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Abstract. This paper presents new graph-theoretic results appropriate for the analysis of a
variety of consensus problems cast in dynamically changing environments. The concepts of rooted,
strongly rooted, and neighbor-shared are defined, and conditions are derived for compositions of
sequences of directed graphs to be of these types. The graph of a stochastic matrix is defined, and
it is shown that under certain conditions the graph of a Sarymsakov matrix and a rooted graph
are one and the same. As an illustration of the use of the concepts developed in this paper, graph-
theoretic conditions are obtained which address the convergence question for the leaderless version
of the widely studied Vicsek consensus problem.
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1. Introduction. Current interest in cooperative control of groups of mobile
autonomous agents has led to the rapid increase in the application of graph-theoretic
ideas to problems of analyzing and synthesizing a variety of desired group behaviors
such as maintaining a formation, swarming, rendezvousing, or reaching a consensus.
While this in-depth assault on group coordination using a combination of graph theory
and system theory is in its early stages, it is likely to significantly expand in the years
to come. One line of research which illustrates the combined use of these concepts
is the recent theoretical work by a number of individuals [17, 19, 22, 1, 3, 26] which
successfully explains the heading synchronization phenomenon observed in simulation
by Vicsek et al. [29], Reynolds [23], and others more than a decade ago. Vicsek and
coauthors consider a simple discrete-time model consisting of n autonomous agents
or particles all moving in the plane with the same speed but with different headings.
Each agent’s heading is updated using a local rule based on the average of its own
heading plus the current headings of its “neighbors.” Agent i’s neighbors at time t
are those agents which are either in or on a circle of prespecified radius centered at
agent i’s current position. In their paper, Vicsek et al. provide a variety of inter-
esting simulation results which demonstrate that the nearest neighbor rule they are
studying can cause all agents to eventually move in the same direction despite the ab-
sence of centralized coordination and despite the fact that each agent’s set of nearest
neighbors can change with time. A theoretical explanation for this observed behavior
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has recently been given in [17]. The explanation exploits ideas from graph theory [13]
and from the theory of nonhomogeneous Markov chains [25, 30, 15]. Experience has
shown that it is more the graph theory than the Markov chains which is key to this
line of research. An illustration of this is the recent extension of the findings of [17]
which explain the behavior of Reynolds’ full nonlinear “boid” system [26].

Mathematically Vicsek’s problem is what in statistics and computer science is
called a “consensus problem” [10] or an “agreement problem” [21], although in com-
puter science the issues tend to be concerned more with fault tolerance [12] rather
than convergence. Roughly speaking, one has a group of agents which are all trying to
agree on a specific value of some quantity. Each agent initially has only limited infor-
mation available. The agents then try to reach a consensus by communicating what
they know to their neighbors either just once or repeatedly, depending on the specific
problem of interest. For the Vicsek problem, each agent knows only its own heading
and the headings of its current neighbors. One feature of the Vicsek problem which
sharply distinguishes it from other consensus problems is that each agent’s neighbors
can change with time, because all agents are in motion. The theoretical consequence
of this is profound: it renders essentially useless, without elaboration, a large body
of literature appropriate to the convergence analysis of “nearest neighbor” algorithms
with fixed neighbor relationships. Said differently, for the linear heading update rules
considered in this paper, understanding the difference between fixed neighbor rela-
tionships and changing neighbor relationships is much the same as understanding the
difference between the stability of time-invariant linear systems and time-varying lin-
ear systems. Various mathematically similar versions of Vicsek’s problem have been
addressed in the literature [17, 19, 22, 1, 3]; some it turns out well before Vicsek’s
own paper was published [10, 9, 27, 28, 2].

The central aim of this paper is to establish a number of basic properties of
“compositions” of sequences of directed graphs which, as shown in [7], are useful in
explaining how a consensus is achieved in various settings. To motivate the graph-
theoretic questions addressed and to demonstrate the utility of the answers obtained,
we reconsider the version of the Vicsek consensus problem studied by Moreau [19] and
Ren and Beard [22]. We derive a condition for agents to reach a consensus exponen-
tially fast which is slightly different than but equivalent to the condition established
in [19]. What this paper contributes, then, is a different approach to the understand-
ing of the consensus phenomenon, one in which graphs and their compositions are
at center stage. Of course if the consensus problem studied in [19, 22] were the only
problem to which this approach were applicable, its development would have hardly
been worth the effort. In a sequel to this paper [7] and elsewhere [4, 8, 6, 5] it is
demonstrated that in fact the graph-theoretic approach we are advocating is applica-
ble to a broad range of consensus problems which have so far either been only partially
resolved or not studied at all.

To the best of our knowledge, all of the statements in this paper about graph com-
positions are original. However, because the literature on nonhomogeneous Markov
chains is vast, some of these statements can undoubtedly be shown to be equivalent
to statements about stochastic matrix product in the existing literature [25, 15]. The
main convergence result on leaderless flocking, namely Theorem 3, is equivalent to
one of the main results of [19]. Corollary 1 is in essence the main result of [17].

In section 2 we reconsider the leaderless coordination problem studied in [17] but
without the assumption that the agents all have the same sensing radii. Agents are
labelled 1 to n and are represented by correspondingly labelled vertices in a directed
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graph N whose arcs represent current neighbor relationships. We define the concept
of a “strongly rooted graph” and show by an elementary argument that convergence
to a common heading is achieved if the neighbor graphs encountered along a system
trajectory are all strongly rooted. We also derive a worst case convergence rate for
these types of trajectories. We next define the concept of a “rooted graph” and the
operation of “graph composition.” The directed graphs appropriate to the Vicsek
model have self-arcs at all vertices. We prove that any composition of (n − 1)2 such
rooted graphs is strongly rooted. Armed with this fact, we establish conditions under
which consensus is achieved which are different than but equivalent to those obtained
in [19, 22]. We then turn to a more in-depth study of rooted graphs. We prove
that a so-called neighbor-shared graph is a special type of rooted graph and in so
doing make a connection between the consensus problem under consideration and the
elegant theory of “scrambling matrices” found in the literature on nonhomogeneous
Markov chains [25, 15]. By exploiting this connection in [7], we are able to derive
worst case convergence rate results for several versions of the Vicsek problem. The
nonhomogeneous Markov chain literature also contains interesting convergence results
for a class of stochastic matrices studied by Sarymsakov [24]. The class of Sarymsakov
matrices is bigger than the class of all stochastic scrambling matrices. We make
contact with this literature by proving that the graph of any Sarymsakov matrix is
rooted and also that any stochastic matrix with a rooted graph whose vertices all
have self-arcs is a Sarymsakov matrix.

2. Leaderless coordination. The system to be studied consists of n autono-
mous agents, labelled 1 through n, all moving in the plane with the same speed but
with different headings. Each agent’s heading is updated using a simple local rule
based on the average of its own heading plus the headings of its “neighbors.” Agent
i’s neighbors at time t are those agents, including itself, which are in a closed disk
of prespecified radius ri centered at agent i’s current position. In what follows Ni(t)
denotes the set of labels of those agents which are neighbors of agent i at time t.
Agent i’s heading, written θi, evolves in discrete time in accordance with a model of
the form

θi(t + 1) =
1

ni(t)

⎛
⎝ ∑

j∈Ni(t)

θj(t)

⎞
⎠ ,(1)

where t is a discrete-time index taking values in the nonnegative integers {0, 1, 2, . . .},
and ni(t) is the number of neighbors of agent i at time t.

2.1. Neighbor graph. The explicit form of the update equations determined
by (1) depends on the relationships between neighbors which exist at time t. These
relationships can be conveniently described by a directed graph N(t) with vertex set
V = {1, 2, . . . , n} and “arc set” A(N(t)) ⊂ V × V which is defined so that (i, j) is an
arc or directed edge from i to j just in case agent i is a neighbor of agent j. Thus
N(t) is a directed graph on n vertices with at most one arc connecting each ordered
pair of distinct vertices and with exactly one self-arc at each vertex. We write Gsa

for the set of all such graphs and G for the set of all directed graphs with vertex set
V. It is natural to call a vertex i a neighbor of vertex j in G ∈ G if (i, j) is an arc
in G. In addition we sometimes refer to a vertex k as an observer of vertex j in G if
(j, k) is an arc in G. Thus every vertex of G can observe its neighbors, which with the
interpretation of vertices as agents is precisely the kind of relationship G is supposed
to represent.
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2.2. State equation. The set of agent heading update rules defined by (1) can
be written in state form. Towards this end, for each graph N ∈ Gsa, define the flocking
matrix

F = D−1A′,(2)

where A′ is the transpose of the “adjacency matrix” of N and D the diagonal matrix
whose jth diagonal element is the “in-degree” of vertex j within the graph.1 The
function N �−→ F is bijective. Then

θ(t + 1) = F (t)θ(t), t ∈ {0, 1, 2, . . .},(3)

where θ is the heading vector θ = [ θ1 θ2 . . . θn ]
′
and F (t) is the flocking matrix

of the neighbor graph N(t) which represents the neighbor relationships of (1) at time
t. A complete description of this system would have to include a model which explains
how N(t) changes over time as a function of the positions of the n agents in the plane.
While such a model is easy to derive and is essential for simulation purposes, it would
be difficult to take into account in a convergence analysis. To avoid this difficulty,
we shall adopt a more conservative approach which ignores how N(t) depends on the
agent positions in the plane and assumes instead that t �−→ N(t) might be any signal
in some suitably defined set of interest.

Our ultimate goal is to show for a large class of signals t �−→ N(t) and for any
initial set of agent headings that the headings of all n agents will converge to the same
steady state value θss. Convergence of the θi to θss is equivalent to the state vector

θ converging to a vector of the form θss1, where 1
Δ
= [ 1 1 . . . 1 ]

′
n×1. Naturally

there are situations where convergence to a common heading cannot occur. The most
obvious of these is when one agent—say the ith—starts so far away from the rest that
it never acquires any neighbors. Mathematically this would mean not only that N(t)
is never strongly connected2 at any time t but also that vertex i remains an isolated
vertex of N(t) for all t in the sense that within each N(t), vertex i has no incoming
arcs other than its own self-arc. This situation is likely to be encountered if the ri are
very small. At the other extreme, which is likely if the ri are very large, all agents
might remain neighbors of all others for all time. In this case, N(t) would remain
fixed along such a trajectory as the complete graph. Convergence of θ to θss1 can
easily be established in this special case because with N(t) so fixed, (3) is a linear,
time-invariant, discrete-time system. The situation of perhaps the greatest interest is
between these two extremes when N(t) is not necessarily complete or even strongly
connected for any t ≥ 0 but when no strictly proper subset of N(t)’s vertices is isolated
from the rest for all time. Establishing convergence in this case is challenging because
F (t) changes with time and (3) is not time-invariant. It is this case which we intend
to study.

