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Reachable set bounding for homogeneous nonlinear systems with delay and disturbance is studied. By the usage of a new method
for stability analysis of positive systems, an explicit necessary and sufficient condition is first derived to guarantee that all the states
of positive homogeneous time-delay systems with degree 𝑝 > 1 converge asymptotically within a specific ball. Furthermore, the
main result is extended to a class of nonlinear time variant systems. A numerical example is given to demonstrate the effectiveness
of the obtained results.

1. Introduction

Recent years havewitnessed a rapid development of reachable
set bounding for linear systems in [1–11], to name a few.
In most of existing references, the traditional Lyapunov-
Krasovskii function method is most commonly used. How-
ever, such a method is usually difficult to derive explicit
conditions for reachable set estimation of nonlinear systems
with delay and disturbance.

Due to the ubiquitous existence of time delay in practical
engineering and its adverse effect on stability [12–15] and
oscillation [16–19], it has attracted wide attention in recent
years. So far, less attention has been paid to reachable set
bounding for nonlinear time-delay systems. Such a problem
was discussed in [20, 21] for certain nonlinear perturbed
systems with delay, where the involved nonlinear terms
satisfy a linear growth condition. Reachable set bounding for
continuous-time and discrete-time homogeneous time-delay
positive systems of degree one was studied in [22]. The decay
rates of homogeneous positive systems of any degree with
time-varying delays were given in [23]. Recently, the same
problem was considered in [24] for homogeneous positive
systems of degree 𝑝 > 1, while time delay was not taken
into consideration.Theproblemof reachable set estimation of

switched positive systemswith discrete and distributed delays
subject to bounded disturbances was investigated in [25].

Positive systems are dynamical systems whose states
remain nonnegative whenever the initial states are nonneg-
ative ([26, 27]). In view of the special structure of positive
systems, a special method was commonly used for stability
analysis of positive systems in [28–33], which is different from
the traditional Lyapunov-Krasovskii function method.

Motivated by the work in [23, 24], we study in this paper
reachable set bounding for homogeneous nonlinear time-
delay systems with bounded disturbance. By developing the
methods used in [23, 24], we first establish a necessary and
sufficient condition such that all the solutions of positive
homogeneous time-delay systemswith degree𝑝 > 1 converge
asymptotically within a specific ball, which contains those
results in [23, 24] in special cases. The main result is also
applied to certain nonlinear time variant systems with delay
and disturbance.

Throughout this paper, R𝑛 is the set of 𝑛-dimensional
real vectors. Denote by 𝑥𝑖 the 𝑖th coordinate of 𝑥 ∈ R

𝑛 for𝑖 ∈ ⟨𝑛⟩ = {1, 2, . . . , 𝑛}. Given 𝑥, 𝑦 ∈ R
𝑛, say 𝑥 ≻ 𝑦 (or𝑦 ≺ 𝑥) if 𝑥𝑖 > 𝑦𝑖, 𝑥 ⪰ 𝑦 (or 𝑦 ⪯ 𝑥) if 𝑥𝑖 ≥ 𝑦𝑖, 𝑖 ∈ ⟨𝑛⟩.

Denote R
𝑛
+ = {𝑥 ∈ R

𝑛 : 𝑥 ⪰ 0}. For 𝑥 = (𝑥𝑖) ∈ R
𝑛,
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denote |𝑥| = (|𝑥𝑖|) ∈ R
𝑛
+ and ‖𝑥‖∞ = max𝑖∈⟨𝑛⟩|𝑥𝑖|. Let

B(𝜀)={𝑥 ∈ R
𝑛| ‖𝑥‖∞ ≤ 𝜀}, where 𝜀 > 0 is a constant. For

given 𝑟 > 0, denote BF𝑟([0,∞],R𝑛) = {𝜔 : [0,∞] 󳨀→
R
𝑛|‖𝜔(𝑡)‖∞ ≤ 𝑟, ∀𝑡 ≥ 0}. An 𝑛 × 𝑛-dimensional matrix 𝐴

is calledMetzler if all its off-diagonal entries are nonnegative.

