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Abstract

Mechanisms for dividing a set of goods amongst a
number of autonomous agents need to balance ef-
ficiency and fairness requirements. A common in-
terpretation of fairness is envy-freeness, while ef-
ficiency is usually understood as yielding maximal
overall utility. We show how to set up a distributed
negotiation framework that will allow a group of
agents to reach an allocation of goods that is both
efficient and envy-free.

1 Introduction

There are often two opposing requirements that we apply
when judging the quality of an allocation of goods to a num-
ber of autonomous agents: efficiency and fairness [Moulin,
1988]. While the quest for economically efficient outcomes
is well aligned with the highly successful approach of mod-
elling agents as rational players in the game-theoretical sense,
fairness is much more elusive and has generally achieved far
less attention in the AI community (but recent exceptions in-
clude, for instance, the work of Bouveret and Lang [2005],
Endriss et al. [2006], and Lipton et al. [2004]).

In this paper, we interpret fairness as envy-freeness. An
allocation of goods is envy-free if no agent would prefer to
receive the bundle assigned to one of its peers rather than
its own [Brams and Taylor, 1996]. Efficiency is interpreted
as maximising utilitarian social welfare, i.e. as maximising
the sum of the utilities of the individual agents [Moulin,
1988]. We are interested in identifying those efficient al-
locations of goods to agents that are also envy-free. More
specifically, we are interested in reaching such allocations by
means of a distributed negotiation process [Sandholm, 1998;
Endriss et al., 2006; Dunne et al., 2005]. That is, rather than
developing a “centralised” algorithm to compute such an allo-
cation, we want agents to be able to reach the desired state in
an interactive manner by means of a sequence of deals they
negotiate locally, driven by their own interests and without
regard for the global optimisation problem.

The paper is organised as follows. In Section 2 we review
the distributed negotiation framework adopted. Section 3 for-
mally defines the concept of envy-freeness and gives a proof
for the existence of efficient envy-free states in the presence
of money, for the case of supermodular valuations. Section 4

discusses how to reach such states by means of distributed
negotiation. We prove a general convergence theorem for su-
permodular valuations, and show that very simple deals over
one resource at a time suffice to guarantee convergence in the
modular case. Next, to be able to study how envy evolves
over the course of a negotiation process, we introduce differ-
ent metrics for the degree of envy in Section 5. We have used
these metrics in a number of experiments aimed at analysing
how envy evolves in modular domains. The results of these
experiments are reported in Section 6. Section 7 concludes.

2 Distributed Negotiation Settings

In this section, we briefly review the distributed negotiation
framework we adopt in this paper [Endriss et al., 2006].

2.1 Basic Definitions

Let A = {1..n} be a finite set of agents and let R be a finite
set of indivisible resources (which we also refer to as goods).
An allocation is a partitioning of the items in R amongst the
agents in A (i.e. each good must be owned by exactly one
agent). As an example, allocation A, defined via A(i) = {r1}
and A(j) = {r2, r3}, would allocate r1 to agent i, and r2 and
r3 to agent j. The interests of individual agents i ∈ A are
modelled using valuation functions vi : 2R → R, mapping
bundles of goods to real numbers. Throughout this paper,
we shall make the assumption that all valuations vi are nor-
malised in the sense that vi({ }) = 0. Technically, this is not
a significant restriction, but it greatly eases presentation. We
sometimes use vi(A) as a shorthand for vi(A(i)), the value
agent i assigns to the bundle received in allocation A.

