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Abstract

We study a variety of optimal investment problems for objectives related to attaining
goals by a fixed terminal time. We start by finding the policy that maximizes the
probability of reaching a given wealth level by a given fixed terminal time, for the
case where an investor can allocate his wealth at any time between n + 1 investment
opportunities: n risky stocks, as well as a risk-free asset that has a positive return.
This generalizes results recently obtained by Kulldorff and Heath for the case of a
single investment opportunity. We then use this to solve related problems for cases
where the investor has an external source of income, and where the investor is interested
solely in beating the return of a given stochastic benchmark, as is sometimes the case
in institutional money management. One of the benchmarks we consider for this last
problem is that of the return of the optimal growth policy, for which the resulting
controlled process is a supermartingale. Nevertheless, we still find an optimal strategy.
For the general case, we provide a thorough analysis of the optimal strategy, and obtain
new insights into the behavior of the optimal policy. For one special case, namely that
of a single stock with constant coefficients, the optimal policy is independent of the
underlying drift. We explain this by exhibiting a correspondence between the probability
maximizing results and the pricing and hedging of a particular derivative security, known
as a digital or binary option. In fact, we show that for this case, the optimal policy to
maximize the probability of reaching a given value of wealth by a predetermined time
is equivalent to simply buying a European digital option with a particular strike price
and payoff. A similar result holds for the general case, but with the stock replaced by a
particular (index) portfolio, namely the optimal growth or log-optimal portfolio.

Keywords: Optimal gambling; stochastic control; portfolio theory; martingales; option
pricing; hedging strategies; digital options
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1. Introduction

There are various approaches to the problem of determining optimal dynamic investment
policies, depending on the objectives of the investor. In continuous time, which is the setting
in this paper, optimal dynamic investment policies for the objective of maximizing expected
utility derived from terminal wealth or consumption over a finite horizon as well as discounted
utility of consumption over the infinite horizon are derived in the pioneering work of Merton
[15]. Generalizations of the utility maximizing approach that incorporate bankruptcies as
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well as more general price processes than those considered earlier are surveyed in [16] and
[7]. These results also have substantial implication for the pricing and hedging of contingent
claims, see for example [5].

However, there are many investment scenarios where approaches alternative to that of
utility maximization might be preferable. In particular, many actual investment objectives
are related solely to the achievement of specific goals. For example, in institutional money
management, the practice of benchmarking is quite prevalent. In this scenario, a portfolio
manager is judged solely by how his portfolio performs relative to that of another benchmark
portfolio, or index. The Standard and Poor’s (S&P) 500 index is a typical example of a
benchmark. There is a distinction made between passive portfolio management, and active
portfolio management (see, e.g., [20]). A passive portfolio manager is simply interested in
tracking the index, while an active portfolio manager is interested in beating the return of
the predetermined given benchmark or index. From the viewpoint taken here, the passive
portfolio manager’s investment decision is uninteresting, since we assume that for all intents
and purposes, a passive portfolio manager can simply invest directly in the benchmark. The
active portfolio manager faces an interesting problem however, since he is investing in order
to beat a ‘goal’. The goal the active portfolio manager is trying to beat is the stochastic return
of the benchmark. In this paper we treat this among other goal problems. The active portfolio
management problem is also relevant to the hedging of contingent claims, where in that setting,
the benchmark portfolio would be taken to be the replicating strategy of the contingent claim.

Optimal investment policies for objectives relating solely to the achievement of goals have
been studied previously, although perhaps not to the extent that utility maximization has. For
illustration, suppose the investor starts off with initial capital 0 < X0 < b. Then, some
classical problems include determining an investment policy that (if appropriate) maximizes
the probability of reaching b before 0, or (if appropriate) minimizes the expected time to the
upper goal b. We can refer to these, respectively, as the survival problem, and the growth
problem. In discrete time, and over an infinite horizon, the survival problem is the centerpiece
of the classical work of Dubins and Savage [6], and the growth problem was studied in [2] and
[9]. In continuous time, the survival problem over an infinite horizon for diffusion processes
was studied in [17, 18]. Survival problems related to various generalizations of the portfolio
problem of Merton [15] were studied in [3] and [4] (see also [14]). The growth problem in
continuous time was studied in a general framework in [11], [16, Chapter 6], and generalized
to a model that incorporated liabilities in [4]. However, all these results are specific to the
case of an infinite horizon. Since the performance of money managers is not judged over the
infinite horizon, but rather over a finite (sometimes quite short) horizon, these studies are not
directly applicable to the problem of active portfolio management. Similarly, in pension fund
management, the horizon is typically finite. With a finite horizon, the distinction between
a survival problem and a growth problem tends to blur, since in both cases they relate to
maximizing probabilities: the survival problem would be to maximize the probability that the
lower goal is not hit before the horizon, while the growth problem would be to maximize the
probability that the upper goal is hit before the deadline.

A finite-horizon goal problem was studied recently by Kulldorff [13], for a model with
a single risky favorable investment opportunity. Kulldorff obtained the optimal investment
policy for the objective of maximizing the probability that wealth attains a given constant
goal by a fixed terminal time. Both continuous and discrete time problems were considered
there. For the continuous time version of the problem, the return of the single risky asset was
modeled as a Brownian motion with a time-dependent drift coefficient and a constant diffusion
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coefficient. The goal as well as the constant diffusion coefficient were both normalized to 1.
Heath, in [10], considered the same model, but with constant drift as well and took a somewhat
different approach to establish the same results as in [13]. In both cases, there was no risk-free
asset available other than cash, which had a zero return. One of the interesting features of their
policy was the fact that for the case of a constant drift, the optimal policy was independent of
this underlying drift. No explanation of this rather remarkable fact was given.

In this paper, we address a variety of more general goal problems, all with probability
maximizing objectives. To that end we first generalize the important results of [10] and [13]
in a few fundamental ways: first, we expand the investment opportunity set to include a risk-
free asset that has a (positive) time-dependent rate of return, as well as multiple risky assets
with time-varying covariance structure. We also obtain new representations and analysis of the
resulting optimal policy. We then extend our general results to treat cases where the investor
earns income from an exogenous source, and where the investor’s objective is to beat the
(stochastic) return of a given benchmark portfolio.