2.3. Strongly rooted graphs. In what follows we will call a vertex i of a
directed graph G a root of G if for each other vertex j of G, there is a path from i to

1By the adjacency matrix of a directed graph G ∈ G we mean an n× n matrix whose ijth entry
is 1 if (i, j) is an arc in A(G) and 0 if it is not. The in-degree of vertex j in G is the number of arcs
in A(G) of the form (i, j); thus j’s in-degree is the number of incoming arcs to vertex j.

2A directed graph G ∈ G with arc set A is strongly connected if it has a “path” between each
distinct pair of its vertices i and j; by a path (of length m) between vertices i and j we mean a
sequence of arcs in A of the form (i, k1), (k1, k2), . . . , (km−1, km), where km = j and, if m > 1,
i, k1, . . . , km−1 are distinct vertices. G is complete if it has a path of length one (i.e., an arc) between
each distinct pair of its vertices.
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j. Thus i is a root of G if it is the root of a directed spanning tree of G. We will say
that G is rooted at i if i is in fact a root. Thus G is rooted at i just in case each other
vertex of G is reachable from vertex i along a path within the graph. G is strongly
rooted at i if each other vertex of G is reachable from vertex i along a path of length
1. Thus G is strongly rooted at i if i is a neighbor of every other vertex in the graph.
A rooted graph G is a directed graph which possesses at least one root. Finally, a
strongly rooted graph is a graph which has at least one vertex at which it is strongly
rooted. It is now possible to state the following elementary convergence result which
illustrates, under a restrictive assumption, the more general types of results to be
derived later in the paper.

Theorem 1. Let θ(0) be fixed. For any trajectory of the system (3) along which
each graph in the sequence of neighbor graphs N(0), N(1), . . . is strongly rooted, there
is a constant steady state heading θss for which

lim
t→∞

θ(t) = θss1,(4)

where the limit is approached exponentially fast.

2.3.1. Stochastic matrices. In order to explain why Theorem 1 is true, we will
make use of certain structural properties of the flocking matrices determined by the
neighbor graphs in Gsa. As defined, each flocking matrix F is square and nonnegative,
where by a nonnegative matrix we mean a matrix whose entries are all nonnegative.
Each F also has the property that its row sums all equal 1 (i.e., F1 = 1). Matrices
with these two properties are called (row) stochastic [16]. It is easy to verify that the
class of all n×n stochastic matrices is closed under multiplication. It is worth noting
that because the vertices of the graphs in Gsa all have self-arcs, the F also have the
property that their diagonal elements are positive. While the proof of Theorem 1 does
not exploit this property, the more general results derived later in the paper depend
crucially on it.

In what follows we write M ≥ N whenever M −N is a nonnegative matrix. We
also write M > N whenever M − N is a positive matrix where by a positive matrix
we mean a matrix with all positive entries.

2.3.2. Products of stochastic matrices. Stochastic matrices have been ex-
tensively studied in the literature for a long time largely because of their connection
with Markov chains [25, 30, 14]. One problem studied which is of particular relevance
here is to describe the asymptotic behavior of products of n × n stochastic matrices
of the form

SjSj−1 · · ·S1

as j tends to infinity. This is equivalent to looking at the asymptotic behavior of all
solutions to the recursion equation

x(j + 1) = Sjx(j)(5)

since any solution x(j) can be written as

x(j) = (SjSj−1 · · ·S1)x(1), j ≥ 1.

One especially useful idea, which goes back at least to [11] and has been extensively
used [27], is to consider the behavior of the scalar-valued nonnegative function V (x) =
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�x� − 	x
 along solutions to (5), where x = [x1 x2 . . . xn ]
′

is a nonnegative n
vector and �x� and 	x
 are its largest and smallest elements, respectively. The key
observation is that for any n× n stochastic matrix S, the ith entry of Sx satisfies

n∑
j=1

sijxj ≥
n∑

j=1

sij	x
 = 	x


and

n∑
j=1

sijxj ≤
n∑

j=1

sij�x� = �x�.

Since these inequalities hold for all rows of Sx, it must be true that 	Sx
 ≥ 	x
, that
�Sx� ≤ �x�, and, as a consequence, that V (Sx) ≤ V (x). These inequalities and (5)
imply that the sequences

	x(1)
, 	x(2)
, . . . , �x(1)�, �x(2)�, . . . , V (x(1)), V (x(2)), . . .

are each monotone. Thus because each of these sequences is also bounded, the limits

lim
j→∞

	x(j)
, lim
j→∞

�x(j)�, lim
j→∞

V (x(j))

each exist. Note that whenever the limit of V (x(j)) is zero, all components of x(j)
together with 	x(j)
 and �x(j)� must tend to the same constant value.

There are various different ways in which one might approach the problem of
developing conditions under which x(j) converges to some scalar multiple of 1 or
equivalently SjSj−1 · · ·S1 converges to a constant matrix of the form 1c for some
constant row vector c. For example, since for any n× n stochastic matrix S, S1 = 1,
it must be true that span {1} is an S-invariant subspace for any such S. From this
and standard existence conditions for solutions to linear algebraic equation, it follows
that for any (n− 1) × n matrix P with kernel spanned by 1, the equation PS = S̃P
has unique solutions S̃, and, moreover, that

spectrum S = {1} ∪ spectrum S̃.(6)

As a consequence of the equation PSj = S̃jP, j ≥ 1, it can easily be seen that

S̃jS̃j−1 · · · S̃1P = PSjSj−1 · · ·S1.

Since P has full row rank and P1 = 0, the convergence of a product SjSj−1 · · ·S1

to a matrix of the form 1c is equivalent to convergence of the corresponding prod-
uct S̃jS̃j−1 · · · S̃1 to the zero matrix. There are two problems with this approach.

First, since P is not unique, neither are the S̃i. Second, it is not so clear how to go
about picking P to make tractable the problem of proving that the resulting product
S̃jS̃j−1 · · · S̃1 tends to zero. Tractability of the latter problem generally boils down

to choosing a norm for which the S̃i are all contractive. For example, one might seek
to choose a suitably weighted 2-norm. This is in essence the same thing as choosing
a common quadratic Lyapunov function. Although each S̃i can easily be shown to
be discrete-time stable with all eigenvalues of magnitude less than 1, it is known that
there are classes of Si which give rise to S̃i for which no such common Lyapunov
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matrix exists [18] regardless of the choice of P . Of course there are many other possi-
ble norms to choose from other than 2-norms. In the end, success with this approach
requires one to simultaneously choose both a suitable P and an appropriate norm with
respect to which the S̃i are all contractive. In what follows we adopt a slightly differ-
ent but closely related approach which ensures that we can work with what is perhaps
the most natural norm for this type of convergence problem, the infinity norm.

To proceed, we need a few more ideas concerned with nonnegative matrices.
For any nonnegative matrix R of any size, we write ||R|| for the largest of the row
sums of R. Note that ||R|| is the induced infinity norm of R and consequently is
submultiplicative. Note in addition that ||x|| = �x� for any nonnegative n vector x.
Moreover, ||M1|| ≤ ||M2|| if M1 ≤ M2. Observe that for any n× n stochastic matrix
S, ||S|| = 1 because the row sums of a stochastic matrix all equal 1. We extend the
domain of definitions of 	·
 and �·� to the class of all nonnegative n ×m matrix M
by letting 	M
 and �M� now denote the 1×m row vectors whose jth entries are the
smallest and largest elements, respectively, of the jth column of M . Note that 	M

is the largest 1 × m nonnegative row vector c for which M − 1c is nonnegative and
that �M� is the smallest nonnegative row vector c for which 1c−M is nonnegative.
Note in addition that for any n× n stochastic matrix S, one can write

S = 1	S
 + 	|S|
 and S = 1�S� − �|S|�,(7)

where 	|S|
 and �|S|� are nonnegative matrices defined by the equations

	|S|
 = S − 1	S
 and �|S|� = 1�S� − S,(8)

respectively. Moreover, the row sums of 	|S|
 are all equal to 1 − 	S
1 and the row
sums of �|S|� are all equal to �S�1 − 1, and so

||	|S|
|| = 1 − 	S
1 and ||�|S|�|| = �S�1 − 1.(9)

In what follows we will also be interested in the matrix

	�|S|�
 = 	|S|
 + �|S|�.(10)

This matrix satisfies

	�|S|�
 = 1(�S� − 	S
)(11)

because of (7).
For any infinite sequence of n × n stochastic matrices S1, S2, . . ., we henceforth

use the symbol 	· · ·Sj · · ·S1
 to denote the limit

	· · ·Sj · · ·S2S1
 = lim
j→∞

	Sj · · ·S2S1
.(12)

From the preceding discussion it is clear that for i ∈ {1, 2, . . . , n}, the limit 	· · ·Sj · · ·
S1
ei exists, where ei is the ith unit n-vector. Thus the limit 	· · ·Sj · · ·S1
 always
exists, and this is true even if the product Sj · · ·S2S1 itself does not have a limit. Two
situations can occur. Either the product Sj · · ·S2S1 converges to a rank one matrix
or it does not. In fact, even if Sj · · ·S2S1 does converge, it is quite possible that the
limit is not a rank one matrix. An example of this would be a sequence in which S1

is any stochastic matrix of rank greater than 1 and for all i > 1, Si = In×n. In what
follows we will develop sufficient conditions for Sj · · ·S2S1 to converge to a rank one
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matrix as j → ∞. Note that if this occurs, then the limit must be of the form 1c,
where c1 = 1 because stochastic matrices are closed under multiplication.