2. Preliminaries

In this paper, nonlinear time-delay systems of the form

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑔 ((𝑥 (𝑡 − 𝜏 (𝑡)) ) + 𝜔 (𝑡) , 𝑡 ≥ 0
𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−ℎ, 0] , (1)

are investigated, where 𝑥(𝑡) ∈ R
𝑛 is the state vector, 𝑓, 𝑔 :

R
𝑛 󳨀→ R

𝑛 are continuous vector functions satisfying 𝑓(0) =𝑔(0) = 0, 𝜏(𝑡) is a time delay satisfying 0 ≤ 𝜏(𝑡) ≤ ℎ, ℎ > 0
is a constant, 𝜔(𝑡) ∈ BF𝑟([0,∞],R𝑛) is the disturbance, and
the initial state 𝜑(𝑡) : [−ℎ, 0] 󳨀→ R

𝑛 is continuous. Note
that when 𝜏(𝑡) ≡ 0, system (1) takes the form of the system
considered in [24].

The following definitions and lemma in [34] will be
required.

Definition 1. Assume that 𝑓 : R
𝑛 󳨀→ R

𝑛 is continuous
on R

𝑛 and continuously differentiable on R
𝑛 \ {0}. The

vector function 𝑓 is called cooperative if the Jacobian matrix(𝜕𝑓/𝜕𝑥)(𝑥), 𝑥 ∈ R
𝑛 \ {0}, is Metzler.

Definition 2. A vector function 𝑓 : R
𝑛 󳨀→ R

𝑛 is called
homogeneous of degree 𝑝 > 0 if 𝑓(𝜆𝑥) = 𝜆𝑝𝑓(𝑥), 𝑥 ∈ R

𝑛,𝜆 > 0.
Definition 3. A vector function 𝑔 : R𝑛 󳨀→ R

𝑛 is called order-
preserving on R

𝑛
+ provided that 𝑔(𝑥) ⪰ 𝑔(𝑦), where 𝑥, 𝑦 ∈

R
𝑛
+, 𝑥 ⪰ 𝑦.

Lemma 4. A cooperative vector function 𝑓 satisfies 𝑓𝑖(𝑢) ≥𝑓𝑖(V), where 𝑢, V ∈ R
𝑛 \ {0}, 𝑢 ⪰ V, 𝑢𝑖 = V𝑖, 𝑖 ∈ ⟨𝑛⟩.

In this paper, we need the following assumptions:

(H1) 𝑓 and𝑔 are continuously differentiable onR𝑛\{0} and
homogeneous of degree 𝑝 > 1;

(H2) 𝑓 is cooperative and 𝑔 is order-preserving on R
𝑛
+;

(H3) 𝜔(𝑡) ⪰ 0 for 𝑡 ≥ 0.
Following the proof given in [22], we can easily obtain the

following lemma.

Lemma 5. System (1) is positive under assumptions (H2) and
(H3).

3. Main Results

Theorem 6. Suppose that (H1)-(H3) are valid. �en, we have
the following equivalent statements:

(i) �ere is an 𝑛-dimensional vector V ≻ 0 satisfying𝑓(V)+𝑔(V) ≺ 0.
(ii) �e solution 𝑥(𝑡) of system (1) satisfies

‖𝑥 (𝑡)‖∞ ≤ 𝛼 + (𝛽 + 𝛾𝑡)−1/(𝑝−1) (2)

for any 𝑡 ≥ 0, any initial state 𝜑(𝑡) ∈ C([−ℎ, 0],R𝑛+), any
disturbance 𝜔(𝑡) ∈ BF𝑟([0,∞],R𝑛+), and any bounded delay𝜏(𝑡), where 𝛼, 𝛽, and 𝛾 are appropriate nonnegative constants
dependent on 𝑟, ℎ, and the initial state 𝜑, and 𝛼 = 0 if 𝑟 = 0.