The explanation as to why the optimal policy is independent of the underlying drift for the
single stock case with constant coefficients is provided as a byproduct of our analysis for the
more general case. It turns out that when there are multiple risky stocks, the optimal policy, for
maximizing the probability of attaining a preset level of wealth by a finite deadline, is no longer
independent of the drift parameters, even for the case of constant coefficients. The resulting
policy is quite interesting and we provide a new analysis that allows for a complete quantitative
assessment of the risk-taking behavior of an investor following such an objective. Furthermore,
we obtain a new representation of the optimal wealth process. This representation, together
with the addition of a risk-free asset, allows us to exhibit a remarkable correspondence between
the probability maximizing policy and the hedging strategy of a digital option for the single-
stock constant coefficients case. In particular we show that the optimal dynamic investment
strategy for the objective of maximizing the probability of reaching a given goal by a fixed
terminal time is completely equivalent to the (static) investment strategy which simply pur-
chases a European digital call option on the underlying stock, with a particular strike price
and payoff. This result is of independent interest since it provides an example where a policy
which is optimal for an objective stated on wealth, is equivalent to the purchase of an option
on the underlying stock. Moreover, it also implicitly contains the explanation as to why the
optimal policy is independent of the drift in the constant coefficients single-stock case. For
the general case, we are able to show a similar result, however with the single stock replaced
by the return of a particular portfolio policy: the optimal growth, or log-optimal portfolio.
Specifically, we will show that the probability maximizing policy is completely equivalent to
purchasing a European digital option on the return of the log-optimal portfolio.

A summary and outline of the remainder of the paper is as follows: In the next section,
we introduce the basic model with multiple stocks and a risk-free asset with positive return.
In Section 3 we provide the optimal policy for the problem of maximizing the probability of
reaching the goal by terminal time T < ∞, as well as the new representation of the optimal
wealth under this policy (Corollary 3.2 below). The proof is delayed until Section 6. In
Section 4, we then use this representation to show the correspondence between the single stock
case with constant coefficients and a digital option on the stock, as well as the correspondence
with the digital option on the log-optimal portfolio in the general case.

In Section 5, we analyse the optimal policy for the general case. We first show that
the optimal policy can be interpreted as a linear function of wealth, where the coefficient
decomposes into the product of two distinct factors: (1) a purely time-dependent risk factor,
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which is determined solely by the risk premiums of the stocks and the time remaining until
the deadline; and (2) a purely state-dependent function which is parameterized solely by the
current percentage of the distance to the (in our case, time-dependent) goal achieved. As
intuitionwould suggest, the former function typically increases as the horizon decreases, while
the latter function decreases as the percentage increases. The optimal policy is therefore a
dynamic portfolio strategy that continuously rebalances the portfolio weights depending upon
how much time remains to the deadline as well as how close the current wealth is to the goal.
The interplay between these two factors is analysed to a fairly explicit extent next when we
analyse the region where borrowing takes place. It turns out that this region is determined by
a single equation involving the ‘risk-adjusted’ remaining time, and the percentage of the goal
achieved to that point.

In Section 7 we consider the case where the investor earns income from an external source
other than trading gains. We show that contrary to utility maximizing strategies—where an
investor uses the exogenous income to take a more risky position in stocks than he would
otherwise—a ‘probability maximizing’ investor relies on this exogenous income to be more
cautious. In particular, we show that external income causes the investor to incorporate a
performance bound: if the performance of the stocks is such that wealth ever falls to the level
that could have been achieved by simply investing all the previous income into the risk-free
asset, then all investment in the risky stocks ceases.

In Section 8, we consider the case where the investor’s goal is to beat the return of a given
(stochastic) benchmark by a prespecified amount by a predetermined time. We also find the
related policy that allows the investor to control for the downside risk. When the stochastic
benchmark is given by the optimal growth policy, or equivalently, the policy that maximizes
logarithmic utility, which is sometimes referred to as the market portfolio in continuous-time
finance, then certain complications arise. Specifically, it is well known that the ratio of the
return from any arbitrary portfolio strategy to the return generated by the optimal growth
strategy is a nonnegative local martingale, hence a supermartingale. Nevertheless, we find
a policy that does achieve the theoretical upper bound on the probability of beating the return
of the optimal growth by a predetermined amount, and is hence an optimal policy.

2. The model

The model under consideration here is that of a complete market as in [7, 15, 16] and others,
wherein there are n (correlated) risky assets generated by n independent Brownian motions.
The prices of these stocks are assumed to evolve as

dSi(t) = Si(t)

[
µi (t) dt +

n∑
j=1

σi j (t) dW ( j)
t

]
, i = 1, . . . , n, (2.1)

where µi (t), σi j (t) are deterministic functions, for i, j,= 1, . . . , n, and t ≥ 0, and where

W t := (W (1)
t , . . . , (W (n)

t )′ is a standard n-dimensional Brownian motion, defined on the
complete probability space (�,F , P), where {Ft , t ≥ 0} is the P-augmentation of the natural
filtration F W

t = σ {W s ; 0 ≤ s ≤ t}. Thus the stock prices follow a correlated time-dependent
geometric Brownian motion in Rn .

There is also a riskless asset whose price, Bt , evolves according to

dBt = r(t)Bt dt (2.2)
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where r(t) is a deterministic function. It is assumed thatµi (t), σi j (t) and r(t) are all uniformly
bounded in 0 ≤ t < ∞, for all i, j . We also assume that the matrix function σ (t) = (σ(t))i j

is invertible for all 0 ≤ t < ∞, and we will write this inverse as σ−1(t).
Let { ft , 0 ≤ t ≤ T } denote a vector control process where ft = ( f (1)t , . . . , f (n)t )′. The

interpretation of f (i)t is the total amount of money invested in the ith stock at time t . It is
assumed that ft is admissible, in that ft is a non-anticipating, Ft -adapted process that satisfies∫ T

0 f ′
s fs ds < ∞ P-a.s. and keeps the wealth process (to be introduced directly) non-negative

throughout. (This admissibility is a bit stronger than that of [13], but is a standard one in the
theory of finance, see e.g. [7].)

Let X f
t denote the wealth of the investor at time t , under an investment policy { ft }, with

X0 = x . Since any amount not invested in the risky stock is held in the bond, this wealth
process then evolves as

dX f
t =

n∑
i=1

f (i)t
dSi(t)

Si(t)
+
(

X f
t −

n∑
i=1

f (i)t

)
dBt

Bt

=
[

r(t)Xt +
n∑

i=1

f (i)t (µi (t)− r(t))

]
dt +

n∑
i=1

n∑
j=1

f (i)t σi j (t) dW ( j)
t , (2.3)

upon substituting from (2.1) and (2.2). Introducing the (column) vectors µ(t)= (µ1(t), . . . ,
µn(t))′, 1 = (1, . . . , 1)′, and using the matrix function σ (t), we can rewrite (2.3) as

dX f
t = [r(t)X f

t + f ′
t (µ(t)− r(t)1)] dt + f ′

t σ (t) dW t . (2.4)

For Markov control processes { ft , t ≥ 0} and functions 	(t, x) ∈ C1,2, we may therefore
write the generator of the (one-dimensional) wealth process as

A f	(t, x) = 	t + (r(t)x + f ′
t (µ(t)− r(t)1))	x + 1

2 f ′
t �(t) ft	xx , (2.5)

where we have set �(t) = σ (t)σ (t)′. The inverse of this matrix, �−1(t), is assumed to exist
since we assumed a complete market with σ (t) non-singular.