Agents negotiate sequences of deals to improve their own
welfare. A deal δ = (A, A′) is a pair of allocations (with
A �= A′), specifying the situation before and afterwards. Ob-
serve that a single deal may involve the reassignment of any
number of goods amongst any number of agents. A 1-deal
is a deal involving only a single resource (and hence only
two agents). The set of agents involved in the deal δ is de-
noted as Aδ . Deals may be accompanied by monetary side
payments to allow agents to compensate others for otherwise
disadvantageous deals. This is modelled using so-called pay-
ment functions (PFs): p : A → R, which are required to
satisfy

∑
i∈A

p(i) = 0. A positive value p(i) indicates that
agent i pays money, while a negative value means that the
agent receives money. We associate each allocation A that is
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reached in a sequence of deals with a function π : A → R

mapping agents to the sum of payments they have made so
far, i.e. we also have

∑
i∈A

π(i) = 0. A state of the system

is a pair (A, π) of an allocation A and a payment balance π.
Each agent i ∈ A is also equipped with a utility function

ui : 2R × R → R mapping pairs of bundles and previous
payments to real numbers. These are fully determined by the
valuation functions: ui(R, x) = vi(R) − x. That is, utilities
are quasi-linear: they are linear in the monetary component,
but the valuation over bundles of goods may be any set func-
tion. For example, ui(A(i), π(i)) is the utility of agent i in
state (A, π), while ui(A(j), π(j)) is the utility that i would
experience if it were to swap places with j (in terms of both
the bundle owned, and the sum of payments made so far).

2.2 Individual Rationality and Efficiency

Agents are assumed to only negotiate individually rational
(IR) deals, i.e. deals that benefit everyone involved:

Definition 1 (IR deals) A deal δ = (A, A′) is called individ-
ually rational iff there exists a payment function p such that
vi(A

′) − vi(A) > p(i) for all agents i ∈ A, except possibly
p(i) = 0 for agents i with A(i) = A′(i).

While negotiation is driven by the individual preferences of
agents, we are interested in reaching states that are attractive
from a “social” point of view. A common metric for effi-
ciency is (utilitarian) social welfare [Moulin, 1988]:

Definition 2 (Social welfare) The social welfare of an allo-
cation A is defined as sw(A) =

∑
i∈A

vi(A(i)).

We also speak of the social welfare of a state (A, π). As
the sum of all π(i) is always 0, the two notions coincide, i.e.
it does not matter whether we define social welfare in terms
of valuations or in terms of utilities. A state/allocation with
maximal social welfare is called efficient. A central result in
distributed negotiation is due to Sandholm [1998]:

Theorem 1 (Convergence) Any sequence of IR deals will
eventually result in an efficient allocation of goods.

This result guarantees that agents can agree on any sequence
of deals meeting the IR condition without getting stuck in a
local optimum; and there can be no infinite sequence of IR
deals. On the downside, this result presupposes that agents
are able to negotiate complex multilateral deals between any
number of agents and involving any number of goods.

A valuation function v is modular iff v(R1 ∪ R2) =
v(R1)+ v(R2)− v(R1∩R2) for all bundles R1, R2 ⊆ R. In
modular domains, we can get a much stronger convergence
result [Endriss et al., 2006]:

Theorem 2 (Simple convergence) If all valuation functions
are modular, then any sequence of IR 1-deals will eventually
result in an efficient allocation of goods.

2.3 Payment Functions

Requiring deals to be IR puts restrictions on what deals are
possible at all and it limits the range of possible payments,
but it does not determine the precise side payments to be
made. This is a matter to be negotiated by the participating

agents. Estivie et al. [2006] introduce several concrete pay-
ment functions that agents may choose to adopt. The two sim-
plest ones are the locally uniform payment function (LUPF)
and the globally uniform payment function (GUPF).

Choosing a PF amounts to choosing how to distribute the
social surplus sw(A′)− sw(A) generated by a deal δ =
(A, A′). It is known that the social surplus is positive iff δ
is IR [Endriss et al., 2006]. The LUPF divides this amount
equally amongst the participating agents Aδ; the GUPF di-
vides it equally amongst all agents A:

LUPF: p(i) = [vi(A
′)− vi(A)] − [sw(A′)−sw(A)]/|Aδ|

if i ∈ Aδ and 0 otherwise

GUPF: p(i) = [vi(A
′)− vi(A)] − [sw(A′)−sw(A)]/n

3 Envy-freeness

An important aspect of fairness is the absence of envy [Brams
and Taylor, 1996]. In this section, we give two definitions of
envy-freeness: the first applies to allocations of goods alone,
while the second also takes previous payments into account.
While the first may be in conflict with efficiency require-
ments, for the second definition there always exists a nego-
tiation state that is both efficient and envy-free.