In what follows we will say that a matrix product SjSj−1 · · ·S1 converges to
1	· · ·Sj · · ·S1
 exponentially fast at a rate no slower than λ if there are nonnegative
constants b and λ with λ < 1, such that

||(Sj · · ·S1) − 1	· · ·Sj · · ·S2S1
|| ≤ bλj , j ≥ 1.(13)

The following proposition implies that such a stochastic matrix product will so con-
verge if 	|Sj · · ·S1|
 converges to 0.

Proposition 1. Let b̄ and λ be nonnegative numbers with λ < 1. Suppose that
S1, S2, . . . is an infinite sequence of n× n stochastic matrices for which

||	|Sj · · ·S1|
|| ≤ b̄λj , j ≥ 0.(14)

Then the matrix product Sj · · ·S2S1 converges to 1	· · ·Sj · · ·S1
 exponentially fast at
a rate no slower than λ.

The proof of Proposition 1 makes use of the first of the two inequalities which
follow.

Lemma 1. For any two n× n stochastic matrices S1 and S2,

	S2S1
 − 	S1
 ≤ �S2�	|S1|
,(15)

	|S2S1|
 ≤ 	|S2|
 	|S1|
.(16)

Proof of Lemma 1. Since S2S1 = S2(1	S1
 + 	|S1|
) = 1	S1
 + S2	|S1|
 and S2 =
1�S2� − �|S2|�, it must be true that S2S1 = 1(	S1
 + �S2�	|S1|
) − �|S2|� 	|S1|
. Thus
1(	S1
 + �S2�	|S1|
) − �|S2|� 	|S1|
 is nonnegative. But �S2S1� is the smallest nonnegative
row vector c for which 1c− S2S1 is nonnegative. Therefore

�S2S1� ≤ 	S1
 + �S2�	|S1|
.(17)

Moreover, 	S2S1
 ≤ �S2S1� because of the definitions of 	·
 and �·�. This and (17)
imply that 	S2S1
 ≤ 	S1
 + �S2�	|S1|
 and thus that (15) is true.

Since S2S1 = S2(1	S1
+ 	|S1|
) = 1	S1
+ S2	|S1|
 and S2 = 	S2
+ 	|S2|
, it must be
true that S2S1 = 1(	S1
 + 	S2
	|S1|
) + 	|S2|
 	|S1|
. Thus S2S1 − 1(	S1
 + 	S2
	|S1|
) is
nonnegative. But 	S2S1
 is the largest nonnegative row vector c for which S2S1 − 1c
is nonnegative, and so

S2S1 ≤ 1	S2S1
 + 	|S2|
 	|S1|
.(18)

Now it is also true that S2S1 = 1	S2S1
 + 	|S2S1|
. From this and (18) it follows that
(16) is true.

Proof of Proposition 1. Set Xj = Sj · · ·S1, j ≥ 1, and note that each Xj is a
stochastic matrix. In view of (15),

	Xj+1
 − 	Xj
 ≤ �Sj+1�	|Xj |
, j ≥ 1.

By hypothesis, ||	|Xj |
|| ≤ b̄λj , j ≥ 1. Moreover, ||�Sj+1�|| ≤ n because all entries in
Sj+1 are bounded above by 1. Therefore

||	Xj+1
 − 	Xj
|| ≤ nb̄λj , j ≥ 1.(19)
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Clearly

	Xj+i
 − 	Xj
 =

i∑
k=1

(	Xi+j+1−k
 − 	Xi+j−k
), i, j ≥ 1.

Thus, by the triangle inequality

||	Xj+i
 − 	Xj
|| ≤
i∑

k=1

||	Xi+j+1−k
 − 	Xi+j−k
||, i, j ≥ 1.

This and (19) imply that

||	Xj+i
 − 	Xj
|| ≤ nb̄

i∑
k=1

λ(i+j−k), i, j ≥ 1.

Now

i∑
k=1

λ(i+j−k) = λj
i∑

k=1

λ(i−k) = λj
i∑

q=1

λq−1 ≤ λj
∞∑
q=1

λq−1.

But λ < 1, and so

∞∑
q=1

λq−1 =
1

1 − λ
.

Therefore

||	Xi+j
 − 	Xj
|| ≤ nb̄
λj

1 − λ
, i, j ≥ 1.(20)

Set c = 	· · ·Sj · · ·S1
 and note that

||	Xj
−c|| = ||	Xj
−	Xi+j
+	Xi+j
−c|| ≤ ||	Xj
−	Xi+j
||+||	Xi+j
−c||, i, j ≥ 1.

In view of (20)

||	Xj
 − c|| ≤ nb̄
λj

1 − λ
+ ||	Xi+j
 − c||, i, j ≥ 1.

Since

lim
i→∞

||	Xi+j
 − c|| = 0

it must be true that

||	Xj
 − c|| ≤ nb̄
λj

1 − λ
, j ≥ 1.

But ||1(	Xj
 − c)|| = ||	Xj
 − c|| and Xj = Sj · · ·S1. Therefore

||1(	Sj · · ·S1
 − c)|| ≤ nb̄
λj

1 − λ
, j ≥ 1.(21)
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In view of (7)

Sj · · ·S1 = 1	Sj · · ·S1
 + 	|Sj · · ·S1|
, j ≥ 1.

Therefore

||(Sj · · ·S1) − 1c|| = ||1	Sj · · ·S1
 + 	|Sj · · ·S1|
 − 1c||

≤ ||1	Sj · · ·S1
 − 1c|| + ||	|Sj · · ·S1|
||, j ≥ 1.

From this, (14), and (21) it follows that

||Sj · · ·S1 − 1c|| ≤ b̄

(
1 +

n

1 − λ

)
λj , j ≥ 1,

and thus that (13) holds with b = b̄(1 + n
1−λ ).

2.3.3. Convergence. We are now in a position to make some statements about
the asymptotic behavior of a product of n×n stochastic matrices of the form SjSj−1

· · ·S1 as j tends to infinity. Note first that (16) generalizes to sequences of stochastic
matrices of any length. Thus

	|SjSj−1 · · ·S2S1|
 ≤ 	|Sj |
 	|Sj−1|
 · · · 	|S1|
.(22)

It is therefore clear that condition (14) of Proposition 1 will hold with b̄ = 1 if

||	|Sj |
 · · · 	|S1|
|| ≤ λj(23)

for some nonnegative number λ < 1. Because || · || is submultiplicative, this means
that a product of stochastic matrices Sj · · ·S1 will converge to a limit of the form 1c
for some constant row vector c if each of the matrices Si in the sequence S1, S2, . . .
satisfies the norm bound ||	|Si|
|| ≤ λ. We now develop a condition, tailored to our
application, for this to be so.

As a first step it is useful to characterize those stochastic matrices S for which
||	|S|
|| < 1. Note that this condition is equivalent to the requirement that the row sums
of 	|S|
 are less than 1. This, in turn, is equivalent to the requirement that 1	S
 �= 0
since 	|S|
 = S − 1	S
. Now 1	S
 �= 0 if and only if S has at least one nonzero column
since the indices of the nonzero columns of S are the same as the indices of the nonzero
columns of 	S
. Thus ||	|S|
|| < 1 if and only if S has at least one nonzero column. For
our purposes it proves to be especially useful to restate this condition in equivalent
graph theoretic terms. For this we need the following definition.

The graph of a stochastic matrix. For any n × n stochastic matrix S, let γ(S)
denote the graph G ∈ G whose adjacency matrix is the transpose of the matrix
obtained by replacing all of S’s nonzero entries with 1’s. The graph-theoretic condition
is as follows.

Lemma 2. A stochastic matrix S has a strongly rooted graph γ(S) if and only if

||	|S|
|| < 1.(24)

Proof. Let A be the adjacency matrix of γ(S). Since the positions of the nonzero
entries of S and A′ are the same, the ith column of S will be positive if and only if A’s
ith row is positive. Thus (23) will hold just in case A has a positive row. But strongly
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rooted graphs in G are precisely those graphs whose adjacency matrices have at least
one positive row. Therefore (23) will hold if and only if γ(S) is strongly rooted.

Lemma 2 can be used to prove the following.
Proposition 2. Let Ssr be any closed set of stochastic matrices which are all

the same size and whose graphs γ(S), S ∈ Ssr, are all strongly rooted. Then as
j → ∞, any product Sj · · ·S1 of matrices from Ssr converges exponentially fast to
1	· · ·Sj · · ·S1
 at a rate no slower than

λ = max
S∈Ssr

||	|S|
||,

where λ is a nonnegative constant satisfying λ < 1.
Proof of Proposition 2. In view of Lemma 2, ||	|S|
|| < 1, S ∈ Ssr. Because Ssr

is closed and bounded and ||	| · |
|| is continuous, λ < 1. Clearly ||	|Si|
|| ≤ λ, i ≥ 1,
and so (23) must hold for any sequence of matrices S1, S2, . . . from Ssr. Therefore
for any such sequence ||	|Sj · · ·S1|
|| ≤ λj , j ≥ 0. Thus by Proposition 1, the product
Π(j) = SjSj−1 · · ·S1 converges to 1	· · ·Sj · S1
 exponentially fast at a rate no slower
than λ.

Proof of Theorem 1. Let Fsr denote the set of flocking matrices with strongly
rooted graphs. Since Ssa is a finite set, so is the set of strongly rooted graphs in Gsa.
Therefore Fsr is closed. By assumption, F (t) ∈ Fsr, t ≥ 0. In view of Proposition 2,
the product F (t) · · ·F (0) converges exponentially fast to 1	· · ·F (t) · · ·F (0)
 at a rate
no slower than

λ = max
F∈Fsr

||	|F |
||.

But it is clear from (3) that θ(t) = F (t − 1) · · ·F (1)F (0)θ(0), t ≥ 1. Therefore (4)
holds with θss = 	· · ·F (t) · · ·F (0)
θ(0) and the convergence is exponential.