The fundamental vector θ(t), defined by

θ(t) := σ−1(t)(µ(t)− r(t)1) (2.6)

plays a pivotal role here since then according to the Girsanov theorem (cf. [19]) the vector
process

W̃ t = W t +
∫ t

0
θ (s) ds (2.7)

is an n dimensional standard Brownian motion under the measure P̃, where P̃ is the measure
defined by

dP(ω)

d P̃(ω)
= exp

{ ∫ T

0
θ(s)′ dW s + 1

2

∫ T

0
θ (s)′θ(s) ds

}

≡ exp
{ ∫ T

0
θ(s)′ dW̃ s − 1

2

∫ T

0
θ (s)′θ(s) ds

}
. (2.8)
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The measure P̃ is sometimes referred to as the risk-neutral (or equivalent martingale) measure,
and the vector θ(t) is also called the vector of risk premiums, or the market price of risk. For
the sequel we will assume that θ (s) ≥ 0, (equivalently µ(s) ≥ r(s)1) for all s.

In the next section, we will give the optimal policy for the problem of maximizing the
probability that terminal wealth exceeds a predetermined level at the predetermined time T .
The proof of this theorem will be deferred until later, in Section 6.

3. Maximizing the probability of reaching a goal in finite time

In this section, we present the optimal value function and optimal investment policy for
maximizing the probability that terminal wealth at time T exceeds a given threshold b, with
X0 < b.

Let P(t ,x)(·) := P(· |X f
t = x), and let V f (t, x; b) := P(t ,x)(X

f
T ≥ b) for any admissible

policy f . In the following theorem, we give V (t, x; b) := sup f ∈G V f (t, x; b), the optimal
value function, as well as f ∗

t = arg sup f ∈G V f (t, x; b), the associated optimal control policy;
where G denotes the set of admissible controls for an investor whose wealth process evolves
according to (2.3).

Remark on notation. For the sequel, φ(·) denotes the density function (p.d.f.) of a standard
normal variate, and �(·) denotes the associated cumulative distribution function (c.d.f.).

Theorem 3.1. For {X f
t , 0 ≤ t ≤ T } given by (2.3), let V (t, x; b) = sup f ∈G P(t ,x)(X

f
T ≥ b),

with optimal control vector f ∗
t . Then

V (t, x; b) = �

(
�−1

(
x

b R(t, T )

)
+
√∫ T

t
θ(s)′θ (s) ds

)
(3.1)

and the optimal policy, for t < T , is

f ∗
t (x; b)=


 σ−1(t)′θ (t)√∫ T

t θ (s)′θ(s) ds


 bR(t, T ) φ

(
�−1

(
x

b R(t, T )

))
, (3.2)

where R(t, T ) = exp{− ∫ T
t r(s) ds}.

Remark 3.1. Since �−1(u) = ∞ for u ≥ 1, (3.1) shows that for x > bR(t, T ), we would
have V (t, x; b) = 1, and correspondingly, (3.2) shows that we would in that case have f ∗

t = 0,
where 0 = (0, 0, . . . , 0)′, whereby all the investor’s wealth will be invested in the riskless asset.

This is due, of course, to the fact that when there is a risk-free asset available for investment
that has a positive return of r(t) per unit time, the problem of reaching the goal b at time T
from the state (t, x) (i.e., from wealth Xt = x) is non-trivial and interesting only for the case
where x < bR(t, T ), for if the converse holds, i.e., x ≥ bR(t, T ), then the simple strategy of
placing all the current (time t ) wealth into the bond will yield a terminal wealth of x/R(t, T ),
which would in turn beat the goal b with probability 1. Thus ensuring that terminal wealth at
time T exceeds the fixed level b is equivalent to ensuring that for some t < T , wealth exceeds
the time-dependent level bR(t, T ), i.e.,

P

(
sup

0≤s≤T
X f

s ≥ b

)
≡ P

(
X f

t ≥ bR(t, T ), for some t ≤ T
)
.

If in Theorem 3.1 we take n = 1, b = 1, as well as r(s) = 0, and σ(s) = 1 for all s, then we
recover the results of [13, Theorem 7].
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Remark 3.2. Constant coefficients. For the case of constant coefficients, i.e., when σ (t) =
σ ,µ(t) = µ, and r(t) = r, for all t , the results of Theorem 3.1 reduce to

V (t, x; b) = �
(
�−1

(x

b
er(T −t)

)
+
√

θ ′θ(T − t)
)

(3.3)

and the optimal policy, for t < T , is

f ∗
t (x; b) =

[
�−1 (µ − r1)√

θ ′θ (T − t)

]
b e−r(T −t) φ

(
�−1

(x

b
er(T −t)

))
(3.4)

where θ = σ−1(µ − r1) is a constant vector. Note that for this case, when n = 1 (and so there
is only one risky stock), then θ = (µ − r)/σ , and the optimal control f ∗

t reduces, for t < T ,
to

f ∗
t (x; b) =

[
1

σ
√

T − t

]
b e−r(T −t)φ

(
�−1

(x

b
er(T −t)

))
. (3.5)

It is important to note that it is only for this single-stock case that the optimal control is in fact
independent of the underlying drift parameter µ, as is apparent from (3.5). In this case, the
investor always invests less in the risky stock when there is a risk-free asset with r > 0 than
he would in the corresponding case with r = 0, treated earlier in [13] and [10]. This follows
directly from the fact that for any a > 0, e−aφ(z ea) < φ(z), for any z. (In the general case,
this may or may not be true, depending on the relationship between r(s), µ(s) and σ (s).) As
we will show in the next section, the policy of (3.5) is intimately connected to the hedging
strategy for a particular type of derivative security known as a digital option.

3.1. The optimal wealth process

When the control function f ∗
t is placed back into the evolutionary wealth equation (2.4),

we obtain an optimal wealth process, {X∗
t , 0 ≤ t < T }, that satisfies the stochastic differential

equation

dX∗
t =

[
r(t)X∗

t + θ (t)′θ (t)√∫ T
t θ (s)′θ(s) ds

bR(t, T ) φ
(
�−1(X∗

t

[
bR(t, T )

]−1))] dt

+ bR(t, T )√∫ T
t θ(s)′θ(s) ds

φ
(
�−1(X∗

t

[
bR(t, T )

]−1))
θ(t)′ dW t , for t < T . (3.6)

We will show later that the solution to this stochastic differential equation is given by the
following corollary.

Corollary 3.2. The optimal wealth process, X∗
t , for 0 ≤ t < T , is given by

X∗
t = bR(t, T )

× �

([∫ t

0
θ(s)′ dW s +

∫ t

0
θ(s)′θ(s) ds +

√∫ T

0
θ (s)′θ(s) ds�−1(X0/(bR(t, T ))

)]

×
(√∫ T

t
θ(s)′θ(s) ds

)−1)
. (3.7)
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This representation provides the link between the probability maximizing objective and the
digital, or binary option, and contains the explanation as to why it is only in the single stock
constant coefficient case that the policy is independent of the underlying drift. We discuss
this directly in the next section. After that, we return to analyse the optimal policy in explicit
detail. The proof of Theorem 3.1 will then be provided in the following section. After that we
examine cases that include income and the problem of beating an index.

