which maps the state to a scalar value, and Θ∈Rm×k

is a matrix of weights that linearly map these features into

controls. The controller’s objective is to minimize the cost

incurred over a horizon H starting at x0 while applying Θ:

J(x0,Θ) =
H

∑
t=1

C(xt ,ut), ut = Θφ(x). (13)

For simplicity of notation we omit the arguments of the cost

in the following. PGSD updates the parameters as:

Θ←Θ−α∇ΘJ (14a)

∇ΘJ =
1

H

H−1

∑
t=0

(∇ut J)φ(xt)
⊤ (14b)

∇ut J ≈
H

∑
t ′=t+1

S⊤Q(xt ′ − x∗t ′)+Rut ′ , (14c)

where α > 0 is the step size, and Si, j is the sign of
∂ (xt′ )i

∂ (ut ) j

with the additional restriction that only one element in each

row of S is nonzero corresponding to the control that has the

largest effect on that given state. The safety metric can be

included as follows:

CS(x,u) =C(x,u)− γlog(V (x)−VL), (15)

where γ is a weighting factor. The log barrier function goes

to infinity at the boundary of the critical level set, and is

approximately constant in the interior. Equation (14c) then

becomes

∇ut J =
H

∑
t ′=t+1

S⊤Q(xt ′ − x∗t ′)−
γS⊤∇xV (xt ′)

V (xt ′)−VL

+Rut ′ . (16)

The gradient ∇xV (x) is calculated from (2) during the

reachability computations.

V. SIMULATIONS AND EXPERIMENTS

We highlight each aspect of our algorithm in different

simulations and experiments. We use the Level Set Toolbox

[16] to compute the discriminating kernel and the optimal

safety-preserving control laws.The GP regression is done

using the GPML toolbox [13].

The model and safe set are not computed at every time step

due to computational cost. The cost of GP regression is cubic

in the number of data points, and the cost of reachability

analysis grows exponentially with the state dimension. We

maintain a grid of the state space (over which we perform the

reachability computations), and as such (9) must be obtained

at each grid point which does not affect the computational

complexity of the overall algorithm. We then have a look-up

table specifying the disturbance set at each grid cell.

A. Cart-Pole Swing Up: Safety Metric Integration

In this simulation we highlight the benefits of including a

safety metric in the learning algorithm. We implemented the

PGSD algorithm described in Section IV-C on a simulated

cart-pole system with one actuator controlling the thrust of

the cart. The states of the system are x =
[

p ṗ θ θ̇
]⊤

;

position, velocity, clockwise angle (pendulum up is the

origin), and angular velocity. The dynamics are

p̈ =
(u−d)+h1cos(θ)sin(θ)+h2sin(θ)(θ̇)2

h3 +h4cos2(θ)
, (17)
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Fig. 1: Top: The pendulum learns the swing-up task faster

when the safety metric is included in the learning. Bottom:

Incorporating the safety metric reduces the intervention of

the safety controller.

θ̈ =
g1cos(θ)(u−d)+g2cos(θ)sin(θ)(θ̇)2 +g3sin(θ)

g4 +g5cos2(θ)
,

(18)

where h1, . . . ,h4 and g1, . . . ,g5 are physical constants, U =
[−25 N,25 N] is the set of valid thrust controls, and

D̂(x) is uniformly bounded over the entire state space by

[−5 N,5 N].

The task is for the pendulum to swing itself up and

stabilize at a fixed point p∗ = 0.25 meters, while never

leaving the track, defined by K = {x :−0.5 m≤ p≤ 0.5 m}.

The goal is to track the reference x∗ =
[

p∗ 0 0 0
]⊤

,

starting at the initial condition x0 =
[

0 0 π 0
]⊤

.

The feature vector, φ(x), now contains two sets of features.

One set of features is made inactive (set equal to zero) when

the pole is above the horizon ( π
2
< |θ |), and the other set

becomes inactive when the pendulum is below the horizon.

