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Abstract—In this paper, multi-agent systems minimizing a sum
of objective functions, where each component is only known to a
particular node, is considered for continuous-time dynamics with
time-varying interconnection topologies. Assuming that each node
can observe a convex solution set of its optimization component,
and the intersection of all such sets is nonempty, the considered
optimization problem is converted to an intersection computation
problem. By a simple distributed control rule, the considered
multi-agent system with continuous-time dynamics achieves not
only a consensus, but also an optimal agreement within the
optimal solution set of the overall optimization objective. Directed
and bidirectional communications are studied, respectively, and
connectivity conditions are given to ensure a global optimal con-
sensus. In this way, the corresponding intersection computation
problem is solved by the proposed decentralized continuous-
time algorithm. We establish several important properties of the
distance functions with respect to the global optimal solution
set and a class of invariant sets with the help of convex and
non-smooth analysis.

Index Terms—Multi-agent systems, Optimal consensus, Con-
nectivity Conditions, Distributed optimization, Intersection com-
putation

I. INTRODUCTION

In recent years, multi-agent dynamics has been intensively

investigated in various areas including engineering, natural

science, and social science. Cooperative control of multi-agent

systems is an active research topic, and rapid developments of

distributed control protocols via interconnected communica-

tion have been made to achieve the collective tasks, e.g., [25],

[24], [21], [34], [19], [18], [29], [31], [26], [27]. However,

fundamental challenges still lie in finding suitable tools to

describe and design the dynamical behavior of these systems

and thus providing insights in their functioning principles. Dif-

ferent from the classical control design, the multi-agent studies

aim at fully exploiting, rather than avoiding, interconnection

between agents in analysis and synthesis in order to deal with

distributed design and large-scale information process.

Consensus is a basic problem in the study of multi-agent

coordination. It requires that all the agents achieve the same

state, such as a certain relative position or velocity. To achieve

consensus, connectivity plays a key role, and consequently
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several connectivity conditions have been established to de-

scribe suitable switching topologies. Jointly connected graph

and similar concepts are important in the analysis to guarantee

convergence. Uniformly jointly connected graph, i.e., the joint

graph is connected during all intervals which are longer than

a constant, has been employed [25], [24], [33], [28], [15].

On the other hand, [t,∞)-joint connectedness, i.e., the joint

graph is connected in the time intervals [t,∞), is necessary

[31], [34], and therefore the most general form to secure the

global coordination.

Moreover, distributed optimization of a sum of convex

objective functions,
∑N

i=1 fi(z), where each component fi
is known only to node i, has attracted much attention in

recent years, due to its wide application in multi-agent systems

and wireless networks [38], [39], [41], [40], [42]. A class of

subgradient-based incremental methods, in which some esti-

mate of the optimal solution can be passed over the network

via deterministic or randomized iteration, were studied in [38],

[39], [43]. Then a non-gradient-based algorithm was proposed

in [42], where each node starts at its own optimal solution

and updates using a pairwise equalizing protocol. In view of

multi-agent systems, the local information transmitted over

the neighborhood is usually limited to a convex combination

of its neighbors [25], [24], [34]. Combining the ideas of

consensus algorithms and subgradient methods, a number

of significant results were obtained. A subgradient method

in combination with consensus steps was given for solving

coupled optimization problems with fixed undirected topology

in [40]. Then, an important work on multi-agent optimization

was [36], where a decentralized algorithm was proposed as a

simple sum of an averaging (consensus) part and a subgradient

part, and convergence bounds for a distributed multi-agent

model under various connectivity conditions were shown.

Constrained consensus and optimization were further studied

in [37], where each agent was always restricted in its own

convex set. A “projected consensus algorithm” was presented

to solve the constrained consensus problem in which each

agent takes averaging and projection steps alternatively, and

it was generalized to “projected subgradient algorithm” with

optimization goal also took into consideration [37].

Most of the literature on optimization and consensus al-

gorithms is in discrete time, and it is usually hard for the

considered agents to reach both consensus and optimum unless

the weights rule of the links, the step size in the iteration and

the connectedness of the communication graph are properly

selected [36], [37], [39]. Few researchers have considered

continuous-time agent dynamics that solves a distributed op-

timization problem. However, dynamical system solution to
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optimization problem is of great interest since a simple vector-

field solution may provide important geometrical insights. The

classical Arrow-Hurwicz-Uzawa flow was shown to converge

to the set of saddle points for a constrained convex opti-

mization problem [9]. Then in [10], a simple and elegant

continuous-time protocol was presented which solves linear

programming problems.

The goal of this paper is to establish a simple distributed

continuous-time control law which can ensure consensus and

minimize
∑N

i=1 fi(z) asymptotically. Each optimal solution

set, Xi of optimization objective fi(z), is assumed to be

a convex set observed only by node i. Assuming that the

intersection set,
⋂N

i=1 Xi, is nonempty, the optimal solution

set of the group objective becomes this intersection set, and

the considered optimization problem is then converted to a dis-

tributed intersection computation problem. In fact, computing

several convex sets’ intersection is a classical problem, and

“alternating projection algorithm” was a standard solution, in

which the algorithm is carried out by iteratively projecting onto

each set [6], [7], [8]. The “projected consensus algorithm”

presented in [37] can be viewed as its generalized version.

The intersection computation problem is also of interest in the

study of computational geometry, a branch of computer sci-

ence [12], [13]. Hence, an important motivation for our work

is to provide a system-theoretic insight into the convergence

properties of certain distributed optimization problems. Similar

to the continuous-time approximation of recursive algorithms

[11] and constrained optimizations [9], [10], we establish a

suitable dynamical model for such analysis. Also by itself, the

considered continuous-time distributed optimization problem

has many applications, e.g., wireless resource allocation [38],

[39], formation control [18], [31], [23], and mobile sensing

[19], [46].

In this paper, we present a simple dynamical system solution

to this convex intersection computation problem, as the sum

of a consensus part and a projection part. Since this projection

part can be viewed as a special subgradient information, this

protocol is actually a continuous-time version of the algorithm

proposed in [36]. We show that an optimal consensus (i.e.,

consensus within the global optimal solution set), can be

achieved under time-varying communications. Both directed

and bidirectional cases are investigated, and sharp connectivity

conditions are obtained in the sense that a general optimal

consensus will no longer hold for a general model with weaker

connectedness. Additionally, we use quite general weights rule

which allow the weight of each arc in the communication

graph to depend on time or system state.

The rest of the paper is organized as follows. In Section 2,

some preliminary concepts are introduced. In Section 3, we

formulate the considered optimal consensus problem, and the

main results are shown. Then, in Sections 4 and 5, convergence

to the optimal solution set and global consensus are analyzed,

respectively, based on which the proofs of the main results are

obtained. Finally, in Section 6 concluding remarks are given.

II. PRELIMINARIES

In this section, we introduce some notations and theories

on graph theory [4], convex analysis [1], [3] and nonsmooth

analysis [5].