4. Connections with digital options

4.1. Constant coefficients

Consider a Black–Scholes [1] world with a single stock whose price, St , follows the stochastic
differential equation

dSt = µSt dt + σ St dWt (4.1)

as well as a risk-free asset with constant return r.
A digital (or binary) option on this stock, with strike price K and payoff B, is a contract

that pays $B at time T if ST ≥ K . Thus a digital option amounts to a straight bet on the
terminal price of the underlying stock.

Let C(t, St ) denote the current rational price of such an option. Then, a standard Black–
Scholes pricing argument shows that

C(t, St ) = B e−r(T −t)�

(
ln(St/K )+ (r − 1

2σ
2)(T − t)

σ
√

T − t

)
. (4.2)

The underwriter of such an option (i.e., the party that agrees to pay $B at T if ST > K )
is interested in hedging its risk. A dynamic hedging strategy for the writer of such an option
is a dynamic investment policy, say {�t , t ≤ T }, which holds �t shares of the underlying
stock at time t so as to ensure that the underwriter’s position is riskless at all times. It is
also well known that this hedging, or replicating, strategy is given by �t = C2(t, St), where
C2(t, x) = ∂C/∂x . It is easy to see that the hedging strategy for the digital option is simply

�t = B e−r(T−t)φ

(
ln(St/K )+ (r − 1

2σ
2)(T − t)

σ
√

T − t

)
1

Stσ
√

T − t
. (4.3)

Observe that since �t is the number of shares of the underlying stock the investor holds at
time t , the actual amount of money invested in the stock at time t is�t · St .

A general treatment of options that discusses pricing and hedging of various options, in-
cluding the digital and the derivation of (4.2) and (4.3) can be found in such basic texts as [12]
and [21]. A valuable source for more theoretical issues is [7].

To see the connection with our problem, consider an investor who at time t has sold this
digital option for the Black–Scholes price of C(t, St ), and suppose the investor will then invest
the proceeds in such a manner as to maximize the probability that he can pay off the claim
of this option at time T , i.e., for all intents and purposes, the investor’s ‘wealth’ at time t is
C(t, St ), and the investor will then invest this wealth so as to maximize the probability that the
terminal fortune from this strategy is equal to B. Our previous results show that the optimal
policy is at time t is given by f ∗

t of (3.5) with x = C(t, St ) and b = B, i.e., by f ∗
t (C(t, St ); B).
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But placing C(t, St ) of (4.2) into (3.5) with b = B and simplifying gives

f ∗
t (C(t, St ); B) = B e−r(T −t)φ

(
�−1

(
C(t, St )

B
er(T −t)

))
1

σ
√

T − t

= B e−r(T −t)φ

(
ln(St/K )+ (r − 1

2σ
2)(T − t)

σ
√

T − t

)
1

σ
√

T − t

≡ �t · St (4.4)

where �t is given by (4.3). Thus, in this case, f ∗
t is equivalent to the hedging strategy of the

digital option.
Moreover, if we specialize the representation of the optimal wealth process given in

Corollary 3.2, i.e. X∗
t of (3.7), to the single stock case with constant coefficients, we find

that

X∗
t = B e−r(T −t)�

(
σWt + (µ− r)t + σ

√
T�−1(X0 erT /B)

σ
√

T − t

)
(4.5)

is the wealth of an investor at time t who started off with initial wealth X0 and is investing so
as to maximize the probability of his terminal time T wealth being equal to B.

Observe now that by (4.1) we have

St = S0 · exp{(µ − 1
2σ

2)t + σWt }

from which we may infer that

σWt + (µ− r)t ≡ ln(St/S0)− (r − 1
2σ

2)t.

When this is placed back into (4.5), it yields the following representation of the optimal wealth
process in terms of the underlying stock price

X∗
t = B e−r(T −t)�

(
ln(St/S0)− (r − 1

2σ
2)t + σ

√
T�−1

(
X0 erT /B

)
σ
√

T − t

)
. (4.6)

Note that there is no explicit dependence on µ in (4.6). If the investor’s initial wealth is taken
to be the Black–Scholes price of the digital option at time 0, i.e., take X0 ≡ C(0, S0), where
C(·, ·) is given by (4.2), then it is seen that (4.6) reduces to

X∗
t ≡ C(t, St )

where C(t, St ) is given by (4.2), i.e., the optimal wealth process under policy f ∗
t is just the

Black–Scholes price for a digital option with payoff B!
It is interesting to note that the Black–Scholes value (4.2) and its resulting hedging strategy

(4.3) are both calculated and determined by the risk-neutral probability measure (under which
µ is replaced by r), while the optimal strategy for maximizing the probability of terminal
wealth being greater than B was determined under the regular measure.

The analysis above can be inverted to show the following rather interesting fact:



560 S. BROWNE

Proposition 4.1. Consider an investor, with initial wealth X0, whose objective is to maximize
the probability that terminal wealth at time T exceed some fixed level B, and who has the
following two investment opportunities—the risky stock St of (4.1) and a bond with constant
return r. Then investing according to the dynamically optimal policy { f ∗

t , 0 ≤ t < T } of (3.5)
is equivalent to the static policy that purchases (at time 0) one European call digital option
with payoff B and strike price K ∗, where K ∗ is given by

K ∗ = S0 · exp{(r − 1
2σ

2)T − σ
√

T�−1(X0 erT /B)}. (4.7)

Proof. The representation of the optimal wealth process under f ∗
t , i.e., X∗

t of (4.6), shows
that, for a fixed X0, the event {X∗

T ≥ B} is equivalent to the event {ST ≥ K ∗}.
Note that (4.7) is equivalent to

X0 = B e−rT�

(
ln(S0/K ∗)+ (r − 1

2σ
2)T

σ
√

T

)
,

which when compared with (4.2) shows that X0 is simply the Black–Scholes price at time
t = 0 of a digital option with payoff B and strike price K ∗.

Remark 4.1. It is important to note that the results of this section are specific to the constant
coefficient case in one dimension and do not generalize to the time-dependent case in even one
dimension, nor to the multi-dimensional constant-coefficient case. The reason for this is that
it is only for the constant coefficients one-dimensional case that the representation of X∗

t of
(3.7) reduces to the form in (4.6), whereby we see that X∗

t is determined completely by the
current value of the underlying stock. As such, we can represent the event {X∗

T ≥ B} in terms
of a corresponding simple event determined by the terminal value ST alone, which leads to
the equivalence with the digital option, whose price must be independent of µ by risk neutral
valuation arguments. For more general cases, this does not occur. However, as we will show
directly, the general case is intimately connected to a digital option on a particular portfolio,
namely the growth-optimal portfolio.