The first set of features includes the error in each state, as

well as the absolute position (five features in total). The

second set of features contains the error in the position and

velocity, the absolute position, and two disjoint features for

the angle error that are inactivated depending on whether the

sign of the angular velocity is the same as the sign of the

angle error (five features in total). The absolute position acts

as a safety feature that moves the cart away from the ends of

the tracks. As for the cost function R = 0,Q1,1 = 1,Q3,3 = 2,
and Q2,2 = Q4,4 = 0. For PGSD with safety γ = 0.002.

PGSD was run with and without the proposed safety

metric in equation (15) for 100 seconds. The result can

be seen in Fig. 1. Without the safety metric the controller

switches more often, and it takes a longer time for the task

to be completed.

B. Quadrotor Flight: Online Model Validation for Safety

We demonstrate the robust safety-preserving performance

of our algorithm on the Stanford-Berkeley Testbed of Au-

tonomous Rotorcraft for Multi-Agent Control (STARMAC),

using an Ascending Technologies Pelican quadrotor (Fig. 2).

The vehicle’s altitude was controlled at 30 Hz based on state

feedback from a VICON motion capture system. The code

for our algorithm was developed in MATLAB and run online

using the open-source control software starmac-ros-pkg [17]

within the Robot Operating System (ROS) framework [18].

Rather than focusing on the performance of reinforce-

ment learning within the safety framework, the purpose of

the results presented here is to illustrate how our novel

algorithm can provide safety under inexact models of the

disturbance while a more accurate representation is learned.

To this end, the vehicle is given a 60 second reference

altitude trajectory designed to deliberately violate the state

constraints (defined by the floor and ceiling of the room)

as well as other potentially dangerous regions of the state

space (e.g. aggressively approaching the floor or the ceiling);

blindly attempting to follow this trajectory, or doing so with

a standard reachability-based safety framework based on an

inaccurate dynamic model, can result in loss of safety.

We use a nonlinear dynamic model of quadrotor vertical

flight accounting for actuator delay, with state equations:

ẋ1 = x2

ẋ2 = kT x2
3 +g+d(x)

ẋ3 = kp(u− x3)

(19)

where x1 is the vehicle’s altitude, x2 is its vertical velocity, x3

is the current average angular velocity of the four rotors and u

is the commanded average angular velocity. State x3 tracks

control input u with a time constant 1/kp measured to be

0.15 s. The gravitational acceleration is g =−9.8 m/s2 and d

is the disturbance term used to account for unmodeled forces

in the system. The state constraints are K = {x : 0.5 m ≤
x1 ≤ 2.8 m}.

In the first experiment, we show the algorithm’s ability to

iteratively learn the disturbance throughout the state space

using a GP, while guaranteeing safety even when a given

iteration produces a bad estimate D̂(x), which does not

contain d(x), leading to an overoptimistic approximation of

the safe set. For every state x, we define D̂(x) as the µ±2σ
interval of the distribution d(x) predicted by the GP.

The vehicle starts off with an a priori conservative global

bound on d(x) and computes an initial conservative discrim-

inating kernel Ω0 = Disc(K ,D̂) (shown in Fig. 4). It then

follows the given trajectory avoiding the unsafe regions by

transitioning to the safe control u∗(x) on ∂Ω0, as shown in

Fig. 3.

The disturbance is measured and monitored online during

this test (with model reliability threshold λL = 0.1) and is

found to be consistent with the initial conservative bound.

After this iteration, a GP model is computed. Constructing

the state-dependent disturbance bound D̂(x) = {d ∈ µ(x)±
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Fig. 2: A STARMAC quadrotor during the flight test.

2σ(x)}, a second discriminating kernel Ω1 is computed as

an approximation of the unknown true safe set.