2.3.4. Convergence rate. Using (9) it is possible to calculate a worst case
value for the convergence rate λ used in the proof of Theorem 1. Fix F ∈ Fsr.
Because γ(F ) is strongly rooted, at least one vertex—say the kth—must be a root
with arcs to each other vertex. In the context of (1), this means that agent k must
be a neighbor of every agent. Thus θk must be in each sum in (1). Since each ni

in (1) is bounded above by n, this means that the smallest element in column k of
F is bounded below by 1

n . Since (9) asserts that ||	|F |
|| = 1 − 	F 
1, it must be true
that ||	|F |
|| ≤ 1 − 1

n . This holds for all F ∈ Fsr. Moreover, in the worst case when
F is strongly rooted at just one vertex and all vertices are neighbors of at least one
common vertex, ||	|F |
|| = 1 − 1

n . It follows that the worst case convergence rate is

max
F∈Fsr

||	|F |
|| = 1 − 1

n
.(25)

An example of a graph of a flocking matrix for which (25) holds is shown in Figure 1.

2.4. Rooted graphs. The proof of Theorem 1 depends crucially on the fact
that the graphs encountered along a trajectory of (3) are all strongly rooted. It is
natural to ask if this requirement can be relaxed and still have all agents’ headings
converge to a common value. The aim of this section is to show that this can indeed be
accomplished. To do this we need to have a meaningful way of “combining” sequences
of graphs so that only the combined graph need be strongly rooted but not necessarily
the individual graphs making up the combination. One possible notion of combination
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32

1

Fig. 1. Example.

of a sequence G1,G2, . . . ,Gk with the same vertex set V would be the graph with
vertex set V whose arc set is the union of the arc sets of the graphs in the sequence. It
turns out that because we are interested in sequences of graphs rather than mere sets
of graphs, a simple union is not quite the appropriate notion for our purposes because
a union does not take into account the order in which the graphs are encountered
along a trajectory. What is appropriate is a slightly more general notion which we
now define.

2.4.1. Composition of graphs. By the composition of a directed graph Gp ∈ G
with a directed graph Gq ∈ G, written Gq ◦ Gp, we mean the directed graph with the
vertex set {1, 2, . . . , n} and arc set defined in such a way so that (i, j) is an arc of the
composition just in case there is a vertex k such that (i, k) is an arc of Gp and (k, j)
is an arc of Gq. Thus (i, j) is an arc in Gq ◦ Gp if and only if i has an observer in Gp

which is also a neighbor of j in Gq. Note that G is closed under composition and that
composition is an associative binary operation; because of this, the definition extends
unambiguously to any finite sequence of directed graphs G1, G2, . . . ,Gk.

If we focus exclusively on graphs with self-arcs at all vertices, namely the graphs
in Gsa, more can be said. In this case the definition of composition implies that the
arcs of Gp and Gq are arcs of Gq ◦ Gp. The definition also implies in this case that
if Gp has a directed path from i to k and Gq has a directed path from k to j, then
Gq ◦ Gp has a directed path from i to j. Both of these implications are consequences
of the requirement that the vertices of the graphs in Gsa all have self-arcs. Note in
addition that Gsa is closed under composition. It is worth emphasizing that the union
of the arc sets of a sequence of graphs G1, G2, . . . ,Gk in Gsa must be contained in
the arc set of their composition. However, the converse is not true in general, and
it is for this reason that composition rather than union proves to be the more useful
concept for our purposes.

Suppose that Ap = [ aij(p) ] and Aq = [ aij(q) ] are the adjacency matrices of
Gp ∈ G and Gq ∈ G, respectively. Then the adjacency matrix of the composition
Gq ◦Gp must be the matrix obtained by replacing all nonzero elements in ApAq with
ones. This is because the ijth entry of ApAq, namely

n∑
k=1

aik(p)akj(q),

will be nonzero just in case there is at least one value of k for which both aik(p)
and akj(q) are nonzero. This of course is exactly the condition for the ijth element
of the adjacency matrix of the composition Gq ◦ Gp to be nonzero. Note that if S1

and S2 are n × n stochastic matrices for which γ(S1) = Gp and γ(S2) = Gq, then
the matrix which results by replacing by ones all nonzero entries in the stochastic
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matrix S2S1 must be the transpose of the adjacency matrix of Gq ◦ Gp. In view of
the definition of γ(·), it therefore must be true that γ(S2S1) = γ(S2) ◦ γ(S1). This
obviously generalizes to finite products of stochastic matrices.

Lemma 3. For any sequence of stochastic matrices S1, S2, . . . , Sj which are all
the same size,

γ(Sj · · ·S1) = γ(Sj) ◦ · · · ◦ γ(S1).

2.4.2. Compositions of rooted graphs. We now give several different condi-
tions under which the composition of a sequence of graphs is strongly rooted.

Proposition 3. Suppose n > 1 and let Gp1
,Gp2

, . . . ,Gpm
be a finite sequence of

rooted graphs in Gsa.
1. If m ≥ (n− 1)2, then Gpm ◦ Gpm−1 ◦ · · · ◦ Gp1 is strongly rooted.
2. If Gp1 ,Gp2 , . . . ,Gpm are all rooted at v and m ≥ n − 1, then Gpm ◦ Gpm−1

◦
· · · ◦ Gp1 is strongly rooted at v.

The requirement of assertion 2 above that all the graphs in the sequence be rooted
at a single vertex v is obviously more restrictive than the requirement of assertion 1
that all the graphs be rooted but not necessarily at the same vertex. The price for
the less restrictive assumption is that the bound on the number of graphs needed
in the more general case is much higher than the bound given in the case in which
all the graphs are rooted at v. It is probably true that the bound (n − 1)2 for the
more general case is too conservative, but this remains to be shown. The more special
case when all graphs share a common root is relevant to the leader-follower version of
the problem which will be discussed later in the paper. Proposition 3 will be proved
shortly.

Note that a strongly connected graph is the same as a graph which is rooted
at every vertex and that a complete graph is the same as a graph which is strongly
rooted at every vertex. In view of these observations and Proposition 3 we can state
the following proposition.

Proposition 4. Suppose n > 1 and let Gp1
,Gp2

, . . . ,Gpm
be a finite sequence

of strongly connected graphs in Gsa. If m ≥ n − 1, then Gpm ◦ Gpm−1
◦ · · · ◦ Gp1

is
complete.

To prove Proposition 3 we will need some more ideas. We say that a vertex v ∈ V
is an observer of a subset S ⊂ V in a graph G ∈ G if v is an observer of at least one
vertex in S. By the observer function of a graph G ∈ G, written α(G, · ), we mean the
function α(G, · ) : 2V → 2V which assigns to each subset S ⊂ V the subset of vertices
in V which are observers of S in G. Thus j ∈ α(G, i) just in case (i, j) ∈ A(G). Note
that if Gp ∈ G and Gq in Gsa, then

α(Gp,S) ⊂ α(Gq ◦ Gp,S), S ∈ 2V ,(26)

because Gq ∈ Gsa implies that the arcs in Gp are all arcs in Gq ◦ Gp. Observer
functions have the following important and easily proved property.

Lemma 4. For all Gp,Gq ∈ G and any nonempty subset S ⊂ V,

α(Gq, α(Gp,S)) = α(Gq ◦ Gp,S).(27)

Proof. Suppose first that i ∈ α(Gq, α(Gp,S)). Then (j, i) is an arc in Gq for some
j ∈ α(Gp,S). Hence (k, j) is an arc in Gp for some k ∈ S. In view of the definition of
composition, (k, i) is an arc in Gq ◦Gp, and so i ∈ α(Gq ◦Gp,S). Since this holds for
all i ∈ V, α(Gq, α(Gp,S)) ⊂ α(Gq ◦ Gp,S).
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For the reverse inclusion, fix i ∈ α(Gq ◦ Gp,S) in which case (k, i) is an arc in
Gq ◦ Gp for some k ∈ S. By definition of composition, there exists an j ∈ V such
that (k, j) is an arc in Gp and (j, i) is an arc in Gq. Thus j ∈ α(Gp,S). Therefore
i ∈ α(Gq, α(Gp,S)). Since this holds for all i ∈ V, α(Gq, α(Gp,S)) ⊃ α(Gq ◦ Gp,S).
Therefore (27) is true.

To proceed, let us note that each subset S ⊂ V induces a unique subgraph of G

with vertex set S and arc set A consisting of those arcs (i, j) of G for which both i and
j are vertices of S. This, together with the natural partial ordering of V by inclusion,
provides a corresponding partial ordering of G. Thus if S1 and S2 are subsets of V
and S1 ⊂ S2, then G1 ⊂ G2, where, for i ∈ {1, 2}, Gi is the subgraph of G induced
by Si. For any v ∈ V, there is a unique largest subgraph rooted at v, namely the
graph induced by the vertex set V(v) = {v}∪α(G, v)∪· · ·∪αn−1(G, v), where αi(G, ·)
denotes the composition of α(G, ·) with itself i times. We call this graph the rooted
graph generated by v. It is clear that V(v) is the smallest α(G, ·)-invariant subset of
V which contains v.

The proof of Proposition 3 depends on the following lemma.
Lemma 5. Let Gp and Gq be graphs in Gsa. If Gq is rooted at v and α(Gp, v) is

a strictly proper subset of V, then α(Gp, v) is also a strictly proper subset of α(Gq ◦
Gp, v).

Proof of Lemma 5. In general α(Gp, v) ⊂ α(Gq ◦ Gp, v) because of (26). Thus if
α(Gp, v) is not a strictly proper subset of α(Gq ◦Gp, v), then α(Gp, v) = α(Gq ◦Gp, v),
and so α(Gq ◦ Gp, v) ⊂ α(Gp, v). In view of (27), α(Gq ◦ Gp, v) = α(Gq, α(Gp, v)).
Therefore α(Gq, α(Gp, v)) ⊂ α(Gp, v). Moreover, v ∈ α(Gp, v) because v has a self-
arc in Gp. Thus α(Gp, v) is a strictly proper subset of V which contains v and is
α(Gq, ·)-invariant. But this is impossible because Gq is rooted at v.