3.1 Envy-free Allocations of Goods

In the context of our negotiation framework, the concept of
envy-freeness can be formally defined as follows:

Definition 3 (Envy-freeness) An allocation A is called
envy-free iff vi(A(i)) ≥ vi(A(j)) for all agents i, j ∈ A.

Observe that, were we not to require that all goods be allo-
cated, it would be easy to find an envy-free allocation: sim-
ply allocate the empty bundle to each agent. On the other
hand, it is well-known that if we either require all goods to be
allocated (so-called complete allocations), or if we restrict in-
terest to allocations that are Pareto optimal, then an envy-free
allocation may not always exist (just think of the case of two
agents and a single good). Bouveret and Lang [2005] have in-
vestigated the computational complexity of checking whether
a given negotiation problem admits an allocation that is envy-
free. One of the simpler results states that checking whether
there exists a complete and envy-free allocation is NP-hard,
even if there are only two agents and these agents use the
same dichotomous and monotonic valuation function.1

3.2 Envy-freeness in the Presence of Money

Definition 3 is the standard definition of envy-freeness, which
applies to domains without transferable utility; that is, it does
not (yet) take the monetary component of our negotiation
framework into account. Next, we define envy-freeness with
respect to full negotiation states:

Definition 4 (EF states) A state (A, π) is called envy-free iff
ui(A(i), π(i)) ≥ ui(A(j), π(j)) for all agents i, j ∈ A.

A state that is both efficient and envy-free is called an EEF
state. This corresponds to Pareto optimal and envy-free allo-
cations without money.

1A valuation v is dichotomous iff v(R) = 0 or v(R) = 1 for any
R ⊆ R; v is monotonic iff v(R1) ≤ v(R2) whenever R1 ⊆ R2.
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How does the move to a definition that explicitly accounts
for payments affect the existence of envy-free states? In fact,
in the presence of money, states that are both efficient and
envy-free are known to always exist [Alkan et al., 1991].
While the proof given by Alkan et al. is rather involved, in
the case of supermodular valuations we can give a very sim-
ple existence argument. A valuation v is supermodular iff
v(R1 ∪ R2) ≥ v(R1) + v(R2) − v(R1 ∩ R2) for all bundles
R1, R2 ⊆ R. We show a proof here, as this will be helpful in
following some of the material later on (cf. Section 4.2).

Theorem 3 (Existence of EEF states) If all valuations are
supermodular, then an EEF state always exists.

Proof. There clearly always exists an allocation that is effi-
cient: some allocation must yield a maximal sum of individ-
ual valuations. Let A∗ be such an efficient allocation. We
show that a payment balance π∗ can be arranged such that
the state (A∗, π∗) is EEF. Define π∗(i) for each agent i:

π∗(i) = vi(A
∗) − sw(A∗)/n

First, note that π∗ is a valid payment balance: the π∗(i) do
indeed sum up to 0. Now let i, j ∈ A be any two agents in
the system. We show that i does not envy j in state (A∗, π∗).
As A∗ is efficient, giving both A∗(i) and A∗(j) to i will not
increase social welfare any further:

vi(A
∗(i)) + vj(A

∗(j)) ≥ vi(A
∗(i) ∪ A∗(j))

As vi is assumed to be supermodular, this entails:

vi(A
∗(i)) + vj(A

∗(j)) ≥ vi(A
∗(i)) + vi(A

∗(j))

Adding sw(A∗)/n to both sides of this inequation, together
with some simple rearrangements, yields ui(A

∗(i), π∗(i)) ≥
ui(A

∗(j), π∗(j)), i.e. agent i does indeed not envy agent j.
Hence, (A∗, π∗) is not only efficient, but also envy-free. �

This is an encouraging result: for the definitions adopted in
this paper, efficiency and fairness are compatible. However,
the mere existence of an EEF state alone is not sufficient
in the context of negotiation amongst autonomous agents.
Why should rational decision-makers accept the allocation
and payments prescribed by the proof of Theorem 3? And
even if they do, how can we compute them in practice? Just
finding an efficient allocation is already known to be NP-hard
[Rothkopf et al., 1998]. Finally, as argued in the introduction,
we are interested in a distributed procedure, where agents
identify the optimal state in an interactive manner.