4.2. The general case: optimal growth and digital options

For the general model considered earlier, let π∗
t denote the vector

π∗
t := �−1(t) [µ(t)− r(t)1] ≡ σ−1(t)′θ(t). (4.8)

The corresponding specific portfolio policy { f π
∗

t }, where f π
∗

t (x) = π∗
t · x , is the policy

that maximizes logarithmic utility of wealth and also maximizes the growth rate of wealth,
see the discussion in [16, Chapter 6]. For the case of constant coefficients, it is also optimal
for minimizing the expected time to reach any specific level of wealth (in an infinite horizon
setting) (cf. [4], [11], [16]). As such, {π∗

t } is referred to as the optimal growth policy. It is also
sometimes referred to as the market portfolio.

Let �t denote the corresponding ‘wealth’ under policy π∗
t , with initial wealth �0. Then

taking ft = π t · X f
t and X f

t = �t in (2.4) shows that �t satisfies the linear stochastic
differential equation

d�t = �t [r(t) + θ (t)′θ(t)] dt +�tθ(t)
′ dW t
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and as such we have

�t = �0 exp
{∫ t

0
[r(s) + 1

2θ(s)′θ (s)] ds +
∫ t

0
θ(s)′ dW s

}
. (4.9)

We can also represent the wealth process under the optimal growth policy in terms of the
change of measure of (2.8) by

�t = �0
1

R(t, T )
E

(
dP

d P̃

∣∣∣∣Ft

)
.

The main result of this section is that the optimal policy of Theorem 3.2 is equivalent to the
hedging strategy for a digital option on�T , and so the optimal wealth process of Corollary 3.2
is therefore equivalent to the Black–Scholes price on this option. Before we state this formally,
recognize that for every t ≥ 0, the optimal growth portfolio,�t , is equivalent in distribution
to the process �̂t , where

d�̂t = �̂t [r(t) + σ 2∗ (t)] dt + �̂t

√
σ2∗ (t) dŴt (4.10)

where Ŵt is an independent Brownian motion (in R1), and σ2∗ (t) is defined by

σ 2∗ (t) := θ (t)′θ(t) ≡ π∗
t
′
�(t)π∗

t . (4.11)

As such, σ2∗ (t) is the volatility of the optimal growth portfolio.

Remark 4.2. Note that in terms of the optimal growth policy, we may write the optimal policy,
f ∗
t of (3.2) in Theorem 3.1 as

f ∗
t (x; b) = π∗

t
1√∫ T

t σ2∗ (s) ds
b R(t, T ) φ

(
�−1(x/[b R(t, T )])). (4.12)

Proposition 4.2. Consider an investor whose wealth, {X f
t }, satisfies (2.4), and whose object-

ive is to maximize P(X f
T ≥ b). Then the optimal policy for this objective, given by f ∗

t of
(3.2) in Theorem 3.1, is completely equivalent to the static policy which purchases a European
digital option on �T with payoff b and strike price K ∗∗, where

K ∗∗ = �0 exp
{ ∫ T

0

[
r(s) − σ2∗ (s)

2

]
ds

−
√∫ T

0
σ 2∗ (s) ds �−1(X0 /[b R(t, T )])}. (4.13)

Equivalently, under the optimal policy f ∗
t , the optimal wealth {X∗

t } is equivalent to the (no
arbitrage) Black–Scholes price of this digital option on �T , i.e.,

X∗
t = bR(t, T )�


 ln(�t/K ∗∗)+ ∫ T

t [r(s) − 1
2σ

2∗ (s)] ds√∫ T
t σ2∗ (s) ds


 , for all t < T . (4.14)
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Remark 4.3. Observe from (4.14) that terminal wealth, X∗
T is either 0 or b, with

{X∗
T = b} ⇔ {�T ≥ K ∗∗}.

Proof. We can use (4.9) to write the representation of the optimal wealth X∗
t of (3.7) in

terms of the optimal growth portfolio,�t , (using σ2∗ (t)) as

X∗
t = bR(t, T )�

([
ln(�t/�0)−

∫ t

0
[r(s) − 1

2
σ2∗ (s)] ds

+
√∫ T

0
σ2∗ (s) ds �−1(X0/[b R(t, T )])](

√∫ T

t
σ2∗ (s) ds

)−1)
.

When we substitute K ∗∗ of (4.13) back into this, we obtain (4.14).
It remains to show that (4.14) is indeed the Black–Scholes price of a digital option on �T .

To see this, recall that if ψ(�T ) is the payoff on any contingent claim written on�T , then the
(no arbitrage) Black–Scholes price of this claim at time t is given by C(t,�t ), where

C(t,�t ) = Ẽ
[
R(t, T )ψ(�T )|Ft

]
, (4.15)

where Ẽ denotes the expectation taken under the risk-neutral measure P̃ of (2.8).
Observe now that in terms of the Brownian motion {W̃ t} of (2.7), we may write�t of (4.9)

as

�t = �0 exp

{ ∫ t

0
[r(s) − 1

2θ(s)′θ (s)] ds +
∫ t

0
θ(s)′ dW̃ s

}
, (4.16)

and so if, for an arbitrary strike price K , we take ψ(�T ) = b · 1{�T ≥ K }, then a simple
computation shows that for this case we have

C(t,�t ) = bR(t, T )�


 ln(�t/K )+ ∫ T

t [r(s) − 1
2σ

2∗ (s)] ds√∫ T
t σ2∗ (s) ds


 , (4.17)

from which it is apparent that (4.14) is indeed the (time t ) Black–Scholes price of a digital
option on �T , with payoff b and strike price K ∗∗.

We now move on to analyse the optimal investment policy, f ∗
t of Theorem 3.1 for the

general case in explicit detail.

5. Analysis of the optimal policy in the general case

In this section we examine the investment policy f ∗
t of (3.2) for the general case in greater

detail. Note that for a fixed t < T , as wealth, x , gets closer to the ‘goal’ bR(t, T ), we have
f ∗
t → 0. Similarly, as the wealth gets closer to the barrier 0, we also have f ∗

t → 0. Thus
if wealth is close to 0 with enough time remaining on the clock, the investor does not ‘panic’
and start taking aggressive positions in the stocks to get away from 0, but rather the investor
should be patient and wait for his wealth to grow a bit before taking active positions in the
risky stocks. (It is interesting to note that if there is enough time remaining until the deadline,
the investor does not even borrow an excessive amount when his wealth is close to 0, even
though he does have the ability to borrow an unlimited amount. See the discussion below on
‘the borrowing region’.) However, should the investor get near bankruptcy, i.e., x ↓ 0, with
little time remaining, i.e., t ↑ T , then the investor must take a fairly active position in the
stocks since then the denominator is also going to 0.
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Let z(x, t; T, b) be defined by

z(x, t; T, b) := x

bR(t, T )
, for x ≤ b R(t, T ) (5.1)

whereby 0 ≤ z ≤ 1, and the interpretation of z is the percentage of the goal reached by time t.
(Note that this is not the percentage of b reached, but rather the time-dependent goal bR(t, T ).)
Then we may write the optimal policy as

f ∗
t (x; b) =


 σ−1(t)′θ(t)√∫ T

t θ(s)′θ (s) ds


[φ(�−1(z))

z

]
x .