Proof of Proposition 3. Assertion 2 will be proved first. Suppose that m ≥ n− 1
and that Gp1 ,Gp2

, . . . ,Gpm are all rooted at v. In view of (26), A(Gpk
◦ Gpk−1

◦
· · · ◦ Gp1) ⊂ A(Gpm ◦ Gpm−1 ◦ · · · ◦ Gp1) for any positive integer k ≤ m. Thus
Gpm ◦Gpm−1 ◦ · · · ◦Gp1 will be strongly rooted at v if there exists an integer k ≤ n−1
such that

α(Gpk
◦ Gpk−1

◦ · · · ◦ Gp1 , v) = V.(28)

It will now be shown that such an integer exists.
If α(Gp1 , v) = V, set k = 1, in which case (28) clearly holds. If α(Gp1 , v) �=

V, then let i > 1 be the greatest positive integer not exceeding n − 1 for which
α(Gpi−1 ◦ · · · ◦Gp1 , v) is a strictly proper subset of V. If i < n− 1, set k = i, in which
case (28) is clearly true. Therefore suppose i = n− 1; we will prove that this cannot
be so. Assuming that it is, α(Gpj−1 ◦ · · · ◦ Gp1 , v) must be a strictly proper subset of
V for j ∈ {2, 3, . . . , n−1}; by Lemma 5, α(Gpj−1 ◦ · · · ◦Gp1 , v) is also a strictly proper
subset of α(Gpj

◦ · · · ◦ Gp1
, v) for j ∈ {2, 3, . . . , n− 1}. In view of this and (26), each

containment in the ascending chain

α(Gp1 , v) ⊂ α(Gp2 ◦ Gp1 , v) ⊂ · · · ⊂ α(Gpn−1 ◦ · · · ◦ Gp1 , v)

is strict. Since α(Gp1 , v) has at least two vertices in it, and there are n vertices in V,
(28) must hold with k = n− 1. Thus assertion 2 is true.

To prove assertion 1, suppose that m ≥ (n− 1)2. Since there are n vertices in V,
the sequence p1, p2, . . . , pm must contain a subsequence q1, q2, . . . , qn−1 for which the
graphs Gq1 ,Gq2 , . . . ,Gqn−1 all have a common root. By assertion 2, Gqn−1 ◦ · · · ◦ Gq1

must be strongly rooted. But A(Gqn−1
◦ · · · ◦ Gq1) ⊂ A(Gpm

◦ Gpm−1
◦ · · · ◦ Gp1

)
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because Gq1 ,Gq2 , . . . ,Gqn−1 is a subsequence of Gp1
,Gp2

, . . . ,Gpm
and all graphs in

the sequence Gp1 ,Gp2 , . . . ,Gpm have self-arcs. Therefore Gpm ◦Gpm−1 ◦ · · · ◦Gp1 must
be strongly rooted.

Proposition 3 implies that every sufficiently long composition of graphs from a
given subset Ĝ ⊂ Gsa will be strongly rooted if each graph in Ĝ is rooted. The
converse is also true. To understand why, suppose to the contrary that it is not. In
this case there would have to be a graph G ∈ Ĝ, which is not rooted but for which
G

m is strongly rooted for m sufficiently large, where G
m is the m-fold composition

of G with itself. Thus α(Gm, v) = V, where v is a root of G
m. But via repeated

application of (27), α(Gm, v) = αm(G, v), where αm(G, ·) is the m-fold composition
of α(G, ·) with itself. Thus αm(G, v) = V. But this can occur only if G is rooted at
v because αm(G, v) is the set of vertices reachable from v along paths of length m.
Since this is a contradiction, G must be rooted. We summarize.

Proposition 5. Every possible sufficiently long composition of graphs from a
given subset Ĝ ⊂ Gsa is strongly rooted if and only if every graph in Ĝ is rooted.

2.4.3. Sarymsakov graphs. We now briefly discuss a class of graphs in G,
namely “Sarymsakov graphs,” whose corresponding stochastic matrices form products
which are known to converge to rank one matrices [25] even though the graphs in
question need not have self-arcs at all vertices. Sarymsakov graphs are defined as
follows.

First, let us agree to say that a vertex v ∈ V is a neighbor of a subset S ⊂ V in a
graph G ∈ G if v is a neighbor of at least one vertex in S. By a Sarymsakov graph we
mean a graph G ∈ G with the property that for each pair of nonempty subsets S1 and
S2 in V which have no neighbors in common, S1 ∪ S2 contains a smaller number of
vertices than does the set of neighbors of S1 ∪S2. Such seemingly obscure graphs are
so named because they are the graphs of an important class of nonnegative matrices
studied by Sarymsakov in [24]. In what follows we will prove that Sarymsakov graphs
are in fact rooted graphs. We will also prove that the class of rooted graphs we are
primarily interested in, namely those in Gsa, are Sarymsakov graphs.

It is possible to characterize Sarymsakov graphs a little more concisely using the
following concept. By the neighbor function of a graph G ∈ G, written β(G, · ), we
mean the function β(G, · ) : 2V → 2V which assigns to each subset S ⊂ V the subset
of vertices in V which are neighbors of S in G. Thus in terms of β, a Sarymsakov
graph is a graph G ∈ G with the property that for each pair of nonempty subsets S1

and S2 in V which have no neighbors in common, S1 ∪S2 contains fewer vertices than
does the set β(G,S1∪S2). Note that if G ∈ Gsa, the requirement that S1∪S2 contain
fewer vertices than β(G,S1 ∪S2) simplifies to the equivalent requirement that S1 ∪S2

be a strictly proper subset of β(G,S1 ∪ S2). This is because every vertex in G is a
neighbor of itself if G ∈ Gsa.

Proposition 6.

1. Each Sarymsakov graph in G is rooted.
2. Each rooted graph in Gsa is a Sarymsakov graph.

It follows that if we restrict attention exclusively to graphs in Gsa, then rooted
graphs and Sarymsakov graphs are one and the same.

In what follows βm(G, ·) denotes the m-fold composition of β(G, ·) with itself.
The proof of Proposition 6 depends on the following ideas.

Lemma 6. Let G ∈ G be a Sarymsakov graph. Let S be a nonempty subset of V
such that β(G,S) ⊂ S. Let v be any vertex in V. Then there exists a nonnegative
integer m ≤ n such that βm(G, v) ∩ S is nonempty.
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Proof. If v ∈ S, set m = 0. Suppose next that v �∈ S. Set T = {v}∪β(G, v)∪· · ·∪
βn−1(G, v) and note that βn(G, v) ⊂ T because G has n vertices. Since β(G, T ) =
β(G, v) ∪ β2(G, v) ∪ · · · ∪ βn(G, v), it must be true that β(G, T ) ⊂ T . Therefore

β(G, T ∪ S) ⊂ T ∪ S.(29)

Suppose β(G, T )∩β(G,S) is empty. Then because G is a Sarymsakov graph, T ∪S con-
tains fewer vertices than β(G, T ∪S). This contradicts (29), and so β(G, T )∩β(G,S)
is not empty. In view of the fact that β(G, T ) = β(G, v) ∪ β2(G, v) ∪ · · · ∪ βn(G, v),
it must therefore be true for some positive integer m ≤ n that βm(G, v) ∩ β(G,S) is
nonempty. But by assumption β(G,S) ⊂ S, and so βm(G, v)∩ S is nonempty.

Lemma 7. Let G ∈ G be rooted at r. Each nonempty subset S ⊂ V not containing
r is a strictly proper subset of S ∪ β(G,S).

Proof of Lemma 7. Let S ⊂ V be nonempty and not containing r. Pick v ∈ S.
Since G is rooted at r, there must be a path in G from r to v. Since r �∈ S there
must be a vertex x ∈ S which has a neighbor which is not in S. Thus there is a
vertex y ∈ β(G,S) which is not in S. This implies that S is a strictly proper subset
of S ∪ β(G,S).

By a maximal rooted subgraph of G we mean a subgraph G
∗ of G which is rooted

and which is not contained in any rooted subgraph of G other than itself. Graphs
in G may have one or more maximal rooted subgraphs. Clearly G

∗ = G just in case
G is rooted. Note that if R̂ is the set of all roots of a maximal rooted subgraph Ĝ,
then β(G, R̂) ⊂ R̂. For if this were not so, then it would be possible to find a vertex

x ∈ β(G, R̂) which is not in R̂. This would imply the existence of a path from x to

some root v̂ ∈ R̂; consequently the graph induced by the set of vertices along this
path together with R̂ would be rooted at x �∈ R̂ and would contain Ĝ as a strictly
proper subgraph. But this contradicts the hypothesis that Ĝ is maximal. Therefore
β(G, R̂) ⊂ R̂. Now suppose that Ĝ is any rooted subgraph in G. Suppose that Ĝ’s

set of roots R̂ satisfies β(G, R̂) ⊂ R̂. We claim that Ĝ must then be maximal. For if

this were not so, there would have to be a rooted graph G
∗ containing Ĝ as a strictly

proper subset. This, in turn, would imply the existence of a path from a root x∗ of G
∗

to a root v of Ĝ; consequently x∗ ∈ βi(G, R̂) for some i ≥ 1. But this is impossible

because R̂ is β(G, · ) invariant. Thus Ĝ is maximal. We summarize.
Lemma 8. A rooted subgraph of a graph G generated by any vertex v ∈ V is

maximal if and only if its set of roots is β(G, · )-invariant.
Proof of Proposition 6. Write β(·) for β(G, ·). To prove assertion 1, pick G ∈ G.

Let G
∗ be any maximal rooted subgraph of G and write R for its root set; in view of

Lemma 8, β(R) ⊂ R. Pick any v ∈ V. Then by Lemma 6, for some positive integer
m ≤ n, βm(v)∩R is nonempty. Pick z ∈ βm(v)∩R. Then there is a path from z to v
and z is a root of G

∗. But G
∗ is maximal, and so v must be a vertex of G

∗. Therefore
every vertex of G is a vertex of G

∗, which implies that G is rooted.
To prove assertion 2, let G ∈ Gsa be rooted at r. Pick any two nonempty subsets

S1,S2 of V which have no neighbors in common. If r �∈ S1 ∪S2, then S1 ∪S2 must be
a strictly proper subset of S1 ∪ S2 ∪ β(S1 ∪ S2) because of Lemma 7.

Suppose next that r ∈ S1 ∪ S2. Since G ∈ Gsa, Si ⊂ β(Si), i ∈ {1, 2}. Thus S1

and S2 must be disjoint because β(S1) and β(S2) are. Therefore r must be in either
S1 or S2 but not both. Suppose that r �∈ S1. Then S1 must be a strictly proper subset
of β(S1) because of Lemma 7. Since β(S1) and β(S2) are disjoint, S1 ∪ S2 must be a
strictly proper subset of β(S1∪S2). By the same reasoning, S1∪S2 must be a strictly
proper subset of β(S1 ∪ S2) if r �∈ S2. Thus in conclusion S1 ∪ S2 must be a strictly
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proper subset of β(S1 ∪S2) whether or not r is in S1 ∪S2. Since this conclusion holds
for all such S1 and S2 and G ∈ Gsa, G must be a Sarymsakov graph.