A directed graph (digraph) G = (V, E) consists of a finite

set V of nodes and an arc set E , in which an arc is an ordered

pair of distinct nodes of V . An element (i, j) ∈ E describes

an arc which leaves i and enters j. A walk in digraph G is

an alternating sequence W : i1e1i2e2 . . . em−1im of nodes iκ
and arcs eκ = (iκ, iκ+1) ∈ E for κ = 1, 2, . . . ,m − 1. A

walk is called a path if the nodes of this walk are distinct,

and a path from i to j is denoted as i → j. G is said to

be strongly connected if it contains path i → j and j → i
for every pair of nodes i and j. A digraph G is called to be

bidirectional when for any two nodes i and j, (i, j) ∈ E if

and only if (j, i) ∈ E . Ignoring the direction of the arcs, the

connectedness of a bidirectional digraph will be transformed

to that of the corresponding undirected graph. A time-varying

graph is defined as Gσ(t) = (V, Eσ(t)) with σ : [0,+∞) →
Q as a piecewise constant function, where Q is a finite set

indicating all possible graphs. Moreover, the joint graph of

Gσ(t) in time interval [t1, t2) with t1 < t2 ≤ +∞ is denoted

as G([t1, t2)) = ∪t∈[t1,t2)G(t) = (V,∪t∈[t1,t2)Eσ(t)).
A set K ⊂ Rm is said to be convex if (1− λ)x+ λy ∈ K

whenever x ∈ K, y ∈ K and 0 ≤ λ ≤ 1. For any set S ⊂ Rm,

the intersection of all convex sets containing S is called the

convex hull of S, denoted by co(S). The next lemma can be

found in [2].

Lemma 2.1: Let K be a subset of Rm. The convex hull

co(K) of K is the set of elements of the form

x =

m+1
∑

i=1

λixi,

where λi ≥ 0, i = 1, . . . ,m + 1 with
∑m+1

i=1 λi = 1 and

xi ∈ K.

Let K be a closed convex subset in Rm and denote |x|K .
=

infy∈K |x−y| as the distance between x ∈ Rm and K, where

| · | denotes the Euclidean norm. There is a unique element

PK(x) ∈ K satisfying |x− PK(x)| = |x|K associated to any

x ∈ Rm [2]. The map PK is called the projector onto K. We

also have

〈PK(x)− x, PK(x)− y〉 ≤ 0, ∀y ∈ K. (1)

Moreover, PK has the following non-expansiveness property:

|PK(x)− PK(y)| ≤ |x− y|, x, y ∈ Rm. (2)

Clearly, |x|2K is continuously differentiable at point x, and (see

[2])

∇|x|2K = 2(x− PK(x)). (3)

The following lemma was obtained in [31], which is useful

in what follows.

Lemma 2.2: Suppose K ⊂ Rm is a convex set and xa, xb ∈
R

m. Then

〈xa − PK(xa), xb − xa〉 ≤ |xa|K · ||xa|K − |xb|K | . (4)

Particularly, if |xa|K > |xb|K , then

〈xa − PK(xa), xb − xa〉 ≤ −|xa|K · (|xa|K − |xb|K). (5)
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Next, the upper Dini derivative of a continuous function

h : (a, b) → R (−∞ ≤ a < b ≤ ∞) at t is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)

s
.

When h is continuous on (a, b), h is non-increasing on (a, b)
if and only if D+h(t) ≤ 0 for any t ∈ (a, b). The next result

is given for the calculation of Dini derivative (see [14], [33]).

Lemma 2.3: Let Vi(t, x) : R × Rd → R (i = 1, . . . , n)
be C1 and V (t, x) = maxi=1,...,n Vi(t, x). If I(t) = {i ∈
{1, 2, . . . , n} : V (t, x(t)) = Vi(t, x(t))} is the set of indices

where the maximum is reached at t, then D+V (t, x(t)) =
maxi∈I(t) V̇i(t, x(t)).

Finally, consider a system

ẋ = f(t, x), (6)

where f : R × Rd → R
d is piecewise continuous in t and

continuous in x. Let x(t) = x(t, t0, x
0) be a solution of (6)

with initial condition x(t0) = x0. Then Ω0 ⊂ R
d is called

a positively invariant set of (6) if, for any t0 ∈ R and any

x0 ∈ Ω0, x(t, t0, x
0) ∈ Ω0 when t ≥ t0.

III. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we first define the considered optimal

consensus problem. We propose a multi-agent optimization

model and a distributed control law to solve this optimization

problem. Then the main results are presented on connectivity

conditions which can ensure an optimal consensus globally.

A. Multi-agent Model

Consider a multi-agent system with agent set V =
{1, 2, . . . , N}, for which the dynamics of each agent is a first-

order integrator:

ẋi = ui, i = 1, . . . , N (7)

where xi ∈ Rm represents the state of agent i, and ui is the

control input.

The communication in the multi-agent network is modeled

as a time-varying graph Gσ(t) = (V, Eσ(t)). Moreover, node

j is said to be a neighbor of i at time t when there is an

arc (j, i) ∈ Eσ(t), and Ni(σ(t)) represents the set of agent i’s
neighbors at time t. As usual in the literature [24], [33], [31],

an assumption is given to the variation of Gσ(t).

A1 (Dwell Time) There is a lower bound constant τD > 0
between two consecutive switching time instants of σ(t).

We have the following definition.

Definition 3.1: (i) Gσ(t) is said to be uniformly jointly

strongly connected (UJSC) if there exists a constant T > 0
such that G([t, t+ T )) is strongly connected for any t ≥ 0.

(ii) Assume that Gσ(t), t ≥ 0 is bidirectional. Gσ(t) is said to

be infinitely jointly connected (IJC) if G([t,+∞)) is connected

for all t ≥ 0.

Remark 3.1: [t,+∞)-joint connectedness for all t ≥ 0 is

equivalent to that there exists an unbounded time sequence

0 ≤ t1 < · · · < tk < tk+1 < . . . such that G([tk, tk+1)) is

connected for all k = 1, 2, . . . . Note that it does not require

an upper bound for |tk+1 − tk| in the definition.

The objective for this group of autonomous agents is to reach a

consensus, and meanwhile to cooperatively solve the following

optimization problem

min
z∈Rm

N
∑

i=1

fi(z) (8)

where fi : Rm → R represents the cost function of agent

i, observed by agent i only, and z is a decision vector. We

suppose the optimal solution set of each component fi exists,

denoted Xi
.
= {v |fi(v) = min

z∈Rm
fi(z)}.

We impose the following assumptions.

A2 (Convexity) X1, . . . , XN , are closed convex sets.

A3 (Nonempty Intersection) X0
.
=

N
⋂

i=1

Xi is nonempty and

bounded.

Remark 3.2: The assumption that each Xi is a convex set is

quite general, and it is not hard to see that this assumption will

be satisfied as long as each fi is a convex function. Moreover,

since the intersection of convex sets is a convex set itself, X0

is a convex set with the convexity of each Xi. Additionally,

with A3, it is obvious to see that X0 is compact, and it is the

optimal solution set of (8).

B. Distributed Control

Denote x = (xT
1 , . . . , x

T
N )T ∈ RmN and let the continuous

function aij(x, t) > 0 be the weight of arc (j, i), for i, j ∈ V .

Then we present the following distributed control law:

ui =
∑

j∈Ni(σ(t))

aij(x, t)(xj−xi)+PXi
(xi)−xi, i = 1, . . . , N

(9)

Remark 3.3: We write the arc weight aij(x, t) in a quite

general form showing that this weight function can be time-

varying and may depend nonlinearly on the state. Note that

this doesn’t mean global information is required for the control

design.

Remark 3.4: When Xi can be observed by node i,
PXi

(xi(t))− xi(t) can be easily obtained. For instance, node

i may first establish a local coordinate system, and then

construct a function h(z) = |z|2Xi
to compute ∇h(z) within

this coordinate system. Then by (3), we have PXi
(xi(t)) −

xi(t) = −1/2∇h(z)|z=xi(t).

Another assumption is made on each aij(x, t), i, j =
1, 2, ..., N .