4 Reaching Efficient Envy-free States

In this section, we discuss to what extent EEF states can be
reached by means of negotiation in a distributed manner.

4.1 Envy-freeness and Individual Rationality

In the previous section, we have seen that envy-freeness and
efficiency are compatible in our framework. However, this
does not necessarily mean that also envy-freeness and indi-
vidual rationality will be compatible. And indeed, the follow-
ing example (involving two agents and just a single resource)
shows that this is not the case:

v1({r}) = 4 v2({r}) = 7

Suppose agent 1 holds r in the initial allocation A0. There
is only a single possible deal, which amounts to passing r to
agent 2, and which will result in the efficient allocation A∗.
How should payments be arranged? To ensure that the deal
is IR for both agents, agent 2 should pay agent 1 any amount
in the open interval (4, 7). On the other hand, to ensure that
the final state is envy-free, agent 2 should pay any amount in
the closed interval [2, 3.5]. The two intervals do not overlap.
This means that, while we will be able to reach negotiation
outcomes that are EEF, it is simply not possible in all cases to
do so by means of a process that is fully IR.

For the procedure proposed in the sequel, we are going to
circumvent this problem by introducing a one-off initial pay-
ment that may not be IR for all the agents involved:

π0(i) = vi(A0) − sw(A0)/n

That is, each agent has to first pay an amount equivalent to
their valuation of the initial allocation A0, and will then re-
ceive an equal share of the social welfare as a kick-back. We
refer to this as making an initial equitability payment. Note
that this payment does not achieve envy-freeness (and it does
not affect efficiency at all). All it does is to “level the playing
field”. In the special case where none of the agents has an
interest in the goods they hold initially (vi(A0) = 0 for all
i ∈ A), the initial payments reduce to 0.

4.2 Convergence in Supermodular Domains

We are now going to prove a central result on the reachability
of EEF states by means of distributed negotiation. The result
applies to supermodular domains and assumes that initial eq-
uitability payments have been made. It states that, if agents
only implement deals that are individually rational (IR) and
they use the globally uniform payment function (GUPF) each
time to determine the exact payments, then negotiation will
eventually terminate (i.e. no more such deals will be possible)
and the final state reached will be both efficient and envy-free
(EEF). Importantly, this will be the case whichever deals (that
are meeting these conditions) the agents choose to implement,
i.e. we can never get stuck in a local optimum. In short:

Theorem 4 (Convergence with GUPF) If all valuations are
supermodular and if initial equitability payments have been
made, then any sequence of IR deals using the GUPF will
eventually result in an EEF state.

Proof. We first show that the following invariant will be true
for every state (A, π) and every agent i, provided that agents
only negotiate IR deals using the GUPF:

π(i) = vi(A) − sw(A)/n (1)

Our proof proceeds by induction over the number of deals
negotiated. As we assume that initial equitability payments
have been made, claim (1) will certainly be true for the initial
state (A0, π0). Now let δ = (A, A′) and assume (1) holds for
A and the associated payment balance π. We obtain the pay-
ment balance π′ associated with A′ by adding the appropriate
GUPF payments to π:

π′(i) = π(i) + [vi(A
′)−vi(A)] − [sw(A′)−sw(A)]/n

= vi(A
′) − sw(A′)/n �
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This proves our claim (1). Now, Theorem 1 shows that ne-
gotiation via IR deals (whichever PF is used) must eventually
terminate and that the final allocation will be efficient. Let
A∗ be that allocation, and let π∗ be the associated payment
balance. Equation (1) also applies to (A∗, π∗). But as we
have already seen in the proof of Theorem 3, the efficiency
of A∗ together with equation (1) applied to (A∗, π∗) implies
that (A∗, π∗) must be an EEF state. �

Theorem 4 may seem surprising. As pointed out elsewhere
[Endriss et al., 2006], it is not possible to define a “local”
criterion for the acceptability of deals (which can be checked
taking only the utilities of the agents involved into account)
that would guarantee that a sequence of such deals always
converges to an envy-free state. We circumvent this problem
here by using the GUPF, which adds a (very limited) non-
local element. Only the agents involved in a deal can ever be
asked to give away money, and all payments can be computed
taking only the utilities of those involved into account.