In addition, if condition (i) holds, 𝛼, 𝛽, and 𝛾 can be chosen
as follows:

𝛼 = 𝜃𝜌,
𝛽 = (𝐾𝜌)1−𝑝 ,
𝛾 = (𝑝 − 1) 𝜂𝜌1−𝑝,

(3)

where 𝜌 = max𝑖∈⟨𝑛⟩V𝑖,

𝜃 = ( 𝑟
−max𝑖∈⟨𝑛⟩ [𝑓𝑖 (V) + 𝑔𝑖 (V)])

1/𝑝
,

𝐾 = {{{
0, 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩V ≤ 𝜃,
[(󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩V)𝑝 − 𝜃𝑝]1/𝑝 , 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩V > 𝜃,

(4)

‖𝜑‖
V

= max𝑖∈⟨𝑛⟩,𝑡∈[−ℎ,0](|𝜑𝑖(𝑡)|/V𝑖), 𝜂 satisfies 0 < 𝜂 <
min𝑖∈⟨𝑛⟩𝜂𝑖, and 𝜂𝑖 satisfies the following equation:
𝑓𝑖 (V)
V𝑖

+ 𝑔𝑖 (V)
V𝑖

[1 + (𝑝 − 1)𝐾𝑝−1𝜂𝑖ℎ]𝑝/(𝑝−1) + 𝜂𝑖 = 0,
𝑖 ∈ ⟨𝑛⟩ .

(5)

Proof. (i)󳨐⇒(ii) Given the initial state 𝜑 ∈ C([−ℎ, 0],R𝑛+),
from Lemma 5 we have 𝑥(𝑡) ⪰ 0, 𝑡 ≥ 0. Based on definitions
of 𝐾 and ‖𝜑‖

V
, we have

𝑥𝑖 (𝑡)
V𝑖

≤ (𝜃𝑝 + 𝐾𝑝)1/𝑝 , 𝑡 ∈ [−ℎ, 0] , 𝑖 ∈ ⟨𝑛⟩ . (6)

Set

𝑧𝑖 (𝑡) =
{{{{{{{{{

𝑥𝑖 (𝑡)
V𝑖

− {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−𝑝/(𝑝−1)}1/𝑝 , 𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ ,
𝑥𝑖 (𝑡)
V𝑖

− (𝜃𝑝 + 𝐾𝑝)1/𝑝 , 𝑡 ∈ [−ℎ, 0] , 𝑖 ∈ ⟨𝑛⟩ .
(7)
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Then (6) and (7) yield 𝑧𝑖(𝑡) ≤ 0, 𝑡 ∈ [−ℎ, 0], 𝑖 ∈ ⟨𝑛⟩. Next,
we show that 𝑧𝑖(𝑡) ≤ 0 for 𝑖 ∈ ⟨𝑛⟩ and 𝑡 ≥ 0. If it is not true,
there is a constant 𝑡∗ ≥ 0 and an index 𝑘 ∈ ⟨𝑛⟩ guaranteeing𝑧𝑖(𝑡) ≤ 0 for 𝑖 ∈ ⟨𝑛⟩, 𝑡 ∈ [0, 𝑡∗], and 𝑧𝑘(𝑡∗) = 0. Therefore,

𝑧̇𝑘 (𝑡∗) ≥ 0, (8)

𝑥𝑖 (𝑡)
V𝑖

≤ {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−𝑝/(𝑝−1)}1/𝑝 ,
𝑡 ∈ [0, 𝑡∗] , 𝑖 ∈ ⟨𝑛⟩ .