A4 (Weights Rule) There are a∗ > 0 and a∗ > 0 such that

a∗ ≤ aij(x, t) ≤ a∗, t ∈ R+, x ∈ RmN .

In this paper, we assume that Assumptions A1-A4 always

hold. With (7) and (9), the closed loop system is expressed by

ẋi =
∑

j∈Ni(σ(t))

aij(x, t)(xj−xi)+PXi
(xi)−xi, i = 1, . . . , N.

(10)

Remark 3.5: By the non-expansiveness property (2), the

convex projection PK(z) is continuous for all z ∈ R
m for
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Fig. 1. The goal of the agents is to achieve a consensus in X0.

any closed convex set K ⊆ Rm. Therefore, a Caratheodory

solution of (10) exists at least over a finite interval for any

initial condition x(t0) based on assumption A1 (see [16], [17]).

Note that the solution is not necessarily unique. As will be

shown in Remark 4.1, it also exists in [t0,+∞).
Remark 3.6: Since the projection term can be viewed as

a subgradient for the special case fi(z) = |z|2Xi
/2, (10) is

actually a continuous-time version of the algorithm proposed

in [36], which has the form of the sum of a consensus

term and a subgradient term. On the other hand, in [37],

a “projected consensus algorithm” was presented to solve

the same intersection computation problem in which each

agent takes consensus and projection steps alternatively. Note

that there is some essential difference between (10) and the

“projected consensus algorithm” in [37], because (10) takes

advantage of the consensus and projection information at the

same time instant. It is not hard to construct examples in

which each node i would never enter its own set Xi along

the trajectories of (10).

Let x(t) be the trajectory of (10) with initial condition x0 =
x(t0) = (xT

1 (t0), . . . , x
T
N (t0))

T ∈ RmN . Then the considered

optimal consensus is defined as following (see Fig. 1).

Definition 3.2: (i) A global optimal set convergence of (10)

is achieved if for all x0 ∈ RmN , we have

lim
t→+∞

|xi(t)|X0
= 0, i = 1, . . . , N. (11)

(ii) A global consensus of (10) is achieved if for all x0 ∈
R

mN , we have

lim
t→+∞

|xi(t)− xj(t)| = 0, i, j = 1, . . . , N. (12)

(iii) A global optimal consensus is achieved of (10) if both

(i) and (ii) hold.

Remark 3.7: It is easy to find that, based on the analysis

methods we provide, all the results obtained in this paper will

still hold if the control law (10) is replaced by

ẋi =
∑

j∈Ni(σ(t))

aij(x, t)(xj − xi) + bi(xi, t)(PXi
(xi)− xi)

for i = 1, . . . , N and some scalar functions 0 < b∗ ≤
bi(xi, t), i = 1, · · · , N with b∗ > 0 being a constant. Here

we just choose the form of (10) to make the statements and

proofs simplified.

C. Main Results

In this subsection, we present the main results on optimal

consensus.

First the following conclusion is our main result for directed

graphs.

Theorem 3.1: System (10) achieves a global optimal con-

sensus if Gσ(t) is UJSC.

We say the communications over the considered multi-agent

network are bidirectional if Gσ(t) is a bidirectional graph

for all t ≥ t0. Note that, this does not imply that the arc

weights, aij(x, t), i, j = 1, . . . , N , are symmetric. Then we

have the following main result on optimal consensus for the

bidirectional case.

Theorem 3.2: System (10) with bidirectional communica-

tions achieves a global optimal consensus if (and in general

only if) Gσ(t) is IJC.

Theorem 3.2 shows that the connectedness conditions to

reach an optimal consensus can be relaxed for bidirectional

communications without requiring a uniform bound of the

length of intervals in the definition of connectivities.

Remark 3.8: Let us explain what “in general only if” means

in Theorems 3.2. Clearly, the connectivity condition proposed

in Theorem 3.2 is not a necessary condition to ensure a global

optimal consensus for a particular optimization problem (8).

However, in regard to a global optimal consensus for all

possibilities of X1, . . . , XN , simple examples could show that

this IJC assumption is also necessary using the same idea

studying state agreement problem in [34], [31]. In fact, as

long as
⋂N

i=1 Xi is not a singleton, it can be easily shown

that consensus cannot be guaranteed for all initial conditions.

Therefore, from this perspective, Theorem 3.2 gives “sharp”

connectivity conditions for a global optimal consensus of

system (10).

Remark 3.9: If A3, the nonempty intersection assumption,

is removed, control law (10) becomes a special case of the

target aggregation controller studied in [31] with respect to

co(
⋃N

i=1 Xi). In this case, under proper connectivity assump-

tions (even each node cannot always obtain the information

of Xi), it can be shown that (10) will lead the network

to converge into co(
⋃N

i=1 Xi) [31]. The dynamics within

co(
⋃N

i=1 Xi) can be complicated, and the optimal consen-

sus will fail since there is no longer a simple expression

of X∗, the real optimal solution set of (8). However, we

guess that in this case the control law (10) still implies a

suboptimal convergence such that there will be a constant

B, which does not depend on the initial condition, satisfying

lim supt→∞ |xi(t)|X∗
≤ B under UJSC connectivity condi-

tions.

In order to prove Theorems 3.1 and 3.2, on one hand, we

have to prove all the agents converge to the global optimal

solution set, i.e., X0; and, on the other hand, we have to verify

that a consensus is also achieved. In fact, the convergence

analysis is quite challenging, due to the nonlinearity nature

of each weight function aij(x, t) and the convex projection

part in the control law. In the following two sections, we

will focus on the optimal solution set convergence and the

consensus analysis, respectively, by which complete the proofs

for Theorems 3.1 and 3.2.
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IV. OPTIMAL SET CONVERGENCE

In this section, we prove the optimal solution set conver-

gence for system (10). We first establish a method to analyze

the distance between the agents and the global optimal set with

the help of convex analysis, and then the convergence to X0

for all the agents is proposed under directed and bidirectional

communications, respectively.

A. Distance Function

Define di(t) = |xi(t)|2X0
and let

d(t) = max
i∈V

di(t)

be the maximum among all the agents. Although d(t) may not

be continuously differentiable, it is still continuous. Thus, we

can analyze the Dini derivative of d(t) to study its convergence

property. Moreover, it is easy to see that d(t) is locally

Lipschitz. Then the Dini derivative of d(t) is finite for any

t.
We prove several elementary lemmas for the following

analysis. At first, the following lemma indicates that d(t) is

nonincreasing.

Lemma 4.1: D+d(t) ≤ 0 for all t ≥ 0.

Proof. According to (3), one has

d

dt
di(t) = 2〈xi − PX0

(xi), ẋi〉
= 2〈xi − PX0

(xi),
∑

j∈Ni(σ(t))

aij(x, t)(xj − xi) + PXi
(xi)− xi〉.

(13)

Then, based on Lemma 2.3 and denoting I(t) as the set

containing all the agents that reach the maximum in the

definition of d(t) at time t, we obtain

D+d(t) = max
i∈I(t)

d

dt
di(t)

= 2 max
i∈I(t)

[〈xi − PX0
(xi),

∑

j∈Ni(σ(t))

aij(xj − xi) + PXi
(xi)− xi〉]. (14)

Furthermore, for any i ∈ I(t), according to (5) of Lemma

2.2, one has

〈xi − PX0
(xi), xj − xi〉 ≤ 0 (15)

for any j ∈ Li(σ(t)) since it always holds that |xj |X0
≤

|xi|X0
.