2.5. Neighbor-shared graphs. There is a different assumption which one can
make about a sequence of graphs from G which also ensures that the sequence’s
composition is strongly rooted. For this we need the concept of a “neighbor-shared
graph.” Let us call G ∈ G neighbor-shared if each set of two distinct vertices shares
a common neighbor. Suppose that G is neighbor-shared. Then both vertices in
any given pair of vertices are clearly reachable from a single vertex along directed
paths. Suppose that for some integer k ∈ {2, 3, . . . , n − 1}, each subset of k vertices
{v1, v2, . . . , vk} has the property that every vertex in {v1, v2, . . . , vk} is reachable from
a single vertex. Let {v1, v2, . . . , vk} be any such set and v be a vertex from which all
k vertices in the set can be reached. Let w be any vertex not in {v1, v2, . . . , vk}. Since
v and w can be reached from a common vertex y, every vertex in {v1, v2, . . . , vk, w}
can be reached from y. This proves that each subset of k+1 vertices has the property
that every vertex in the subset is reachable from a single vertex. By induction we can
therefore conclude that every vertex in G is reachable from a single vertex. We have
proved the following proposition.

Proposition 7. Each neighbor-shared graph in G is rooted.
It is worth noting that although neighbor-shared graphs are rooted, the converse

is not necessarily true. The reader may wish to construct a three-vertex example
which illustrates this. Although rooted graphs in Gsa need not be neighbor-shared, it
turns out that the composition of any n− 1 rooted graphs in Gsa is.

Proposition 8. The composition of any set of m ≥ n − 1 rooted graphs in Gsa

is neighbor-shared.
This result is equivalent to Theorem 5.1 of [31], which was independently derived.
To prove Proposition 8 we need some more ideas. By the reverse graph of G ∈ G,

written G
′, we mean the graph in G which results when the directions of all arcs in

G are reversed. It is clear that Gsa is closed under the reverse operation and that if
A is the adjacency matrix of G, then A′ is the adjacency matrix of G

′. It is also clear
that (Gp ◦ Gq)

′ = G
′
q ◦ G

′
p, p, q ∈ P, and that

α(G′,S) = β(G,S), S ∈ 2V .(30)

Lemma 9. For all Gp,Gq ∈ G and any nonempty subset S ⊂ V,

β(Gq, β(Gp,S)) = β(Gp ◦ Gq,S).(31)

Proof of Lemma 9. In view of (27), α(G′
p, α(G′

q,S)) = α(G′
p◦G

′
q,S). But G

′
p◦G

′
q =

(Gq ◦ Gp)
′, and so α(G′

p, α(G′
q,S)) = α((Gq ◦ Gp)

′,S). Therefore β(Gp, β(Gq,S)) =
β(Gq ◦ Gp),S) because of (30).

Lemma 10. Let Gp and Gq be rooted graphs in Gsa. If u and v are distinct
vertices in V for which

β(Gq, {u, v}) = β(Gq ◦ Gp, {u, v}),(32)

then u and v have a common neighbor in Gq ◦ Gp.
Proof. β(Gq, u) and β(Gq, v) are nonempty because u and v are neighbors of

themselves. Suppose u and v do not have a common neighbor in Gq ◦ Gp. Then
β(Gq ◦ Gp, u) and β(Gq ◦ Gp, v) are disjoint. But β(Gq ◦ Gp, u) = β(Gp, β(Gq, u))
and β(Gq ◦ Gp, v) = β(Gp, β(Gq, v)) because of (31). Therefore β(Gp, β(Gq, u)) and
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β(Gp, β(Gq, v)) are disjoint. But Gp is rooted and thus a Sarymsakov graph because
of Proposition 6. Thus β(Gq, {u, v}) is a strictly proper subset of β(Gq, {u, v}) ∪
β(Gp, β(Gq, {u, v}). But β(Gq, {u, v}) ⊂ β(Gp, β(Gq, {u, v}) because all vertices in
Gq are neighbors of themselves and β(Gp, β(Gq, {u, v}) = β(Gq ◦ Gp, {u, v}) because
of (31). Therefore β(Gq, {u, v}) is a strictly proper subset of β(Gq ◦Gp, {u, v}). This
contradicts (32), and so u and v have a common neighbor in Gq ◦ Gp.

Proof of Proposition 8. Let u and v be distinct vertices in V. Let Gp1
,Gp2 ,

. . . ,Gpn−1
be a sequence of rooted graphs in Gsa. Since A(Gpn−1

◦ · · · ◦ Gpn−i
) ⊂

A(Gpn−1 ◦ · · · ◦ Gpn−(i+1)
) for i ∈ {1, 2, . . . , n − 2}, it must be true that the Gp yield

the ascending chain

β(Gn−1, {u, v}) ⊂ β(Gpn−1 ◦ Gpn−2, {u, v}) ⊂ · · · ⊂ β(Gpn−1 ◦ · · · ◦ Gp2 ◦ Gp1 , {u, v}).

Because there are n vertices in V, this chain must converge for some i < n− 1, which
means that

β(Gpn−1 ◦ · · · ◦ Gpn−i , {u, v}) = β(Gpn−1 ◦ · · · ◦ Gpn−i
◦ Gpn−(i+1)

, {u, v}).

This and Lemma 10 imply that u and v have a common neighbor in Gpn−1
◦ · · · ◦

Gpn−i and thus in Gpn−1
◦ · · · ◦ Gp2

◦ Gp1
. Since this is true for all distinct u and v,

Gpn−1 ◦ · · · ◦ Gp2 ◦ Gp1 is a neighbor-shared graph.
If we restrict attention to those rooted graphs in Gsa which are strongly connected,

we can obtain a neighbor-shared graph by composing a smaller number of rooted
graphs than the one claimed in Proposition 8.

Proposition 9. Let q be the integer quotient of n divided by 2. The composition
of any set of m ≥ q strongly connected graphs in Gsa is neighbor-shared.

Proof of Proposition 9. Let k < n be a positive integer and let v be any vertex
in V. Let Gp1 ,Gp2 , . . . ,Gpk

be a sequence of strongly connected graphs in Gsa. Since
each vertex of a strongly connected graph must be a root, v must be a root of each
Gpi . Note that the Gpi yield the ascending chain

{v} ⊂ β(Gpk
, {v}) ⊂ β(Gpk

◦ Gpk−1
, {v}) ⊂ · · · ⊂ β(Gpk

◦ · · · ◦ Gp2
◦ Gp1

, {v})

because A(Gpk
◦ · · · ◦ Gpk−(i−1)

) ⊂ A(Gpk
◦ · · · ◦ Gpk−i

) for i ∈ {1, 2, . . . , k − 1}.
Moreover, since k < n and v is a root of each Gpk

◦ · · · ◦ Gpk−(i−1)
, i ∈ {1, 2, . . . , k},

it must be true for each such i that β(Gpk
◦ · · · ◦ Gpk−(i−1)

, v) contains at least i + 1
vertices. In particular β(Gpk

◦ · · · ◦ Gp1 , v) contains at least k + 1 vertices.
Set k = q and let v1 and v2 be any pair of distinct vertices in V. Then there

must be at least q + 1 vertices in β(Gpq ◦ · · · ◦ Gp2 ◦ Gp1 , {v1}) and q + 1 vertices in
β(Gpq ◦ · · · ◦ Gp2 ◦ Gp1 , {v2}). But 2(q + 1) > n because of the definition of q, and
so β(Gpq ◦ · · · ◦ Gp2 ◦ Gp1 , {v1}) andβ(Gpq ◦ · · · ◦ Gp2 ◦ Gp1 , {v2}) must have at least
one vertex in common. Since this is true for each pair of distinct vertices v1, v2 ∈ V,
Gpq ◦ · · · ◦ G2 ◦ G1 must be neighbor-shared.

Lemma 7 and Proposition 3 imply that any composition of (n − 1)2 neighbor-
shared graphs in Gsa is strongly rooted. The following proposition asserts that the
composition need only consist of (n− 1) neighbor-shared graphs and, moreover, that
the graphs need only be in G and not necessarily in Gsa.

Proposition 10. The composition of any set of m ≥ n − 1 neighbor-shared
graphs in G is strongly rooted.

Note that Propositions 8 and 10 imply the first assertion of Proposition 3.
To prove Proposition 10 we need a few more ideas. For any integer 1 < k ≤ n,

we say that a graph G ∈ G is k neighbor-shared if each set of k distinct vertices shares
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a common neighbor. Thus a neighbor-shared graph and a 2 neighbor-shared graph
are one and the same. Clearly an n neighbor-shared graph is strongly rooted at the
common neighbor of all n vertices.

Lemma 11. If Gp ∈ G is a neighbor-shared graph and Gq ∈ G is a k neighbor-
shared graph with k < n, then Gq ◦ Gp is a (k + 1) neighbor-shared graph.

Proof. Let v1, v2, . . . , vk+1 be any distinct vertices in V. Since Gq is a k neighbor-
shared graph, the vertices v1, v2, . . . , vk share a common neighbor u1 in Gq and the
vertices v2, v3, . . . , vk+1 share a common neighbor u2 in Gq as well. Moreover, since
Gp is a neighbor-shared graph, u1 and u2 share a common neighbor w in Gp. It follows
from the definition of composition that v1, v2, . . . , vk have w as a neighbor in Gq ◦Gp

as do v2, v3, . . . , vk+1. Therefore v1, v2, . . . , vk+1 have w as a neighbor in Gq ◦ Gp.
Since this must be true for any set of k + 1 vertices in Gq ◦ Gp, Gq ◦ Gp must be a
(k + 1) neighbor-shared graph as claimed.

Proof of Proposition 10. The preceding lemma implies that the composition of
any 2 neighbor-shared graphs is 3 neighbor-shared. From this and induction it follows
that for m < n, the composition of m neighbor-shared graphs is (m + 1) neighbor-
shared. Thus the composition of (n− 1) neighbor-shared graphs is n neighbor-shared
and consequently strongly rooted.