Introducing now the variable
ν := �−1(z)

allows us to rewrite this in terms of ν as

f ∗
t (x; b) =


 σ−1(t)′θ (t)√∫ T

t θ (s)′θ(s) ds


[ φ(ν)

�(ν)

]
x . (5.2)

Note that ν is a monotonically increasing function of z, and that as z goes from 0 to 1,
ν goes from −∞ to ∞. As wealth, x , gets closer to the (effective) goal, bR(t, T ), z ↑ 1
and hence ν ↑ +∞, while as wealth gets closer to the bankruptcy barrier, 0, we have z ↓ 0
and accordingly ν ↓ −∞. Notice too that the function φ(ν)/�(ν) is positive and decreasing
in ν.

Equation (5.2) represents the optimal investment strategy as a linear function of wealth
(x) where the linear multiple decomposes into a product of two distinct components: the first
component is the vector of purely time-dependent elements, σ−1(t)′θ(t)

/√( ∫ T
t θ (s)′θ(s) ds

)
;

and the second is a scalar determined solely by the percentage of the (effective) goal currently
achieved, φ (ν) /�(ν). It is easy to see that for a fixed t , as wealth gets closer to the effective
goal, and so z increases as does ν, this latter quantity decreases. The effect of increasing t on
the former quantity is not as clear to check since we have allowed all parameters to be time
dependent. For the special case of constant coefficients, this time-dependent vector is simply
σ−1′

θ/
√

θ ′θ(T − t), which is clearly increasing as t ↑ T . We will examine the tradeoff
between these two effects directly.

5.1. The borrowing region

It is interesting to examine the nature of risk-taking dictated by the policy described above.
One manifestation of risk-taking is in the amount of borrowing required by a policy. Here, we
examine this dimension of the behavior required by { f ∗

t } of Theorem 3.1.
Notice first that borrowing takes place only in the region �(x, t) := {x : 1′ f ∗

t (x; b) ≥ x},
since 1′ f ∗

t (x; b) is the total amount of money invested in the risky stocks. This region can
be characterized more explicitly by using (5.2). In particular, (5.2) shows that the borrowing
region, �(x, t) is equivalent to the region

� :=
{
ν : φ (ν)

� (ν)
≥ q(t, T )

}
,

where the (scalar) function q is defined by q(t, T ) := √( ∫ T
t θ(s)′θ (s) ds

)/
1′σ−1(t)′θ(t),

and where the variable ν = ν(x, t) is defined by ν := �−1(z).
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FIGURE 1: z∗(τ) plotted against τ .

For the case of constant coefficients, q(t, T ) reduces to q(T − t) := ξ ·√(T − t)where the
constant ξ is defined by

ξ :=
√
(µ − r1)′�−1(µ − r1)

1′�−1(µ − r1)
≡

√
π∗′�π∗
1′π∗ ,

which in the single-stock case reduces to ξ = σ .
If we set

√
τ := q(T − t) ≡ ξ

√
T − t , then we can consider τ to be the risk adjusted time

to play, since it is in fact just the time to play (T − t ) multiplied by a risk factor (ξ 2). The
borrowing region is then equivalent to

�(ν, τ) := {ν : φ(ν)/�(ν) ≥ √
τ }.

In order to analyse the boundary of this region, let ν∗(τ ) denote the root to the equation
φ(ν)/�(ν) − √

τ = 0, i.e., ν∗(τ ) is the unique number such that

φ(ν∗)/�(ν∗) = √
τ .

(Since the left hand side is decreasing in ν while the right hand side is increasing in τ , it is clear
that there is a unique root.) Furthermore, it is easy to establish that these roots are decreasing
in the remaining time, τ , i.e., ν∗(τ ) > ν∗(τ + δ), for all δ > 0.

The borrowing region is thus as follows: borrowing occurs when ν(τ) < ν∗(τ ), but not
if ν(τ) > ν∗(τ ). Equivalently, since �(·) is an increasing invertible function, we see that
borrowing occurs only when �(ν(τ)) < �(ν∗(τ )), i.e., when z(τ ) < z∗(τ ), where z(τ ) has
the interpretation of being the proportion of the goal obtained with τ (risk-adjusted) time units
left to go. A graph of z∗(τ ) (calculated and drawn in MAPLE V) is given in Figure 1.

Some select values of τ, ν∗(τ ) and z∗(τ ) are given in Table 1. As Table 1 shows, if there
is 0.05 time units left until the deadline, the investor must borrow under policy f ∗ unless the
investor’s wealth is already 88% of the distance to the goal. As the time to go increases, the
investor needs to borrow only at lower percentages. For example, if there is τ = 1 unit of time
left to go, then the investor will need to borrow unless his wealth at that time is at least 38% of
the way to the effective goal.
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TABLE 1: Borrowing region. z∗(τ) = critical percentage of the distance to the goal
attained with τ risk-adjusted time units remaining. ν∗(τ) is the root to the equation

φ(ν)/�(ν)− τ1/2 = 0, and z∗ = �−1(ν∗).
τ ν∗(τ) z∗(τ) τ ν∗(τ) z∗(τ) τ ν∗(τ) z∗(τ)
0.001 2.26 0.99 0.50 0.15 0.56 1.00 −0.30 0.38
0.05 1.19 0.88 0.55 0.09 0.54 1.5 −0.61 0.27
0.10 0.93 0.82 0.60 0.04 0.51 2.0 −0.86 0.19
0.15 0.75 0.77 0.65 −0.01 0.49 2.5 −1.07 0.14
0.20 0.63 0.73 0.70 −0.06 0.48 3.0 −1.25 0.10
0.25 0.52 0.70 0.75 −0.11 0.46 3.5 −1.42 0.08
0.30 0.43 0.67 0.80 −0.15 0.44 4.0 −1.57 0.06
0.35 0.35 0.64 0.85 −0.19 0.43 4.5 −1.71 0.04
0.40 0.27 0.61 0.90 −0.23 0.41 5.0 −1.84 0.03
0.45 0.21 0.58 0.95 −0.27 0.39

It is important to note that increasing the risk factor, ξ 2, has the same effect as increasing
the actual time left to play, T − t . Therefore, for a higher risk factor, one would borrow less,
in the hopes of reaching the goal later.