Moreover, in light of (1), we obtain

〈PXi
(xi)− PX0

(xi), PXi
(xi)− xi〉 ≤ 0 (16)

since we always have PX0
(xi) ∈ Xi for all i = 1, . . . , N .

Therefore, it is easy to see that for any i ∈ V ,

〈xi − PX0
(xi), PXi

(xi)− xi〉
= 〈xi − PXi

(xi) + PXi
(xi)− PX0

(xi), PXi
(xi)− xi〉

≤ 〈xi − PXi
(xi), PXi

(xi)− xi〉
= −|xi|2Xi

. (17)

Thus, with (14), (15) and (17), one has

D+d(t) ≤ 2 max
i∈I(t)

[−|xi|2Xi
] ≤ 0. (18)

Then the proof is completed. �

Remark 4.1: According to Lemma 4.1, {y : |y|2X0
≤

d(t0)} is a positively invariant set for system (10). Since

X0 is compact, {y : |y|2X0
≤ d(t0)} is also compact.

This leads to that each solution of (10) exists in [t0,+∞).
Moreover, if the weight functions aij , i, j = 1, . . . , N , are

only state-dependent, the continuity implies that there will be

a∗ ≥ a∗ > 0 such that

a∗ ≤ aij(x(t)) ≤ a∗, ∀t > 0, i, j = 1, 2, ...N (19)

along trajectory x(t) of system (10). In this case, A4 follows

automatically, and then needs not to be assumed.

With Lemma 4.1, for any initial condition, there exists a

constant d∗ ≥ 0 such that limt→∞ d(t) = d∗. Clearly, the

optimal solution set convergence will be achieved for system

(10) if and only if d∗ = 0. Furthermore, since it always holds

that di(t) ≤ d(t), there exist constants 0 ≤ θi ≤ ηi ≤ d∗, i =
1, . . . , N such that

lim inf
t→∞

di(t) = θi, lim sup
t→∞

di(t) = ηi.

To establish the optimal set convergence, we also need

the following lemmas, whose proofs can be found in the

appendices.

Lemma 4.2: Assume that θi = ηi = d∗, i = 1, . . . , N . Then

we have limt→+∞ |xi(t)|Xi
= 0 for all i = 1, . . . , N .

Lemma 4.3: Assume that either Gσ(t) being UJSC or Gσ(t)

being IJC with bidirectional communications. Then θi = ηi =
d∗ for all i = 1, 2, . . . , N .

Remark 4.2: If the network communication graph is undi-

rected, i.e., i ∈ Nj(σ(t)) if and only if j ∈ Ni(σ(t)) with

aij(x, t) ≡ aji(x, t), i, j = 1, . . . , N , then according to (13)

and (17), we have

d

dt

N
∑

i=1

di(t) ≤ 2

N
∑

i=1

∑

j∈Ni(σ(t))

aij(x, t)〈xi − PX0
(xi), xj − xi〉

− 2

N
∑

i=1

|xi|2Xi

=
N
∑

i=1

∑

j∈Ni(σ(t))

aij(x, t)〈xi − PX0
(xi), xj − xi〉

+
N
∑

j=1

∑

i∈Nj(σ(t))

aji(x, t)〈xj − PX0
(xj), xi − xj〉

− 2

N
∑

i=1

|xi|2Xi

=

N
∑

i=1

∑

j∈Ni(σ(t))

aij(x, t)
〈

xi − xj+

PX0
(xj)− PX0

(xi), xj − xi

〉

− 2
N
∑

i=1

|xi|2Xi
.
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Furthermore, based on (1) and (2), we obtain

〈xi − xj + PX0
(xj)− PX0

(xi), xj − xi〉
≤ −|xi − xj |2 + |xi − xj | · |PX0

(xj)− PX0
(xi)| ≤ 0

for all i, j = 1, . . . , N . Therefore, we have

d

dt

N
∑

i=1

di(t) ≤ −2

N
∑

i=1

|xi(t)|2Xi
,

which implies

N
∑

i=1

∫ ∞

0

|xi(t)|2Xi
<

N

2
d(t0) (20)

immediately based on Lemma 4.1.

As a result, with (20), we can apply Barbalat’s

lemma on |xi(t)|2Xi
, and then it follows immediately that

limt→+∞ |xi(t)|Xi
= 0, i = 1, . . . , N without the assump-

tions of Lemma 4.2.

Remark 4.3: Note that, Lemmas 4.1 and 4.2 hold with-

out requiring any connectivity of the system communication

graph.

B. Directed Graphs

The following conclusion is for optimal set convergence

with directed communications.

Proposition 4.1: System (10) achieves the global optimal

solution set convergence if Gσ(t) is UJSC.

Proof. According to Lemmas 4.2 and 4.3, we have

limt→∞ |xi(t)|Xi
= 0, i = 1, . . . , N . As a result, for any

ε > 0, there exists T1(ε) > 0 such that when t ≥ T1,

|xi(t)|Xi
≤ ε, i = 1, . . . , N. (21)

Take t1 = T1 and k0 ∈ V . Defining

hk0
(t)

.
= max

i∈V
|xi(t)|Xk0

,

similarly to the analysis of (14), we have that for all t,

d

dt
h2
k0
(t) ≤ 2hk0

(t) · max
i=1,...,N

|xi(t)|Xi
,

which implies D+hk0
(t) ≤ ε, t ≥ t1. Thus, hk0

(t) ≤
hk0

(t1) + (N − 1)T0ε, t ∈ [t1, t1 + (N − 1)T0].
Since Gσ(t) is UJSC, we can find a node k1 such that

(k0, k1) ∈ Eσ(t) for t ∈ [t̃1, t̃1 + τD) ⊆ [t1, t1 + T0), where

T0 = T + 2τD. In light of Lemma 2.2 and (21), we have

d

dt
|xk1

(t)|2Xk0

= 2ak1k0
(x, t)〈xk1

− PXk0
(xk1

), xk0
− xk1

〉
+ 2

〈

xk1
− PXk0

(xk1
),

∑

j∈Nk1
(σ(t))\k0

ak1j(xj − xk1
)

+ PXk1
(xk1

)− xk1

〉

≤ −2a∗|xk1
(t)|Xk0

(

|xk1
(t)|Xk0

− ε
)

+ 2(N − 2)a∗|xk1
(t)|Xk0

·
(

hk0
(t1) + (N − 1)T0ε

− |xk1
(t)|Xk0

)

+ 2|xk1
(t)|Xk0

· ε, t ∈ [t̃1, t̃1 + τD),

(22)

from which we obtain that for any t ∈ [t̃1, t̃1 + τD),

D+|xk1
(t)|Xk0

≤ −(a∗ + (N − 2)a∗)|xk1
(t)|Xk0

+ (N − 2)a∗
[

hk0
(t1)

+ (N − 1)T0ε
]

+ (1 + a∗)ε.