(9)

𝑥𝑘 (𝑡∗)
V𝑘

= {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)}1/𝑝 . (10)

Using Lemma 4 and the homogeneity of 𝑓, we get from (9)
and (10) that

𝑓𝑘 (𝑥 (𝑡∗))
≤ 𝑓𝑘 ({𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)}1/𝑝 V)

= {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)}𝑓𝑘 (V)

= 𝜃𝑝𝑓𝑘 (V) + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1) 𝑓𝑘 (V) .

(11)

For the case when 𝜏(𝑡∗) ≤ 𝑡∗, it holds that
𝑥𝑖 (𝑡∗ − 𝜏 (𝑡∗))

V𝑖

≤ {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗ − 𝜏 (𝑡∗))]−𝑝/(𝑝−1)}1/𝑝 ,
𝑖 ∈ ⟨𝑛⟩ .

(12)

Considering 𝑔 is homogeneous and order-preserving, we
conclude

𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) ≤ 𝑔𝑘 ({𝜃𝑝

+ [𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗ − 𝜏 (𝑡∗))]−𝑝/(𝑝−1)}1/𝑝 V)

= {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗ − 𝜏 (𝑡∗))]−𝑝/(𝑝−1)}
⋅ 𝑔𝑘 (V) = 𝜃𝑝𝑔𝑘 (V) + [𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗
− 𝜏 (𝑡∗))]−𝑝/(𝑝−1) 𝑔𝑘 (V) .

(13)

Note that

[𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗ − 𝜏 (𝑡∗))]−𝑝/(𝑝−1)

= [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)

× [ 𝜂 (𝑝 − 1) 𝜏 (𝑡∗)𝐾1−𝑝 + 𝜂 (𝑝 − 1) (𝑡∗ − 𝜏 (𝑡∗)) + 1]
𝑝/(𝑝−1)

≤ [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)

× [1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) .

(14)

We further get from (13) and (14) that

𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) ≤ 𝜃𝑝𝑔𝑘 (V)
+ [𝐾1−𝑝 + 𝜂 (𝑝 − 1) 𝑡∗]−𝑝/(𝑝−1)

⋅ [1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) 𝑔𝑘 (V) .
(15)

For the case when 𝜏(𝑡∗) > 𝑡∗, it holds that 𝑧𝑖(𝑡∗ − 𝜏(𝑡∗)) ≤ 0;
i.e.,

𝑥𝑖 (𝑡∗ − 𝜏 (𝑡∗))
V𝑖

≤ (𝜃𝑝 + 𝐾𝑝)1/𝑝 , 𝑖 ∈ ⟨𝑛⟩ . (16)

It thus follows that

𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) ≤ (𝜃𝑝 + 𝐾𝑝) 𝑔𝑘 (V) = 𝜃𝑝𝑔𝑘 (V)
+ [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)

⋅ 𝐾𝑝 [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]𝑝/(𝑝−1) 𝑔𝑘 (V) ≤ 𝜃𝑝𝑔𝑘 (V)
+ [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)

⋅ [1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) 𝑔𝑘 (V) .

(17)

Next, we can conclude from (1) and (7) that

𝑧̇𝑘 (𝑡∗) = 𝑓𝑘 (𝑥 (𝑡∗)) + 𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) + 𝑤𝑘 (𝑡∗)
V𝑘

+ 𝜂 {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)}(1−𝑝)/𝑝

⋅ [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗](1−2𝑝)/(𝑝−1)

≤ 𝑓𝑘 (𝑥 (𝑡∗)) + 𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) + 𝑤𝑘 (𝑡∗)
V𝑘

+ 𝜂 [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1) .

(18)
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Consequently, (11), (15), (17), and (18) imply that

𝑧̇𝑘 (𝑡∗) ≤ 𝜃𝑝 [𝑓𝑘 (V) + 𝑔𝑘 (V)] + 𝑟
V𝑘

+ [𝐾1−𝑝

+ (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1) × {𝑓𝑘 (V)
V𝑘

+ 𝑔𝑘 (V)
V𝑘

[1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) + 𝜂} .