4.3 Convergence in Modular Domains

In modular domains, we can even guarantee convergence to
an EEF state by means of 1-deals (over one item at a time):

Theorem 5 (Simple convergence with GUPF) If all valua-
tion functions are modular and if initial equitability payments
have been made, then any sequence of IR 1-deals using the
GUPF will eventually result in an EEF state.

Proof. This works as for Theorem 4, except that we rely on
Theorem 2 for convergence by means of 1-deals (in place of
Theorem 1). Note that Theorem 3 still applies, because any
modular valuation is also supermodular. �

4.4 Related Work

There has been some work on procedures for finding EEF
states in the social choice literature [Alkan et al., 1991;
Klijn, 2000; Haake et al., 2002], albeit with little or no at-
tention to computational issues. The work of Haake et al.
is particularly interesting. They propose two variants of the
same procedure, the first of which assumes that an efficient
allocation is given to begin with. The actual procedure deter-
mines compensatory payments to envious agents such that an
EEF state will eventually be reached. While their solution is
very elegant and intuitively appealing, it fails to address the
main issue as far as the computational aspect of the problem
is concerned: by taking the efficient allocation as given, the
problem is being limited to finding an appropriate payment
balance. Certainly for supermodular domains, our proof of
Theorem 3 shows that this is not a combinatorial problem.

The second procedure put forward by Haake et al. [2002]

interleaves reallocations for increasing efficiency with pay-
ments for eliminating envy. However, here the authors also
do not address a combinatorial problem, because they as-
sume “exogenously given bundles”. That is, negotiation re-
lates only to who gets which bundle, but the composition of
the bundles themselves cannot be altered. This is equivalent
to allocating n objects to n agents—not an NP-hard problem.

5 Degrees of Envy

The convergence theorems of the previous section show that
envy-freeness can be a guaranteed outcome of our negotia-
tion process, under specific assumptions. But this is of course
far from being the final word on this topic. The PF involved
in proving Theorem 4 introduces a non-local element, in the
sense that it redistributes the social surplus over the whole
society. How would a local PF, like the LUPF, behave in
comparison? Also, agents need to start negotiation with a
non-IR payment. But how does this affect the results in prac-
tice? Lastly, the convergence theorems do not say how envy
evolves over the course of negotiation. Because negotiation
can become very long in practice, it is likely that the process
will have to be be stopped before completion. In that event, it
would be valuable to be able to guarantee some monotonicity
properties—but with respect to what parameter?

To address such questions, not only the mere classification
of a society as being envy-free or not is needed. It is important
to investigate to what degree we may be able to approximate
the ideal of envy-freeness. In the remainder of this section,
we discuss several options for defining such a metric. We
propose to analyse the degree of envy of a society as a three-
level aggregation process, starting with envy between agents,
over envy of a single agent, to eventually provide a definition
for the degree of envy of a society.

5.1 Envy between Agents

How much does agent i envy agent j in state (A, π)? Gen-
erally speaking, when assessing the degree of envy between
two agents, we can either focus on agents that we indeed envy
(positive envy, epos), or consider both agents that appear to be
better off, of course, but also agents we believe to be in a sit-
uation worse than ours (total envy, etot).

etot(i, j) = ui(A(j), π(j)) − ui(A(i), π(i))

epos(i, j) = max{etot(i, j), 0}

While the latter option (epos) seems to fit best with our intu-
itions about envy, the former (etot) may be justifiable if we
want agents to be able to compensate for envy.