Therefore, noticing that |xk1
(t̃1)|Xk0

≤ hk0
(t1)+ (N −1)T0ε

and denoting ν0 = e−(a∗+(N−2)a∗)τD , one has

|xk1
(t̃1 + τD)|Xk0

≤ ν0|xk1
(t̃1)|Xk0

+ (1− ν0)

× (N − 2)a∗[hk0
(t1) + (N − 1)T0ε] + (1 + a∗)ε

a∗ + (N − 2)a∗

≤ w0hk0
(t1) +M0ε, (23)

where

w0 =
(N − 2)a∗ + a∗ν0
(N − 2)a∗ + a∗

(24)

and

M0 =
1 + [2(N − 2)(N − 1)T0 + 1]a∗

a∗ + (N − 2)a∗
. (25)

Proceeding the estimation in time interval [t̃1+ τD, t1+(N −
1)T0] will lead to

D+|xk1
(t)|Xk0

≤ −(N − 1)a∗|xk1
(t)|Xk0

+ (N − 1)a∗[hk0
(t1) + (N − 1)T0ε] + ε,

for all t ∈ [t̃1 + τD, t1 + (N − 1)T0]. This implies

|xk1
(t)|Xk0

≤ ς0(w0hk0
(t1) +M0ε) + (1− ς0)

(

w0hk0
(t1)

+ (N − 1)T0ε+
ε

(N − 1)a∗

)

≤ w0hk0
(t1) + M̃0ε (26)

for t ∈ [t̃1 + τD, t1 + (N − 1)T0], where

ς0 = e−(N−1)2a∗T0 ; M̃0 =
2 + [3(N − 1)2T0 + 1]a∗

a∗ + (N − 2)a∗
.

(27)

Further, continuing the analysis on time interval [t1 +
T0, t1 + 2T0], k2 can be found with a neighbor in {k0, k1}
during [t̃2, t̃2+ τD) ⊆ [t1+T0, t1+2T0]. An upper bound for

|xk2
(t)|Xk0

can be similarly obtained as

|xk2
(t)|Xk0

≤ w1hk0
(t1)+2M̃0ε, t ∈ [t̃2+τD, t1+(N−1)T0]

(28)

where w1 =
(N−2)a∗+a∗ν

2
0

(N−2)a∗+a∗

.

Next, respectively, we repeat the analysis on time intervals

[t1 +2T0, t1 +3T0], . . . , [t1 +(N − 2)T0, t1 +(N − 1)T0] for

k3, . . . , kN−1 ∈ V , and we finally reach

|xi(t1+(N−1)T0)|Xk0
≤ wN−1hk0

(t1)+(N−1)M̃0ε, (29)

for i = 1, . . . , N , which implies

hk0
(t2) ≤ wN−1hk0

(t1) + (N − 1)M̃0ε, (30)

where t2 = t1+(N−1)T0 and 0 < wN−1 =
(N−2)a∗+a∗ν

N
0

(N−2)a∗+a∗

<
1.
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Denoting w∗ = wN−1 and tn+1 = tn + (N − 1)T0

for n = 2, . . . , and by the same analysis on time intervals

[tn, tn+1], n = 2, . . . , one has

hk0
(tn) ≤ wn−1

∗ hk0
(t1) +

n−1
∑

j=1

wj−1
∗ (N − 1)M̃0ε

≤ wn−1
∗ hk0

(t1) +
(N − 1)M̃0

1− w∗
· ε (31)

Since ε in (31) can be arbitrarily small, we see that

limt→∞ |xi(t)|Xk0
= 0 for all i, k0 = 1, . . . , N , which

immediately implies limt→∞ |xi(t)|X0
= 0. The proof is

completed. �

C. Bidirectional Graphs

The following conclusion is for optimal set convergence

under bidirectional graphs.

Proposition 4.2: System (10) achieves the optimal solution

set convergence with bidirectional communications if Gσ(t) is

IJC.

Proof. Suppose d∗ > 0. According to Lemmas 4.2 and 4.3,

we have that for all i = 1, . . . , N ,

lim
t→∞

|xi(t)|X0
=

√
d∗, lim

t→∞
|xi(t)|Xi

= 0. (32)

This implies, for any ε > 0, we have that xi(t) ∈ B0(ε)∩Bi(ε)
for sufficiently large t, where B0(ε)

.
= {y|

√
d∗ + ε ≤ |y|X0

≤√
d∗ + ε} and Bi(ε)

.
= {y||y|Xi

≤ ε}, i = 1, . . . , N . Then

we see from (13) that the derivative of |xi(t)|2X0
is globally

Lipschitz. Therefore, based on Barbalat’s lemma, we know

lim
t→∞

d

dt
|xi(t)|2X0

= 0. (33)

Define E∞ .
= {(i, j)|(i, j) ∈ Eσ(t) for infinitely long time}.

Then G∞ = (V, E∞) is connected since G([t,+∞)) is con-

nected for all t ≥ 0.

Let N∞
i be the neighbor set of node i in graph G∞. With

Lemma 2.2, (32) and (33) yield that for any i = 1, . . . , N and

j ∈ N∞
i ,

lim
t→∞

〈xi(t)− PX0
(xi(t)), xj(t)− xi(t)〉 = 0. (34)

Taking i0 ∈ V , we define two hyperplanes:

H1(t)
.
= {v|〈xi0(t)− PX0

(xi0(t)), v − xi0(t)〉 = 0};

H2(t)
.
= {v|〈xi0(t)− PX0

(xi0(t)), v − PX0
(xi0(t))〉 = 0}.

Then ∀j ∈ N∞
i0

, (34) implies that

lim
t→∞

|xj(t)|H1(t) = 0; lim
t→∞

|xj(t)|H2(t) =
√
g∗,

which leads to

lim
t→∞

|PX0
(xj(t))− PH2(t)(xj(t))| = 0. (35)

Because G∞ is connected, we can repeat the analysis over the

network, then arrive that (35) holds for all j = 1, . . . , N .

Let Ci0(t) = co{PXi0
(xi0(t)), PX0

(x1(t)), . . . , PX0
(xN (t))}.

Then Ci0(t) ⊆ Xi0 , ∀t ≥ 0.

Fig. 2. Constructing an invariant set from K = co{y1, y2}.

Therefore, with (32) and (35) and according to the structure

of H1(t) and H2(t), there will be a point z∗ ∈
⋂N

i0=1 Ci0(t) ⊆
X0 for sufficiently large t such that

〈xi0(t)− PX0
(xi0(t)), z∗ − PX0

(xi0(t))〉 > 0,

which contradicts (1). Therefore, d∗ > 0 does not hold, and

then the optimal set convergence follows. �

V. GLOBAL CONSENSUS

In this section, we present the consensus analysis. In order

to show the consensus, we have to present a clear estimation

of the influence on state agreement by terms xi−PXi
(xi), i =

1, . . . , N .

We first introduce a class of positively invariant set for

system (10) which characterizes the agreement property in

Subsection 5.1. Then the consensus analysis is investigated for

directed and bidirectional communication cases, respectively

in Subsection 5.2.

A. Invariant Set

We define a multi-projection function: Pikik−1...i1 : Rm →
⋃N

i=1 Xi with i1, . . . , ik ∈ {1, . . . , N}, k = 1, 2, . . . , by

Pikik−1...i1(x) = PXik
PXik−1

. . . PXi1
(x).

Particularly, P∅ is denoted by P∅(x) = x as the case for k = 0.

Let

Γ
.
= {Pikik−1...i1 |i1, . . . , ik ∈ {1, . . . , N}, k = 0, 1, 2, . . . }

be the set which contains all the multi-projection functions we

define.

Furthermore, let K be a convex set in Rm, and define

∆K as ∆K
.
= co{P (y)|y ∈ K,P ∈ Γ}. Denoting ĝ(t) =

max
i=1,...,N

|xi(t)|2∆K
, based on a similar analysis as the proof of

Lemma 4.1, it is not hard to find that

D+ĝ(t) ≤ 0, t ≥ 0.

This implies, ĝ(t) ≡ 0 for all t ≥ t0 once we have ĝ(t0) = 0,

which leads to the following conclusion immediately (see Fig.

2).

Lemma 5.1: Let K be a convex set in Rm. Then ∆N
K

.
=

∆K × · · · ×∆K is positively invariant for system (10).