(19)

On the other hand, the definitions of 𝜃 and 𝜂 yield that

𝜃𝑝 [𝑓𝑘 (V) + 𝑔𝑘 (V)] + 𝑟 ≤ 𝜃𝑝max
𝑖∈⟨𝑛⟩

[𝑓𝑖 (V) + 𝑔𝑖 (V)] + 𝑟
= 0,

(20)

and

𝑓𝑘 (V)
V𝑘

+ 𝑔𝑘 (V)
V𝑘

[1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) + 𝜂 < 0. (21)

Combining this with (19), we have 𝑧̇𝑘(𝑡∗) < 0, which
contradicts (8). Therefore, 𝑧𝑖(𝑡) ≤ 0, 𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩; i.e.,
𝑥𝑖 (𝑡)
V𝑖

≤ {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−𝑝/(𝑝−1)}1/𝑝 ,
𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ .

(22)

From the well-known inequality (𝑎+𝑏)𝑞 ≤ 𝑎𝑞+𝑏𝑞 for 𝑎, 𝑏 ≥ 0
and 0 < 𝑞 < 1, we further get
𝑥𝑖 (𝑡)
V𝑖

≤ 𝜃 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−1/(𝑝−1) ,
𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ .

(23)

It implies (2).
(ii)󳨐⇒(i) For the particular case when 𝑟 = 0 and ℎ = 0,

system (1) reduces to

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) , 𝑡 ≥ 0. (24)

Given the initial condition 𝑥(0) ⪰ 0, each solution of system
(24) satisfies

‖𝑥 (𝑡)‖∞ ≤ (𝛽 + 𝛾𝑡)−1/(𝑝−1) . (25)

That is, system (24) is asymptotically stable. Based on Propo-
sition 4.1 in [35], there is a vector V ≻ 0 such that𝑓(V)+𝑔(V) ≺0. The proof is complete.

Remark 7. It can be seen from Theorem 6 that the bound of
the reachable set is determined by the bound of disturbances,
the choice of V, and the value of 𝑝. When the bound of
disturbances and the value of 𝑝 are given, an appropriate
vector V can be chosen to guarantee a minimal bound of the
reachable set by solving the following nonlinear optimization
problem: min

V≻0𝜃 subject to 𝑓(V) + 𝑔(V) ≺ 0, where 𝜃 is
defined as inTheorem 6.

Remark 8. If 𝜔(𝑡) = 0 for 𝑡 ≥ 0, then Theorem 6 reduces to
the main result given in [23]. If 𝑔(𝑥) = 0 for 𝑥 ∈ R

𝑛, then
Theorem 6 reduces to the main result given in [24].

Finally, consider the following nonlinear time-varying
system

𝑥̇ (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, (𝑥 (𝑡 − 𝜏 (𝑡)) ) + 𝜔 (𝑡) ,
𝑡 ≥ 0

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,
(26)

where𝑥(𝑡), 𝜏(𝑡),𝜔(𝑡), and𝜑(𝑡) are the same as in (1), and𝑓, 𝑔 :
[0,∞) × R

𝑛 󳨀→ R
𝑛 are vector functions satisfying 𝑓(𝑡, 0) =𝑔(𝑡, 0) = 0.

Suppose that 𝑓 and 𝑔 satisfy the following assumption:

(H4)𝑓 and𝑔 are continuous on [0,∞)×R𝑛, continuously
differentiablewith respect to𝑥 onR𝑛\{0}, and there are vector
functions 𝑓 and 𝑔 satisfying (H1) and (H2), and for 𝑥𝑖 ̸= 0,

𝑓𝑖 (𝑡, 𝑥) sign𝑥𝑖 ≤ 𝑓𝑖 (|𝑥|) ,
󵄨󵄨󵄨󵄨𝑔𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑔𝑖 (|𝑥|) ,

𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ .
(27)

Without the restriction on the disturbance that 𝜔(𝑡) ⪰ 0
for 𝑡 ≥ 0, we can get the following reachable set bounding
criterion for system (26).