2.6. Convergence. We are now in a position to significantly relax the conditions
under which the conclusion of Theorem 1 holds. Towards this end, recall that each
flocking matrix F is row stochastic. Moreover, because each vertex of each F ’s graph
γ(F ) has a self-arc, the F have the additional property that their diagonal elements
are all nonzero. Let S denote the set of all n × n row stochastic matrices whose
diagonal elements are all positive. S is closed under multiplication because the class
of all n × n stochastic matrices is closed under multiplication and because the class
of n× n nonnegative matrices with positive diagonals is also.

Theorem 2. Let θ(0) be fixed. For any trajectory of the system (3) along which
each graph in the sequence of neighbor graphs N(0), N(1), . . . is rooted, there is a
constant steady state heading θss for which

lim
t→∞

θ(t) = θss1,(33)

where the limit is approached exponentially fast.
The theorem says that a unique heading is achieved asymptotically along any

trajectory on which all neighbor graphs are rooted. It is possible to deduce an explicit
convergence rate for the situation addressed by this theorem [8, 7]. The theorem’s
proof relies on the following generalization of Proposition 2. The proposition exploits
the fact that any composition of sufficiently many rooted graphs in Gsa is strongly
rooted (cf. Proposition 3).

Proposition 11. Let Sr be any closed set of n×n stochastic matrices with rooted
graphs in Gsa. There exists an integer m such that the graph of the product of every
set of m matrices from Sr is strongly rooted. Let m be any such integer and write
Sm
r for the set of all such matrix products. Then as j → ∞, any product Sj · · ·S1 of

matrices from Sr converges exponentially fast to 1	· · ·Sj · · ·S1
 at a rate no slower
than

λ =

(
max
S∈Sm

r

||	|S|
||
) 1

m

,

where λ < 1.
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Proof of Proposition 11. By assumption, each graph γ(S), S ∈ Sr, is in Gsa and is
rooted. In view of Proposition 3, γ(Sq) ◦ · · · ◦ γ(S1) is strongly rooted for every list of
q matrices {S1, S2, . . . , Sq} from Sr, provided q ≥ (n− 1)2. But γ(Sq) ◦ · · · ◦ γ(S1) =
γ(Sq · · ·S1) because of Lemma 3. Therefore γ(Sq · · ·S1) is strongly rooted for all
products Sq · · ·S1, where each Si ∈ Sr. Thus m could be taken as q, which establishes
the existence of such an integer.

Now any product Sj · · ·S1 of matrices in Sr can be written as Sj · · ·S1 = S̄(j)S̄k

· · · S̄1, where S̄i = Sim · · ·S(i−1)m+1, 1 ≤ i ≤ k, is a product in Sm
r , S̄(j) =

Sj · · ·S(km+1), and k is the integer quotient of j divided by m. In view of Propo-
sition 2, S̄k · · · S̄1 must converge to 1	· · · S̄k · · · S̄1
 exponentially fast as k → ∞ at a
rate no slower than λ̄, where

λ̄ = max
S̄∈Sm

r

||	|S̄|
||.

But S̄(j) is a product of at most m stochastic matrices, and so it is a bounded
function of j. It follows that the product SjSj−1 · · ·S1 must converge to 1	· · ·Sj · S1

exponentially fast at a rate no slower than λ = λ̄

1
m .

The proof of Proposition 11 can also be applied to any closed subset Sns ⊂ S
of stochastic matrices with neighbor-shared graphs. In this case, one would define
m = n − 1 because of Proposition 10. Similarly, the proof also applies to any closed
subset of stochastic matrices whose graphs share a common root; in this case one
would define m = n− 1 because of the first assertion of Proposition 3.

Proof of Theorem 2. Let Fr denote the set of flocking matrices with rooted graphs.
Since Gsa is a finite set, so is the set of rooted graphs in Gsa. Therefore Fr is closed.
By assumption, F (t) ∈ Fr, t ≥ 0. In view of Proposition 11, the product F (t) · · ·F (0)
converges exponentially fast to 1	· · ·F (t) · · ·F (0)
 at a rate no slower than

λ =

(
max
S∈Fm

r

||	|S|
||
) 1

m

,

where m = (n − 1)2 and Fm
r is the finite set of all m-term flocking matrix products

of the form Fm · · ·F1 with each Fi ∈ Fr. But it is clear from (3) that θ(t) = F (t −
1) · · ·F (1)F (0)θ(0), t ≥ 1. Therefore (33) holds with θss = 	· · ·F (t) · · ·F (0)
θ(0) and
the convergence is exponential.

The proof of Theorem 2 also applies to the case when all of the N(t), t ≥ 0, are
neighbor-shared. In this case, one would define m = n− 1 because of Proposition 10.
By similar reasoning, the proof also applies to the case when all of the N(t), t ≥ 0,
shared a common root; one would also define m = n− 1 for this case because of the
first assertion of Proposition 3.

2.7. Jointly rooted sets of graphs. It is possible to relax further still the
conditions under which the conclusion of Theorem 1 holds. Towards this end, let us
agree to say that a finite sequence of directed graphs Gp1 , Gp2 , . . . ,Gpk

in G is jointly
rooted if the composition Gpk

◦ Gpk−1
◦ · · · ◦ Gp1 is rooted.

Note that since the arc sets of any graphs Gp,Gq ∈ Gsa are contained in the arc set
of any composed graph Gq◦G◦Gp, G ∈ Gsa, it must be true that if Gp1

, Gp2
, . . . ,Gpk

is
a jointly rooted sequence in Gsa, then so is Gq,Gp1

, Gp2
, . . . ,Gpk

,Gp. In other words,
a jointly rooted sequence of graphs in Gsa remain jointly rooted if additional graphs
from Gsa are added to either end of the sequence.

There is an analogous concept for neighbor-shared graphs. We say that a finite
sequence of directed graphs Gp1 , Gp2 , . . . ,Gpk

from G is jointly neighbor-shared if the
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composition Gpk
◦Gpk−1

◦· · ·◦Gp1
is a neighbor-shared graph. Jointly neighbor-shared

sequences of graphs from Gsa remain jointly neighbor-shared if additional graphs from
Gsa are added to either end of the sequence. The reason for this is the same as for
the case of jointly rooted sequences. Although the discussion which follows is just for
the case of jointly rooted graphs, the material covered extends in the obvious way to
the case of jointly neighbor-shared graphs.

In what follows we will say that an infinite sequence of graphs Gp1
,Gp2 , . . . in G

is repeatedly jointly rooted if there is a positive integer q for which each finite sequence
Gpq(k−1)+1

, . . . ,Gpqk
, k ≥ 1, is jointly rooted. If such an integer exists, we sometimes

say that Gp1 ,Gp2 , . . . is repeatedly jointly rooted by subsequences of length q. We are
now in a position to generalize Proposition 11.

Proposition 12. Let S̄ be any closed set of stochastic matrices with graphs
in Gsa. Suppose that S1, S2, . . . is an infinite sequence of matrices from S̄ whose
corresponding sequence of graphs γ(S1), γ(S2), . . . is repeatedly jointly rooted by sub-
sequences of length q. Suppose that the set of all products of q matrices from S̄ with
rooted graphs, written S̄(q), is closed. There exists an integer m such that the product
of every set of m matrices from S̄(q) is strongly rooted. Let m be any such integer and
write (S̄(q))m for the set of all such matrix products. Then as j → ∞, the product
Sj · · ·S1 converges exponentially fast to 1	· · ·Sj · · ·S1
 at a rate no slower than

λ =

(
max

S∈(S̄(q))m
||	|S|
||

) 1
mq

,

where λ < 1.
It is worth pointing out that the assumption that S̄(q) is closed is not necessarily

implied by the assumption that S̄ is closed. For example, if S̄ is the set of all 2 × 2
stochastic matrices whose diagonal elements are no smaller than some positive number
α < 1, then S̄(2) cannot be closed even though S̄ is; this is because there are matrices
in S̄(2) which are arbitrarily close (in the induced infinity norm) to the 2× 2 identity
which, in turn, is not in S̄(2). There are at least three different situations where S̄(q)
turns out to be closed. The first is when S̄ is a finite set, as is the case when S̄ is all
n × n flocking matrices; in this case it is obvious that for any q ≥ 1, S̄(q) is closed
because it is also a finite set.

The second situation arises when the simple average rule (1) is replaced by a
convex combination rule as was done in [3]. In this case, the set S̄ turns out to be
all n × n stochastic matrices whose diagonal entries are nonzero and whose nonzero
entries (on the diagonal or not) are all underbounded by a positive number α < 1.
In this case it is easy to see that for each graph G ∈ Gsa, the subset S̄(G) of S ∈ S̄
for which γ(S) = G is closed. Thus for any pair of graphs G1,G2 ∈ Gsa, the subset
of products S2S1 such that S1 ∈ S̄(G1) and S2 ∈ S̄(G2) is also closed. Since S̄(2) is
the union of a finite number of sets of products of this type, namely those for which
the pairs (G1,G2) have rooted compositions G2 ◦ G1, it must be that S̄(2) is closed.
Continuing this reasoning, one can conclude that for any integer q > 0, S̄(q) is closed
as well.

The third situation in which S̄(q) turns out to be compact is considerably more
complicated and arises in connection with an asynchronous version of the flocking
problem we have been studying. In this case, the graphs of the matrices in S̄ do not
have self-arcs at all vertices. We refer the reader to [6] for details.

Proof of Proposition 12. Since γ(S1), γ(S2), . . . is repeatedly jointly rooted by
subsequences of length q, for each k ≥ 1, the subsequence γ(Sq(k−1)+1), . . . , γ(Sqk)
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is jointly rooted. For k ≥ 1 define S̄k = Sqk · · ·Sq(k−1)+1. By Lemma 3, γ(Sqk · · ·
Sq(k−1)+1) = γ(Sqk) ◦ · · · ◦ γ(Sq(k−1)+1), k ≥ 1. Therefore γ(S̄k) is rooted for k ≥ 1.
Thus each such S̄k is in the closed set S̄(q).