We next establish an important property of the constructed

invariant set ∆N
K .

Lemma 5.2: |y|K ≤ 2maxz∈K |z|X0
, ∀y ∈ ∆K .
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Proof. With Lemma 2.1, any y ∈ ∆K has the following form

y =

m+1
∑

i=1

λiP
〈i〉(zi),

where
∑m+1

i=1 λi = 1 with λi ≥ 0, P 〈i〉 ∈ Γ and zi ∈ K, i =
1, . . . ,m + 1. Then, by the non-expansiveness property (2),

we have that for any z ∈ Rm and P∗ ∈ Γ,

|PX0
(z)− P∗(z)| = |P∗(PX0

(z))− P∗(z)|
≤ |PX0

(z)− z|
= |z|X0

.

This leads to

∣

∣

∣

m+1
∑

i=1

λiP
〈i〉(zi)−

m+1
∑

i=1

λizi

∣

∣

∣

≤
m+1
∑

i=1

λi

∣

∣zi − P 〈i〉(zi)
∣

∣

≤
m+1
∑

i=1

λi

∣

∣zi − PX0
(zi)

∣

∣+
m+1
∑

i=1

λi

∣

∣PX0
(zi)− P 〈i〉(zi)

∣

∣

≤ 2max
z∈K

|z|X0
,

which implies the conclusion because
∑m+1

i=1 λizi ∈ K. �

Now we are ready to reach the global consensus for system

(10). Let us focus on each coordinate, and denote xℓ
i(t) as the

ℓ-th coordinate of xi(t). Moreover, let

φ(t) = min
i∈V

{xℓ
i(t)}, ϕ(t) = max

i∈V
{xℓ

i(t)}

be the minimum and the maximum within all the agents.

Denote H(t) , ϕ(t) − φ(t). Then a consensus is achieved

for system (10) if and only if limt→∞ H(t) = 0.

In the next subsection, we will prove the global consensus

for system (10) with directed and bidirectional communica-

tions, respectively by showing that limt→∞ H(t) = 0.

B. Consensus Analysis

In this subsection, we propose the consensus analysis. First

we study the directed case.

Proposition 5.1: System (10) achieves a global consensus

if Gσ(t) is UJSC.

Proof. Based on Proposition 4.1, we have that

limt→∞ |xi(t)|X0
= 0 for all i = 1, . . . , N . Therefore,

for any ε > 0, there exists T1(ε) > 0 such that, when t ≥ T1,

|xi(t)|X0
≤ 1

2
ε, i = 1, . . . , N (36)

As a result, according to Lemma 5.2, for any y ∈
∆co{x1(t),...,xN (t)} with t > T1(ε), we have

dist
(

y, co{x1(t), . . . , xN (t)}
)

≤ ε.

Moreover, by Lemma 5.1, we see that xi(t̂) ∈
∆co{x1(t),...,xN (t)}, i = 1, . . . , N for all t ≤ t̂ ≤ ∞,

which implies that for all t̂ ≥ t ≥ T1, we have

dist
(

xi(t̂),∆co{x1(t),...,xN (t)}

)

≤ ε, i = 1, . . . , N. (37)

We divide the following proof into three steps.

Step 1: Take t1 = T1 with xℓ
i0
(t1) = φ(t1) and denote T0 =

T + 2τD. In this step, we give bound to xℓ
i0
(t) during t ∈

[t1, t1 + (N − 1)T0].

Based on (37), we see that for all T1 ≤ t < t̂ ≤ ∞

φ(t̂) ≥ φ(t)− ε; ϕ(t̂) ≤ ϕ(t) + ε. (38)

Noting the fact that

d

dt
xℓ
i0
(t) ≤ −(N − 1)a∗xℓ

i0
(t) + (N − 1)a∗(ϕ(t1) + ε) + ε,

(39)

for all t ≥ t1, we obtain

xℓ
i0
(t) ≤ µ1 , ς0φ(t1) + (1− ς0)ϕ(t1) +

(N − 1)a∗ + 1

(N − 1)a∗
· ε,

(40)

where t ∈ [t1, t1 + (N − 1)T0].

Step 2: Since Gσ(t) is UJSC, we can find i1 ∈ V and t̃1 ≥ t1
such that (i0, i1) ∈ Gσ(t) for t ∈ [t̃1, t̃1 + τD) ⊆ [t1, t1 + T0).
In this step, we give bound to xℓ

i1
(t1) during t ∈ [t̃1+τD, t1+

(N − 1)T0].

Similarly to the analysis of (22), when t ∈ [t̃1, t̃1 + τD),
one has

d

dt
xℓ
i1
(t)

≤ a∗(µ1 − xℓ
i1
(t)) + (N − 2)a∗(ϕ(t1) + ε− xℓ

i1
(t)) + ε,

which yields

xℓ
i1
(t̃1 + τD)

≤ ν0(ϕ(t1) + ε) + (1− ν0)

× a∗µ1 + (N − 2)a∗(ϕ(t1) + ε) + ε

a∗ + (N − 2)a∗

= (1− w0)ς0φ(t1) + [1− (1− w0)ς0]ϕ(t1) + L̂0ε

, θ1 (41)

after some simple manipulations by combining (40) and (41),

where L̂0 = 1 + N
[a∗+(N−2)a∗](N−1) .

Then, applying (39) on node i1 during t ∈ [t̃1 + τD, t1 +
(N − 1)T0] will lead to

xℓ
i1
(t) ≤ ς0θ1 + (1− ς0)ϕ(t1) +

(N − 1)a∗ + 1

(N − 1)a∗
· ε

= m1φ(t1) + [1−m1]ϕ(t1) + L0ε, (42)

for all t ∈ [t̃1 + τD, t1 +NT0], where m1 = (1− w0)ς
2
0 and

L0 = ς0L̂0 + 1 + 1
(N−1)a∗

.

Step 3: We proceed the analysis for i2, . . . , iN−1 with mk =
((1−w0)ς

2
0 )

k, k = 2, . . . , N−1. Denoting t2 , t1+(N−1)T0,

we obtain

xℓ
i̺
(t2) ≤ mN−1φ(t1)+(1−mN−1)ϕ(t1)+(N−1)L0ε, (43)

for ̺ = 0, . . . , N − 1, which implies

ϕ(t2) ≤ mN−1φ(t1)+(1−mN−1)ϕ(t1)+(N−1)L0ε. (44)
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(38) and (44) lead to

H(t2) = ϕ(t2)− φ(t2)

≤ mN−1φ(t1) + (1−mN−1)ϕ(t1)

+ (N − 1)L0ε− (φ(t1)− ε)

= (1−mN−1)H(t1) + [(N − 1)L0 + 1]ε (45)

Define a time sequence T1 = t1 < t2 < . . . with tk =
tk−1+(N−1)T0. Applying the same analysis on each interval

[tk−1, tk) will lead to

H(tk) ≤ (1−mN−1)H(tk−1) + [(N − 1)L0 + 1]ε (46)

for all k = 1, 2, . . . . As a result, we obtain

H(tk+1) ≤ (1−mN−1)
kH(t1)

+
k−1
∑

j=0

(1−mN−1)
j [(N − 1)L0 + 1]ε

≤ (1−mN−1)
kH(t1) +

(N − 1)L0 + 1

mN−1
· ε, (47)

for all k = 1, 2, . . . . Therefore, noting the fact that 0 <
mN−1 < 1, (38) and (47) yield

lim sup
t→∞

H(t) ≤ (2 +
(N − 1)L0 + 1

mN−1
) · ε.