Theorem 9. Suppose that (H4) is valid. If there is an 𝑛-
dimensional vector V ≻ 0 such that 𝑓(V) + 𝑔(V) ≺ 0, the
solution of system (26) satisfies (2), where constants 𝛼, 𝛽, and𝛾 are defined by (3).
Proof. Set

𝑦𝑖 (𝑡) =
{{{{{{{{{

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨
V𝑖

− {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−𝑝/(𝑝−1)}1/𝑝 , 𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ ,
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨
V𝑖

− (𝜃𝑝 + 𝐾𝑝)1/𝑝 , 𝑡 ∈ [−ℎ, 0] , 𝑖 ∈ ⟨𝑛⟩ .
(28)
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Figure 1: The states of system (1).

Based on definitions of 𝐾 and ‖𝜑‖
V
, it holds that 𝑦𝑖(𝑡) ≤ 0,𝑡 ∈ [−ℎ, 0], 𝑖 ∈ ⟨𝑛⟩. For the case when 𝑥𝑖(𝑡) ̸= 0, 𝑡 ≥ 0, notice

that

̇𝑦𝑖 (𝑡) = 𝐷− 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 = 𝑥̇𝑖 (𝑡) sign𝑥𝑖 (𝑡)≤ 𝑓𝑖 (|𝑥 (𝑡)|) + 𝑔𝑖 (|𝑥 (𝑡 − 𝜏 (𝑡))|) + 󵄨󵄨󵄨󵄨𝑤𝑖 (𝑡)󵄨󵄨󵄨󵄨 ,
𝑖 ∈ ⟨𝑛⟩ .

(29)

Here𝐷− denotes the left derivative. Similar to the analysis in
Theorem 6, it is not difficult to conclude that 𝑦𝑖(𝑡) ≤ 0, 𝑡 ≥ 0,𝑖 ∈ ⟨𝑛⟩. Consequently, (2) holds. The proof is complete.

4. Numerical Example

Consider system (1) with

𝑓 (𝑥1, 𝑥2) = (−3 62 −2)(𝑥
3/2
1𝑥3/22 ) − √𝑥31 + 𝑥32 (31) ,

𝑔 (𝑥1, 𝑥2) = (0.2𝑥
3/2
20.4𝑥3/21 ) ,

𝜔 (𝑡) = (0.05 |sin 𝑡|0.04 |cos 𝑡|) ,
𝜏 (𝑡) = 5 + sin 𝑡, 𝑡 ≥ 0.

(30)

It is easy to verify that assumptions (H1)-(H2) hold. Let V =
(1, 1)𝑇. Then 𝑓(V) + 𝑔(V) ≺ 0. By a direct calculation, it yieldsℎ = 6, 𝑟 = 0.05, 𝛼 ≈ 0.1345, and 𝛾 ≈ 0.11.

We conclude from Theorem 6 that there is a ball
B(0.1345) such that all the states of system (1) converge

asymptotically within it. Given the initial state 𝜑(𝑡) = (1, 1)𝑇,𝑡 ∈ [−6, 0], noting that ‖𝜑‖
V
= 1 and 𝛽 ≈ 1.0749, solution (1)

satisfies

‖𝑥 (𝑡)‖∞ ≤ 0.1345 + (1.0749 + 0.11𝑡)−2 , 𝑡 ≥ 0. (31)

Figure 1 presents the simulation.

5. Conclusion

This paper has been concerned with reachable set bounding
for homogeneous nonlinear time-delay systems with distur-
bance. We not only derive explicit reachable set bounding
criterion independent of delay, but also estimate the decay
rate. It will be interesting to extend our work to the case of
unbounded delays and discrete-time systems.
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