5.2 Degree of Envy of a Single Agent

How envious is a single agent i in state (A, π)? This notion
considers the agent in relation with many other agents. A first
option would be to count the number of agents that i envies.
This arguably only makes sense when epos is used to assess
the envy between two agents.

e0−1,pos(i) =

{
1 if ∃j : epos(i, j) �= 0
0 otherwise

More fine-grained, quantitative measures would also account
for how envious an agent is. At least two obvious options
for doing this come to mind. Firstly, we could measure how
much our agent envies the agent it envies the most (emax,op).
Or we could compute the sum of envies it experiences with
respect to all the agents in the system (esum,op).

emax,op(i) = maxj eop(i, j) where op ∈ {pos, tot}

esum,op(i) =
∑

j eop(i, j) where op ∈ {pos, tot}

Note that these two options can be of interest whatever the op-
erator chosen to compute the degree of envy between agents.
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5.3 Degree of Envy of a Society

Given the degrees of envy of each individual agent in a sys-
tem for a given negotiation state, we can now define suit-
able aggregation operators to yield the degree of envy for the
agent society as a whole. As for the aggregation of individual
preferences to obtain a social preference ordering [Moulin,
1988], there are a multitude of different options available for
doing this. Here we just mention two options that appear
particularly appropriate in our context: the max- and sum-
operators. Using the max operator must be interpreted as
focusing on the most envious agent of the society (whatever
operator was chosen to measure that), while the sum (or av-
erage) provides a more global picture of the situation. Lipton
et al. [2004], for instance, use emax,max,pos to describe the
degree of envy of a society. This is the maximum envy expe-
rienced by any agent, where each agent measures their envy
as the difference to the opponent they envy the most.

5.4 Discussion

The different measures of envy introduced here are by no
means exhaustive. Other options for aggregating degrees
of envy could be used, e.g. based on the leximin-ordering
[Moulin, 1988]. However, by just combining the options
listed here, we obtain several candidate measures of envy.
Some of them are of course much more natural than oth-
ers, as our discussion already suggested. While this question
would certainly necessitate a deeper discussion, we only pro-
vide here some basic justification that supports the choice of
the measure we decided to use in this paper. Note first that a
basic requirement of these measures would be that the degree
of envy should be ≤ 0 iff that allocation is envy-free. This al-
ready rules out any measure based on etot. As for the rest, it is
mostly a matter of what aspect you want to study as a priority.
In what follows, we use two measures: the number of envi-
ous agents (esum,0−1,pos), because it gives a good snapshot
of the distribution of envy within the society; and the sum of
the sum of envies (esum,sum,pos), because it also reflects the
overall magnitude of envy, which the previous one misses.

6 Analysis of Modular Domains

In this section, we report on a first experimental analysis of
how close we can get to the ideal of an EEF state, if we do
not make the initial equitability payment required by our con-
vergence theorems; that is, if we use a framework that is fully
IR. We restrict ourselves to the case of modular domains.

6.1 Experimental Setup

The experiments discussed in this section have been carried
out using a simple simulation platform. After creating a num-
ber of virtual agents and resources, we randomly distribute
the resources amongst the agents and randomly generate val-
uation functions for them. Negotiation is simulated by going
for each (randomly chosen) agent through all the goods cur-
rently held by that agent and trying to find a potential partner
with whom an IR 1-deal over that good can be agreed upon.
This process is repeated until no more IR 1-deals are possi-
ble. As we restrict ourselves to modular valuations, the final
allocation is known to always be efficient (cf. Theorem 2).

For all the experiments reported, the number of agents is
n = 20. The number |R| of resources in the system varies
between 50 and 500, depending on the experiment. For each
agent, we randomly choose 50 distinguished resources. To all
the other resources, the agent in question assigns valuation 0.
For each of the distinguished resources, we randomly draw a
weight from the uniform distribution over the set {1..100} to
determine the (modular) valuation function of that agent.