Then limt→∞ H(t) = 0 since ε can be arbitrarily small. This

completes the proof. �

Then the global consensus for bidirectional case is proved

by the following conclusion.

Proposition 5.2: System (10) achieves a global consensus

with bidirectional communications if Gσ(t) is IJC.

Proof. Take t1 = T1 with xℓ
i0
(t1) = φ(t1) as the proof of

Proposition 5.1. Then (37) and (38) still hold.

Denote the first time when i0 has at least one neighbor

during t ≥ t1 as t̃1, and denote the neighbor set of i0 for

t ∈ [t̃1, t̃1 + τD) as V1. Next, we show the bound for i0 and

j ∈ V1 during t ∈ [t̃1, t̃1 + τD) .

Note that when i0 has no neighbor during t ∈ (t1, s) for

t1 ≤ s ≤ ∞, one has that for any t ∈ [t1, s),

|xℓ
i0
(t)− xℓ

i0
(s)| ≤ ε. (48)

Then, we see that

xℓ
i0
(t) ≤ µ̂1 , ς̂0φ(t1) + (1− ς̂0)ϕ(t1) +

(N − 1)a∗ + 1

(N − 1)a∗
· ε

for all t ∈ [t̃1, t̃1 + τD], where ς̂0 = e−(N−1)a∗τD

By similar analysis with (41), we have that for any j ∈ V1,

xℓ
j(t̃1 + τD) ≤ θ̂1 , m̂1φ(t1) + (1− m̂1)ϕ(t1) + L̂0ε (49)

with m̂1 = (1− w0)ς̂0.

When there is no link between V \({i0}∪V1) and {i0}∪V1

for t ∈ [t̃1 + τD, t̆), applying Lemma 5.1 on the subsystem

formed by nodes in {i0} ∪ V1, (37) leads to

xℓ
j(t) ≤ θ̂1 + ε, t ∈ [t̃1 + τD, t̆), j ∈ {i0} ∪ V1. (50)

Therefore, defining t̃2 as the first moment during t ∈ [t̃1 +
τD,∞) when there is an edge between j ∈ {i0} ∪ V1 and

V \ ({i0} ∪ V1), we have

xℓ
j(t) ≤ ς̂0(θ̂1+ ε)+ (1− ς̂0)ϕ(t1)+

(N − 1)a∗ + 1

(N − 1)a∗
· ε (51)

for t ∈ [t̃2, t̃2 + τD].
Denoting V2 = {k ∈ V|there is a link between k and {i0}∪

V1 at t̃2}, bounds for xℓ
k(t̃2 + τD), k ∈ V2 can be similarly

given by

xℓ
k(t̃2 + τD) ≤ m̂2φ(t1) + (1− m̂2)ϕ(t1) + L0ε, (52)

where m̂2 = ((1− w0)ς̂
2
0 )

2.

Next, V3, . . . ,Vj0 can be defined until V = {i0}∪V1∪· · ·∪
Vj0 since Gσ(t) is IJC. Moreover, with m̂j0 = ((1−w0)ς̂

2
0 )

j0 ,

we have

xℓ
i̺
(t̃j0 + τD) ≤ m̂j0φ(t1) + (1− m̂j0)ϕ(t1) + L0(N − 1)ε

for all ̺ = 1, . . . , N .

Therefore, denoting t2 , t̃j0 + τD, we obtain

ϕ(t2) ≤ m̂j0φ(t1) + (1− m̂j0)ϕ(t1) + L0(N − 1)ε, (53)

which implies

H(t2) ≤ (1− m̂j0)H(t1) + (N − 1)L0ε. (54)

Then similar to the analysis in the proof of Proposition 5.1,

we have limt→∞ H(t) = 0. This completes the proof. �

With Propositions 4.1, 4.2, 5.1 and 5.2, it is straightforward

to see that the main results of the paper, Theorems 3.1 and

3.2 hold.

VI. CONCLUSIONS

This paper addressed an optimal consensus problem for

multi-agent systems. With jointly connected graphs, the con-

sidered multi-agent system achieved not only consensus, but

also optimum by agreeing within the global solution set of

a sum of objective functions. Assuming that each agent can

observe the projection information onto the solution set of

its own optimization component and the intersection of all

solution sets is nonempty, the original unconstrained optimiza-

tion problem was converted to an intersection computation

problem. Control laws applied to the agents were simple and

distributed. The results showed that a global optimization

problem can be solved over a multi-agent network under time-

varying communications and limited interactions. Future work

includes randomization in the nodes’ decision-making and

event-based methods in the optimization algorithm design.

APPENDIX A

PROOF OF LEMMA 4.2

Based on the definitions of θi and ηi, when θi = ηi = d∗

holds for all i = 1, . . . , N , one has

lim
t→+∞

di(t) = d∗, i = 1, . . . , N

Thus, for any ε > 0, there exists T1(ε) > 0 such that, when

t ≥ T1(ε),

di(t) ∈ [d∗ − ε, d∗ + ε], i = 1, . . . , N. (55)
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When d∗ = 0, then it is easy to see that the conclusion

holds because |xi(t)|Xi
≤ |xi(t)|X0

for all t ≥ 0. Therefore,

we just assume d∗ > 0 in the following.

According to (13) and (17), it is not hard to find that

d

dt
di(t)

≤ −2|xi|2Xi
+ 2〈xi − PX0

(xi),
∑

j∈Ni(σ(t))

aij(x, t)(xj − xi)〉.

(56)

Furthermore, based on (55) and Lemmas 2.2 and 4.1, one has

that when t > T1(ε),

〈xi − PX0
(xi), xj − xi〉 ≤ |xi|X0

·
∣

∣ |xi|X0
− |xj |X0

∣

∣

≤ 2
√

d(t0)ε (57)

for all i = 1, . . . , N and j ∈ Ni(σ(t)).
If the conclusion does not hold, there exist a node i0 and a

constant M0 > 0 such that

|xi0(tk)|Xi0
= M0 (58)

for a time serial 0 < t1 < · · · < tk < tk+1 < . . . with

limk→∞ tk+1 = ∞. Noting the fact that there is a constant

L > 0 such that |a− b| ≤ L for all a, b ∈ {y| |y|2X0
≤ d(t0)}

since X0 is compact, we have that for all for all i = 1, . . . , N ,

∣

∣

∣

d

dt
|xi(t)|2Xi

∣

∣

∣

=
∣

∣

∣
2

∑

j∈Ni(σ(t))

aij〈xi − PXi
(xi), xj − xi〉 − 2|xi(t)|2Xi

∣

∣

∣

≤ 2|xi(t)|2X0
+ 2(N − 1)a∗|xi(t)|X0

·
∣

∣xj(t)− xi(t)
∣

∣

≤ 2d(t0) + 2(N − 1)a∗
√

d(t0)L. (59)

Denoting τ0 , M0

2
√

d(t0)+(N−1)a∗

√
d(t0)L

and according to

(58) and (59), we obtain

|xi0(tk)|2Xi0
≥ 1

2
M2

0 , t ∈ [tk, tk + τ0], (60)

which leads to

d

dt
di0(t) ≤ −1

2
M2

0 +2
√

d(t0)ε ≤ −1

4
M2

0 , t ∈ [tk, tk+τ0].