By Proposition 11, there exists an integer m such that the graph of the product
of every set of m matrices from S̄(q) is strongly rooted. Moreover, since each S̄k ∈
S̄(q), Proposition 11 also implies that k → ∞, and the product S̄k · · · S̄1 converges
exponentially fast to 1	· · · S̄k · · · S̄1
 at a rate no slower than

λ̄ =

(
max

S∈(S̄(q))m
||	|S|
||

) 1
m

,

where λ̄ < 1.
Now the product Sj · · ·S1 can be written as

Sj · · ·S1 = Ŝ(j)S̄k · · · S̄1,

where k is the integer quotient of j divided by mq and Ŝ(j) is the identity if mq is a

factor of j or Ŝ(j) = Sj · · ·S(kmq+1) if it is not. But Ŝ(j) is a product of at most mq
stochastic matrices, and so it is a bounded function of j. It follows that the product
SjSj−1 · · ·S1 must converge to 1	· · ·Sj · S1
 exponentially fast at a rate no slower

than λ = λ̄
1

mq .
We are now in a position to apply Proposition 12 to leaderless coordination.
Theorem 3. Let θ(0) be fixed. For any trajectory of the system (3) along which

each graph in the sequence of neighbor graphs N(0), N(1), . . . is repeatedly jointly
rooted, there is a constant steady state heading θss for which

lim
t→∞

θ(t) = θss1,(34)

where the limit is approached exponentially fast.
Proof of Theorem 3. By hypothesis, the sequence of graphs γ(F (0)), γ(F (1)), . . .

is repeatedly jointly rooted. Thus there is an integer q for which the sequence is
repeatedly jointly rooted by subsequences of length q. Since the set of n× n flocking
matrices F is finite, so is the set of all products of q flocking matrices with rooted
graphs, namely F(q). Therefore F(q) is closed. Moreover, if m = (n − 1)2, every
product of m matrices from F(q) is strongly rooted. It follows from Proposition 12
that the product F (t) · · ·F (1)F (0) converges to 1	· · ·F (t) · · ·F (1)F (0)
 exponentially
fast as t → ∞ at a rate no slower than

λ =

(
max

S∈(F(q))m
||	|S|
||

) 1
mq

,

where m = (n−1)2, λ < 1, and (F(q))m is the closed set of all products of m matrices
from F(q) . But it is clear from (3) that

θ(t) = F (t− 1) · · ·F (1)F (0)θ(0), t ≥ 1.

Therefore (34) holds with θss = 	· · ·Fσ(t) · · ·Fσ(0)
θ(0) and the convergence is expo-
nential.

It is possible to compare Theorem 3 with similar results derived in [19, 22]. To do
this it is necessary to introduce a few concepts. By the union G1 ∪G2 of two directed
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graphs G1 and G2 with the same vertex set V we mean the graph whose vertex set is
V and whose arc set is the union of the arc sets of G1 and G2. The definition extends
in the obvious way to finite sets of directed graphs with the same vertex set. Let
us agree to say that a finite set of graphs {Gp1 , Gp2 , . . . ,Gpk

} with the same vertex
set is collectively rooted if the union of the graphs in the set is a rooted graph. In
parallel with the notion of repeatedly jointly rooted, we say that an infinite sequence
of graphs Gp1

,Gp2 , . . . in Gsa is repeatedly collectively rooted if there is a positive
integer q for which each finite set Gpq(k−1)+1

, . . . ,Gpqk
, k ≥ 1 is collectively rooted.

One of the main contributions of [19] is to prove that the conclusions of Theorem 3
hold if the theorem’s hypothesis is replaced by the hypothesis that the sequence of
graphs Gσ(0),Gσ(1), . . . is repeatedly collectively rooted. The two hypotheses prove
to be equivalent. The reason this is so can be explained as follows.

Note first that because all graphs in Gsa have self-arcs, each arc (i, j) in the union
G2 ∪G1 of two graphs G1,G2 in Gsa is an arc in the composition G2 ◦G1. While the
converse is not true, the definition of composition does imply that for each arc (i, j)
in the composition G2 ◦ G1 there is a path in the union G2 ∪ G1 of length at most
two between i and j. More generally, simple induction proves that if (i, j) is an arc
in the composition of q graphs from Gsa, then the union of the same q graphs must
contain a path of length at most q from i to j. These observations clearly imply that
a sequence of q graphs Gp1

, Gp2
, . . . ,Gpq

in Gsa is jointly rooted if and only if the
set of graphs {Gp1 , Gp2 , . . . ,Gpq} is collectively rooted. It follows that a sequence
of graphs in Gsa is repeatedly jointly rooted if and only if the set of graphs in the
sequence is collectively jointly rooted.

Although Theorem 3 and the main result of [19] are equivalent, the difference
between results based on unions and results based on compositions begins to emerge,
when one looks deeper into the convergence question, especially when issues of con-
vergence rate are taken into consideration. For example, if πu(m,n) were the number
of m term sequences of graphs in Gsa whose unions are strongly rooted, and πc(m,n)
were the number of m-term sequences of graphs in Gsa whose compositions are strongly
rooted, then it is easy to see that the ratio ρ(m,n) = πc(m,n)/πu(m,n) would always
be greater than 1. In fact, ρ(2, 3) = 1.04 and ρ(2, 4) = 1.96. Moreover, probabilistic
experiments suggest that this ratio can be as large as 18, 181 for m = 2 and n = 50.
One would expect ρ(m,n) to increase not only with increasing n but also with in-
creasing m. One would also expect similar comparisons for neighbor-shared graphs
rather than strongly rooted graphs. Interestingly, preliminary experimental results
suggest that this is not the case, but more work needs to be done to understand why
this is so. Like strongly rooted graphs, neighbor-shared graphs also play a key role in
determining convergence rates [7].

3. Symmetric neighbor relations. It is natural to call a graph in G symmetric
if for each pair of vertices i and j for which j is a neighbor of i, i is also a neighbor
of j. Note that G is symmetric if and only if its adjacency matrix is symmetric. It
is worth noting that for symmetric graphs, the properties of rooted and rooted at
v are both equivalent to the property that the graph is strongly connected. Within
the class of symmetric graphs, neighbor-shared graphs and strongly rooted graphs
are also strongly connected graphs, but in neither case is the converse true. It is
possible to represent a symmetric directed graph G with an undirected graph G

s in
which each self-arc is replaced with an undirected edge and each pair of directed arcs
(i, j) and (j, i) for distinct vertices is replaced with an undirected edge between i
and j. Notions of strongly rooted and neighbor-shared extend in the obvious way
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to undirected graphs. An undirected graph is said to be connected if there is an
undirected path between each pair of vertices. Thus a strongly connected, directed
graph which is symmetric is in essence the same as a connected, undirected graph.
Undirected graphs are applicable when the sensing radii ri of all agents are the same.
It was the symmetric version of the flocking problem which Vicsek addressed in [29]
and which was analyzed in [17] using undirected graphs.

Let Gs and Gs
sa denote the subsets of symmetric graphs in G and Gsa, respec-

tively. Simple examples show that neither Gs nor Gs
sa is closed under composition. In

particular, composition of two symmetric directed graphs in G or Gsa is not typically
symmetric. On the other hand, the union is. It is clear that both Gs and Gs

sa are
closed under the union operation. It is worth emphasizing that union and composi-
tion are really quite different operations. For example, as we have already seen with
Proposition 4, the composition of any n− 1 strongly connected graphs, symmetric or
not, is always complete. On the other hand, the union of n − 1 strongly connected
graphs is not necessarily complete. In terms of undirected graphs, it is simply not
true that the union of n− 1 undirected graphs with vertex set V is complete, even if
each graph in the union has self-loops at each vertex. As noted before, the root cause
of the difference between union and composition stems from the fact that the union
and composition of two graphs in G have different arc sets—and in the case of graphs
from Gsa, the arc set of the union is always contained in the arc set of the composition
but not conversely.

In [17] use is made of the notion of a “jointly connected set of graphs.” Specifically,
a set of undirected graphs with vertex set V is jointly connected if the union of the
graphs in the collection is a connected graph. The notion of jointly connected also
applies to directed graphs in which case the collection is jointly connected if the union
is strongly connected. In what follows we will say that an infinite sequence of graphs
Gp1 ,Gp2 , . . . in Gsa is repeatedly jointly connected if there is a positive integer m for
which each finite sequence Gpm(k−1)+1

, . . . ,Gpmk
, k ≥ 1, is jointly connected. The

main result of [17] is, in essence, a corollary to Theorem 3.

Corollary 1. Let θ(0) be fixed. For any trajectory of the system (3) along which
each graph in the sequence of symmetric neighbor graphs N(0), N(1), . . . is repeatedly
jointly connected, there is a constant steady state heading θss for which

lim
t→∞

θ(t) = θss1,(35)

where the limit is approached exponentially fast.

4. Concluding remarks. The main goal of this paper has been to establish
a number of basic properties of compositions of directed graphs which are useful in
explaining how a consensus is achieved under various conditions in a dynamically
changing environment. The paper brings together in one place a number of results
scattered throughout the literature and at the same time presents new results con-
cerned with compositions of graphs as well as graphical interpretations of several spe-
cially structured stochastic matrices appropriate to nonhomogeneous Markov chains.

In a sequel to this paper [7], we consider a modified version of the Vicsek con-
sensus problem in which integer-valued delays occur in sensing the values of headings
which are available to agents. In keeping with our thesis that such problems can be
conveniently formulated and solved using graphs and graph operations, we analyze
the sensing delay problem from mainly a graph-theoretic point of view using the tools
developed in this paper. In [7] we also consider another modified version of the Vicsek
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problem in which each agent independently updates its heading at times determined
by its own clock. We do not assume that the groups’ clocks are synchronized to-
gether or that the times any one agent updates its heading are evenly spaced. Using
graph-theoretic concepts from this paper we show in [7] that for both versions of the
problem considered, the conditions under which a consensus is achieved are essentially
the same as in the synchronized, delay-free case addressed here.

A number of questions are suggested by this work. For example, it would be
interesting to have a complete characterization of those rooted graphs which are of
Sarymaskov type. It would also be of interest to have convergence results for more
general versions of the asynchronous consensus problem in which heading transitions
occur continuously. Extensions of these results to more realistic settings such as the
one considered in [26] would also be useful.
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