6.2 Envy over Time

The first set of experiments is aimed at clarifying how envy
evolves over the course of negotiation. Before turning to the
experiments, we observe the following fact: If an agent with
a modular valuation function makes an IR bilateral deal, this
will reduce its envy towards its trading partner. This means
that the envy between the two agents cutting a deal will al-
ways reduce. However, non-concerned agents may become
more envious than before, because one of those two agents
may have improved its lot according to their own valuation.

Figure 1: Evolution of envy over time (150 goods)

This makes it difficult to predict how overall envy will be
affected by a deal. A typical example is given in Figure 1.
The figure shows the sum of positive envies after each deal,
for one particular negotiation process. The payment function
used is the LUPF (without any initial payments). As we can
see, after about 320 deals negotiation terminates and we have
reached an allocation that is almost envy-free. Figure 1 shows
that the degree of envy does not diminish strictly monotoni-
cally. On the other hand, the graph suggests (and more exten-
sive experiments, not shown here, clearly demonstrate), that
envy does diminish monotonically on average. Further exper-
iments show that the GUPF (also without initial payments)
performs slightly better than the LUPF (faster convergence
and lower overall envy in the end).

6.3 Impact of Number of Resources

While for the example shown in Figure 1 we do not reach an
EEF state, it seems nevertheless remarkable that we get rather
close. It turns out that how close we can get depends very
strongly on the number of goods in the system. This issue is
analysed in more detail in our second set of experiments. An
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example is given in Figure 2. It shows the number of envious
agents in the final state of negotiation, as a function of the
number of goods in the system (average of 100 runs each).
For this experiment, the standard deviation ranges from (al-
most) 0 to 4.2, depending on the number of resources.

Figure 2: Number of envious agents in the final state

Note that for valuations generated using a uniform distribu-
tion, as is the case here, the initial degree of envy will always
be rather high, independently of the number of goods (on av-
erage, 19 out of 20 agents are envious to begin with—data not
shown here). This can be explained by the fact that the ini-
tial allocation is independent of agent preferences, so for any
agent the chance of liking a particular bundle more than its
own is already 50%. On the other hand, as our experiments
show, the potential for rational negotiation to reduce or even
fully eliminate envy improves dramatically as the number of
goods increases. This can be explained, at least in part, by
the fact that for a high number of goods the probability of
an agent receiving several of their top goods in the efficient
allocation is very high. For instance, if each agent has 50 dis-
tinguished goods, it will on average value 5 of them between
90 and 100. It is then very unlikely that any of the other 19
agents will also value these 5 goods that highly, when there
are, say, 500 items in the system. So the fact that we are using
a uniform distribution does go some way towards explaining
these, nevertheless surprising, results. Finally, as Figure 2
shows, the GUPF does better than the LUPF.

7 Conclusion

This paper has addressed the question of the fairness (under-
stood here as envy-freeness) of allocations obtained when one
lets rational decision-makers negotiate over indivisible goods.
We show in particular that EEF outcomes can be guaranteed
in supermodular domains, provided agents initiate the process
with some equitability payments that are not necessarily IR
(but envy-freeness cannot be guaranteed with a fully rational
process). To appreciate how this initial payment affects nego-
tiation, we report on experimental results in modular domains
where no such payments are made. The experiments demon-
strate that envy decreases on average (although not monoton-
ically) over a negotiation, and even tends towards zero at the

end of the negotiation when the number of goods is large.
There are many potential extensions of this work. Perhaps

the most obvious concerns the experimental study of non-
modular domains. Theorem 4 still holds in supermodular do-
mains, and it would be interesting to see how negotiation pro-
ceeds in these domains, when the efficient allocation may not
be reached in practice. Another tempting avenue of research
is the design of local PFs specially customised to help ap-
proach envy-freeness as much as possible. While it is known
that no such perfect PF can exist, more systematic experi-
ments could shed a light on what makes a PF well-behaved.
At last, this work makes the assumption that each agent has
full knowledge of the bundles held by the others; this can be
unrealistic in many applications. There are different ways to
alleviate this, for instance by assuming that agents have a par-
tial (pre-defined or dynamic) perception of the society.
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