Remark 5.1. Asymptotics, near the barriers. When wealth, x , is close to the barriers,
0 or bR(t, T ), then z is correspondingly near 0 or 1, and ν is correspondingly near −∞ or
+∞. It is interesting to examine what happens to the state-dependent factor, φ(ν)/�(ν), near
these boundaries. Note that since φ is symmetric, the behavior of φ(ν)/�(ν) as ν ↓ −∞ is
equivalent to the behavior of φ(ν)/ (1 −�(ν)) as ν ↑ +∞.

Therefore the following two asymptotic results are immediate:

lim
z→1

φ(ν)

�(ν)
= lim
ν↑+∞

φ(ν)

�(ν)
= 0

lim
z→0

φ(ν)

�(ν)
= lim
ν↓−∞

φ(ν)

�(ν)
= lim
ν↑+∞

φ(ν)

1 −�(ν)
= +∞.

As expected, we see that as wealth approaches the goal, the state dependent factor goes to 0,
but as wealth approaches 0, the state dependent factor increases without bound even though,
as we observed previously, total investment in the risky stocks actually decreases to 0 in this
case.

5.2. Comparison with utility maximizing policies

It is interesting to compare this behavior with that of an investor whose objective is to
maximize terminal utility from wealth. For example, consider the case where the investor
wants to maximize E[u(X f

T )], where

u(x) = δ

δ − 1
x1−1/d, for x > 0, δ > 0.

(Note that this includes logarithmic utility, when δ = 1.) This power utility function has
constant relative risk aversion 1/δ. The optimal policy for this case, call it { f δt , 0 ≤ t ≤ T },
is the vector (cf. [7], [15]) f δt (x) = δπ∗

t · x , where π∗
t is the optimal growth policy discussed

earlier. The utility maximizing investor invests more heavily in the risky stocks, relative to the
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probability maximizing investor, when f δt (x) > f ∗
t (x; b), and vice versa. It is easily seen that

this occurs for values (x, t) for which

φ(ν)

�(ν)
≤ δ

√∫ T

t
θ(s)′θ(s) ds

and vice versa. Thus the dynamics of this comparison reduce essentially to that described
above by the borrowing region, modified by the risk aversion parameter δ.

6. Proof of Theorem 3.1

In this section, we provide the proof of Theorem 3.1. We will first show that the function
V satisfies the appropriate Hamilton–Jacobi–Bellman (HJB) equations of stochastic control
theory and then employ a martingale argument to verify optimality. This will prove the
Theorem as well as Corollary 3.2. We then show how we obtained the candidate value function
by extending the elegant argument of [10] to our case.

6.1. Verification of optimality

Standard arguments in control theory (see e.g. [8, Example 2, p. 161]) show that the appro-
priate HJB optimality equation for V is

sup
f

{A f V (t, x)} = 0 (6.1)

subject to the boundary conditions

V (t, x; b) =




1 for x ≥ bR(t, T ), t ≤ T

0 for x = 0, t ≤ T

I{b} for t = T .

(6.2)

The generator of (2.5) shows that the HJB optimality equation (6.1) is

sup
f

{Vt + ( f ′
t (µ(t)− r(t)1)+ r(t)x)Vx + 1

2 f ′
t �(t) ft Vxx } = 0. (6.3)

Assuming that a classical solution to (6.3), say V , exists and satisfies Vx > 0, Vxx < 0 for
0 < x < bR(t, T ), we may then optimize with respect to ft in (6.3) to obtain the maximizer

f ∗
t (x; b) = −�−1(t)(µ(t)− r(t)1)

Vx

Vxx
≡ −σ−1(t)′θ (t) Vx

Vxx
. (6.4)

When (6.4) is then placed back into (6.3) and the resulting equation simplified, we find that
(6.3) is equivalent to the nonlinear partial differential equation

Vt + r(t)xVx − 1
2θ(t)′θ (t) V 2

x

Vxx
= 0, for t < T, and 0 < x < b R(t, T ) (6.5)

subject to the (discontinuous) boundary condition (6.2).
Recalling now the basic facts about the normal p.d.f. and c.d.f.:

d�(y)

dy
= φ(y); d�−1(y)

dy
= 1

φ(�−1(y))
; dφ(y)

du
= −yφ(y); (6.6)
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it can be verified that for the function V (t, x; b) of (3.1), we have

Vx = φ

(
�−1

(
x

b R(t, T )

)

+
√∫ T

t
θ(s)′θ(s) ds

)
1

b R(t, T )

[
φ

(
�−1

(
x

b R(t, T )

))]−1

(6.7)

Vxx = −Vx

[√∫ T

t
θ (s)′θ(s) ds

1
b R(t, T )

[
φ

(
�−1

(
x

b R(t, T )

))]−1]
(6.8)

Vt = −Vx

[
r(t)x + 1

2
θ(t)′θ(t)√∫ T

t θ(s)′θ(s) ds
φ

(
�−1

(
x

b R(t, T )

)
bR(t, T )

]
. (6.9)

When these derivatives are placed back into (6.5), it is seen that in fact V solves (6.5), and
so the optimal control f ∗

t (x) of (3.2) is obtained by placing (6.7) and (6.8) into (6.4).
Moreover, it is also seen that the first two boundary conditions in (6.2) are satisfied for V

of (3.1). This follows from the fact that � is a c.d.f., and hence �−1(u) = −∞ for u ≤ 0,
�−1(u) = ∞ for u ≥ 1. The third boundary condition of (6.2) causes a discontinuity. This
problem (for ‘probabilitymaximizing objectives’) is discussed in [8, Example 2, p. 161], where
it is shown that such a discontinuity is acceptable, provided that the optimal wealth process,
{X∗

t , t ≤ T } (i.e., the wealth under the control f ∗
t ), satisfies the condition P(0 < X∗

T < b) =
0. (That is, the optimal terminal wealth must be equal to one of the two barriers, 0 or b.) We
will show directly that this condition is in fact met here.

To proceed, let Ht := z(X∗
t , t; T, b), where the function z was defined earlier in (5.1), and

where X∗
t denotes the optimal wealth process; i.e., Ht = X∗

t /[bR(t, T )], and X∗
t is determined

by the stochastic differential equation in (3.6). An application of Itô’s formula, valid for t < T ,
to (3.6) then shows that

dHt = θ(t)′θ (t)√∫ T
t θ (s)′θ(s) ds

φ(�−1(Ht)) dt + 1√∫ T
t θ (s)′θ(s) ds

φ(�−1(Ht))θ (t)
′ dW t .

(6.10)

Another application of Itô’s formula (with respect to the process
∫ t

0 θ(s)′ dW s) will verify that
the solution to (6.10) is, for t < T

Ht = �



∫ t

0 θ (s)′ dW s + ∫ t
0 θ(s)′θ (s) ds +

√∫ T
0 θ(s)′θ(s) ds �−1(H0)√∫ T

t θ (s)′θ(s) ds


 , (6.11)

from which the representation of X∗
t given in (3.7) is immediate, proving Corollary 3.2.