The results of this new reachability analysis are used for

the second run: 5 seconds into the test, the vehicle measures

a disturbance d that approaches the boundary of D̂(x) so

that λ (x) < λL, and immediately reacts by contracting the

safe set boundary to the current level set V (x) = VL. This

contraction process takes place several times during the test

run, as the vehicle measures disturbances which are close

to becoming inconsistent with the model. Fig. 4 shows the

contraction of Ω1 to the level set Ω̃1 = {x : V (x)≥VL}; the

algorithm succeeds in keeping the state of the system inside

this controlled invariant set.

After the test is safely completed, a new GP is computed,

resulting in an estimated safe set Ω2, contained between

the initial over-conservative discriminating kernel and the

intermediate over-optimistic estimate, as depicted in Fig. 4.

This indicates the algorithm’s ability to safely converge to the

true safe set (asymptotically, as sufficient data is collected)

without requiring this process to consist in a monotonic

succession of under-approximations (an assumption made by

previous approaches often violated in practice).

To further illustrate the strength of our proposed approach,

we consider one additional experiment, in which we compare

the behavior of our safety algorithm with that of a standard

reachability-based safety framework with no online valida-

tion when presented with an initial model that fails to account

for the true disturbance. For the sake of fairness, we define a

trajectory that does not explicitly attempt to drive the system

out of the state constraints (which in this case are re-defined

to be K = {x : 0.2 m≤ x1 ≤ 2.8 m}, 0.2 m corresponding to

the actual position of the body-frame origin when the base

of the vehicle comes to physical contact with the ground).

The initial model in this case assumes a prior bound on d(x)
which is 10 times smaller than in the previous experiment.

Both algorithms begin with the same initial discriminating

kernel Ω0.

Once the test begins, the standard algorithm breaches

the computed safe set on several occasions and violates

the constraints incurring two consecutive ground collisions,

marked in Fig. 5. Conversely, the proposed framework im-
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Fig. 3: Altitude trajectory of the quadrotor while learning the

disturbance and tracking a reference. Run 1 is performed

with a conservative disturbance model, while Run 2 is

performed with an inferred model that fails to predict the

true disturbance in certain regions of the state space.

mediately detects a persistent unmodeled disturbance (in this

case, λ (x) < 0) and consequently reduces the safe set to

the current safety value, immediately applying the control

action u∗: this constitutes the system’s best effort for safety

given its current knowledge of the system, even when the

sufficient conditions from Proposition 2 do not hold (since

the model reliability margin λ (x) is already negative to

begin with). Since the measured disturbance keeps breaking

the model’s assumptions the system keeps contracting its

safe set to higher level curves until it reaches what is, to

the best of its knowledge, the safest grid cell in the state

space. It then computes a new disturbance model and the

associated discriminating kernel. The resulting kernel Ω1

is comparable in shape and size to the initial set Ω0 in

the previously discussed experiment, which means that the

learning and state exploration can continue normally—and

safely—after this step.4 While the results in Fig. 5 may look

quite restrictive, it should be noted that this is an extreme

case where the model of the system is wrong everywhere.

Under these conditions, temporarily restricting the vehicle’s

motion is generally preferable to a crash.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a general reachability-based safe

learning algorithm that leverages GPs to learn a model of

the system disturbances and employs a novel control strategy

based on online model validation, providing stronger safety

guarantees than current state-of-the-art reachability-based

frameworks. In addition, our algorithm makes improvements

4The results after Ω1 is computed are omitted because they are similar
to the previous experiment.
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Fig. 5: Altitude trajectory of the quadrotor with an incorrect

disturbance model. The standard reachability-based safety

algorithm attempts to follow the trajectory, incurring several

safety breaches and two physical collisions. The proposed

algorithm rapidly detects the inconsistency between model

and observations and retracts to the region with the highest

computed safety value, until it can recompute a more accu-

rate disturbance model and discriminating kernel.

upon these techniques by incorporating the safety value func-

tion into the performance metric of the learning algorithm,

which reduces the interference of the safe control policy with

the learning process.

In the future, we plan to develop an algorithm that can

perform real-time updates to the safe set for every data

point, in contrast to our current batch-based approach. In

addition, we intend to look into speeding up GP computation

by incorporating sparse GPs.
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