(61)

for all tk > T1 and ε ≤ M2
0

8
√

d(t0)
. As a result, we have

di0(tk + τ0) ≤ d(t0)−
M2

0 τ0
4

+ ε (62)

Therefore, (62) contradicts (55) when ε <
M2

0 τ0
8 , which

completes the proof. �

APPENDIX B

PROOF OF LEMMA 4.3

We prove the conclusion by contradiction. Suppose there

exists a node i0 ∈ V such that 0 ≤ θi0 < ηi0 ≤ d∗. Then for

any ε > 0, there exists T1(ε) > 0 such that, when t ≥ T1(ε),

di(t) ∈ [0, d∗ + ε], i = 1, . . . , N. (63)

Take ζ0 =
√

1
2 (θi0 + ηi0). Then there exists a time serial

0 < t̂1 < · · · < t̂k < . . .

with limt→∞ t̂k = ∞ such that |xi0(t̂k)|X0
= ζ0 for all k =

1, 2, . . . .

According to (63) and Lemma 2.2, we have that for all

t > t̂k0
,

d

dt
di0(t) ≤ 2

∑

j∈Ni0
(σ(t))

ai0j(x, t)〈xi0 − PX0
(xi0), xj − xi0〉

≤ 2(N − 1)a∗|xi0(t)|X0
(
√
d∗ + ε− |xi0(t)|X0

),

which will lead to

D+|xi0(t)|X0
≤ −(N − 1)a∗|xi0(t)|X0

+(N − 1)a∗
√
d∗ + ε.

(64)

As a result, for t ∈ [s,∞) with s ≥ t̂k0
, we have

|xi0(t)|X0
≤ e−(N−1)a∗(t−s)|xi0(s)|X0

+ (1− e(N−1)a∗(t−s))
√
d∗ + ε. (65)

We divide the following proof into two cases: directed com-

munications and bidirectional communications.

Directed Case: Denote T0 = T + 2τD. Since Gσ(t) is UJSC,

it is not hard to find that there exist i1 ∈ V and t̃1 such that

(i0, i1) ∈ Gσ(t) for t ∈ [t̃1, t̃1 + τD) ⊆ [t̂k0
, t̂k0

+ T0). Then

based on (65), we obtain

|xi0(t)|X0
≤ ξ1 , ς0ζ0 + (1− ς0)

√
d∗ + ε (66)

for t ∈ [t̂k0
, t̂k0

+(N−1)T0], where ς0 = e−(N−1)2a∗T0 . Thus,

for t ∈ [t̃1, t̃1 + τD), one has

d

dt
di1(t)

≤ 2
(

∑

j∈Ni1
(σ(t))\i0

ai1j
〈

xi1 − PX0
(xi1), xj − xi1

〉

+ ai1i0
〈

xi1 − PX0
(xi1), xi0 − xi1

〉

)

≤ 2(N − 2)a∗|xi1(t)|X0

(√
d∗ + ε− |xi1(t)|X0

)

− a∗|xi1(t)|X0

(

|xi1(t)|X0
− ξ1

)

, (67)

which leads to

D+|xi1(t)|X0
≤ −

(

(N − 2)a∗ + a∗
)

|xi1(t)|X0

+ (N − 2)a∗
√
d∗ + ε+ a∗ξ1. (68)

Therefore, we obtain

|xi1(t)|X0
≤ e−((N−2)a∗+a∗)(t−t̃1)|xi1(t̃1)|X0

+ (1− e−((N−2)a∗+a∗)(t−t̃1)) · (N − 2)a∗
√
d∗ + ε+ a∗ξ1

(N − 2)a∗ + a∗

for t ∈ [t̃1, t̃1 + τD), which implies

|xi1(t̃1 + τD)|X0
≤ ζ1 , w0

√
d∗ + ε+ (1− w0)ξ1, (69)

where w0 is defined in (24). Furthermore, applying the same

analysis of (65) on node i1, one has that when t ∈ [t̃1+τD,∞),

|xi1(t)|X0
≤ e−(N−1)a∗(t−(t̃1+τD))ζ1

+ (1− e−(N−1)a∗(t−(t̃1+τD)))
√
d∗ + ε, (70)
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Combing (66), (69) and (70), we obtain

|xi1(t)|X0
≤ m1ζ0 + (1−m1)

√
d∗ + ε, (71)

for all t ∈ [t̃1+τD, t̂k0
+(N−1)T0], where m1 = (1−w0)ς

2
0 .

(71) also holds for i0 since 0 < ς0 < m1 < 1.

We can proceed to find a node i2 ∈ V such that there is

an arc leaving from {i0, i1} entering i2 in G([t̂k0
+ T0, t̂k0

+
2T0)) because Gσ(t) is uniformly jointly strongly connected.

Meanwhile, similar analysis will result in estimations for agent

i2 with the form (71) by m2 = ((1− w0)ς
2
0 )

2.

Repeating similar analysis on time intervals [t̂k0
+2T0, t̂k0

+
3T0], . . . , [t̂k0

+(N −2)T0, t̂k0
+(N −1)T0] respectively, and

finally, by mN−1 = ((1− w0)ς
2
0 )

N−1, we obtain

|xi(t̂k0
+NT0)|X0

≤ mN−1ζ0 + (1−mN−1)
√
d∗ + ε (72)

for all i = 1, . . . , N , which yields

d(t̂k0
+NT0) ≤ mN−1ζ0 + (1−mN−1)

√
d∗ + ε. (73)

Note that, (73) contradicts the definition of d∗ since

mN−1ζ0 + (1−mN−1)
√
d∗ + ε <

√
d∗ for sufficiently small

ε. The conclusion holds.

Bidirectional Case: When i0 has no neighbor for t ∈ [t̂k0
, s],

by (17) we see that

|xi0(t)|X0
≤ |xi0(t̂k0

)|X0
= ζ0, t ∈ [t̂k0

, s]. (74)

Denote the first moment when i0 has at least one neighbor

during t ∈ [t̂k0
,∞) as t̃1, and denote the neighbor set of i0

for t ∈ [t̃1, t̃1+τD) as V1. Then, by a similar analysis as (66),

one has

|xi0(t)|X0
≤ ξ̂1 , ς̂0ζ0 + (1− ς̂0)

√
d∗ + ε, t ∈ [t̃1, t̃1 + τD]

(75)

with ς̂0 = e−(N−1)a∗τD . Thus, according to the same process

by which we obtain (69), one also obtains

|xi1(t̃1 + τD)|X0
≤ w0

√
d∗ + ε+ (1− w0)ξ̂1

= m̂1ζ0 + (1− m̂1)
√
d∗ + ε, (76)

where m̂1 = ς̂0(1− w0).
Similarly, we can define t̃2 as the first moment when there

is another node connected to {i0} ∪ V1 during t ≥ t̃1 + τD.

Let V2 be the node set which connect to {i0}∪V1 at t̃2. Since

we have the dwell time for σ(t), without loss of generality,

we can always assume that all the links between {i0} ∪ V1

and V2 last for at least τD time starting from t̃2. Moreover,

similar estimations will lead to

|xi2(t̃2 + τD)|X0
≤ m̂2ζ0 + (1− m̂2)

√
d∗ + ε

for all i2 ∈ {i0} ∪ V1 ∪ V2, where m̂2 = (ς̂0(1− w0))
2.

Furthermore, since Gσ(t) is IJC, we can always proceed the

upper process until V = {i0} ∪ V1 ∪ · · · ∪ Vj0 , and then we

obtain

|xi(t̃j0 + τD)|X0
≤ m̂j0ζ0 + (1− m̂j0)

√
d∗ + ε,

with m̂j0 = (ς̂0(1 − w0))
j0 , which contradicts the definition

of d∗. Then the conclusion holds for bidirectional case.

The proof is completed. �
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