However, all this is valid only for t < T . By continuity we may extend Ht of (6.11) to
include the values 0 and 1, but it still remains to show that HT is either 0 or 1. To proceed, we
follow essentially the steps suggested in [10].

Observe first that Ht is bounded with 0 ≤ Ht ≤ 1, for all 0 ≤ t ≤ T . Also note that (6.10)
can be rewritten using W̃ t as

dHt = φ(�−1(Ht))√∫ T
t θ (s)′θ(s) ds

θ(t)′ dW̃ t ≡ [
bR(t, T )

]−1 f ∗
t

′
σ (t) dW̃ t (6.12)
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and since f ∗
t has a continuous extension to [0, T ], we have

HT = H0 +
∫ T

0
[bR(t, T )]−1 f ∗

t
′
σ (t) dW̃ t

almost surely, because the equality holds for all t < T and the stochastic integral is almost
surely path continuous. Observe now that by properties of stochastic integrals, Ht is a P̃ local-
martingale. Since Ht is indeed bounded it is in fact a P̃-martingale as well for all t < T ,
and therefore converges at T . Furthermore, the martingale representation theorem (e.g. [19,

Section V.3]) now provides the representation HT = H0 + ∫ T
0 ξ ′

s dW̃ s with ξ a measurable,

adapted process that is square-integrable, i.e.,
∫ T

0 ξ ′
sξ s ds < ∞ P̃-a.s. But comparison with

(6.12) shows that ξ t = [bR(t, T )]−1 f ∗
t , and as such

∫ T
0 f ∗

t
′ f ∗

t dt < ∞, P̃-a.s, and since P

and P̃ are equivalent, we must also have
∫ T

0 f ∗
t

′ f ∗
t dt < ∞, P-a.s. Inspection of f ∗

t now
shows that this requirement in turn implies HT = 0 or HT = 1, equivalently XT = 0 or
XT = b.

Thus, we may now conclude from (6.11) that

P(HT = 1) = P

(∫ T

0
θ(s)′ dW s ≥ −

∫ T

0
θ(s)′θ (s) ds −

√∫ T

0
θ(s)′θ (s) ds �−1(H0)

)

≡ �

(
�−1(H0)+

√∫ T

0
θ (s)′θ(s) ds

)
,

the last equality following from the fact that
∫ T

0 θ (s)′ dW s has a normal distribution with mean

0 and variance
∫ T

0 θ (s)′θ(s) ds. Substituting now for X∗
T shows that

P(X∗
T = b) = V (0, X0; b) = 1 − P(X∗

T = 0)

which is the desired conclusion.

6.2. Obtaining the candidate value function

While we have already shown that V does indeed solve the HJB equation, we have not
actually solved the resulting nonlinear partial differential equation (6.5) directly for V . Rather,
we obtained a candidate solution to (6.5) by reducing the problem to a form whose optimal
value function we were able to guess by extending an argument of Heath [10], as we now show.

To proceed, set Y f
t ≡ exp{− ∫ t

0 r(s) ds}X f
t , and then apply Itô’s formula to get

dY f
t = exp

{
−
∫ t

0
r(s) ds

}[
f ′
t (µ(t)− r(t)1) dt +

n∑
i=1

n∑
j=1

f (i)t σi j (t) dW ( j)
t

]
. (6.13)

Setting now gt ≡ ft exp{− ∫ t
0 r(s) ds}, let us first consider the following problem: find

U (t, y; c) := supg P(t ,y)(Y
g
T ≥ c) and its associated optimal control vector, {g∗

t , t ≤ T },
where

dY g
t = g′

t (µ(t)− r(t)1) dt +
n∑

i=1

n∑
j=1

g(i)t σi j (t) dW ( j)
t . (6.14)
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This is now essentially (aside from scaling factors) the multivariate generalization of the
problem studied in [13] and [10]. Following Heath [10], we note that we can rewrite (6.14) in
terms of the P̃ Brownian motion W̃ t = W t + ∫ t

0 θ(t) dt , as

dY g
t =

n∑
i=1

n∑
j=1

g(i)t σi j (t) dW̃ ( j)
t . (6.15)

It is clear, by the admissibility assumption on ft —and hence on gt —that the local martingale
Y g

t is in fact a martingale under the measure P̃. Hence, letting Ag := {ω : Y g
T ≥ c}, it is

clear by the martingale inequality that we have P(Ag ) ≤ Y0/c, and since the right hand side
of this is independent of the policy g, we may conclude that sup{g : P(Ag )} ≤ Y0/c. If we
assume this upper bound can be hit, then a straightforward generalization of an argument in
[10], reproduced here for the sake of completeness in the Appendix, then shows that

U (t, y; c) = �


�−1

( y

c

)
+
√∫ T

t
θ(s)′θ (s) ds


 . (6.16)

An HJB argument then shows that g∗
t = −�−1(t)(µ(t)− r(t)1)Uy/Uyy, and by differen-

tiating (6.16) appropriately we obtain

g∗
t (y; c) =


�−1(t)(µ(t)− r(t)1)√∫ T

t θ (s)′θ(s) ds


 c · φ

(
�−1

( y

c

))
. (6.17)

All we need do now is recognize that

sup
f

P(t ,x)(X
f
T ≥ b) ≡ sup

g
P(t ,y)

(
Y g

T ≥ exp
{

−
∫ T

0
r(s) ds

}
b

)
(6.18)

with

y = x exp
{

−
∫ t

0
r(s) ds

}
, and f ∗

t ≡ exp
{ ∫ t

0
r(s) ds

}
g∗

t .

And indeed taking y = exp{− ∫ t
0 r(s) ds}x and c = b exp{∫ T

0 r(s) ds} in (6.16) and (6.17)
gives

V (t, x; b) = U

(
t, x exp

{
−
∫ t

0
r(s) ds

}
; b exp

{
−
∫ T

0
r(s) ds

})
where U (t, •; •) is the function given by (6.16), and

f ∗
t (x; b) = exp

{∫ t

0
r(s) ds

}
g∗

t

(
x exp

{
−
∫ t

0
r(s) ds

}
; b exp

{
−
∫ T

0
r(s) ds

})
,

where g∗
t (•; •) is defined by (6.17).

Of course, this argument still needs a rigorous verification, which is the content of the
previous proof. The functions U and g∗

t in (6.16) and (6.17) are central to the remainder of the
paper.
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7. Exogenous income

In this section we analyse the case where the investor has an exogenous (deterministic)
income stream. Specifically, suppose that income is earned at rate {l(t), 0 ≤ t ≤ T }, where
l(s) ≥ 0 for all s. The investor’s wealth then evolves according to

dX f
t =

n∑
i=1

f (i)t
dSi(t)

Si(t)
+
(

X f
t −

n∑
i=1

f (i)t

)
dBt

Bt
+ l(t) dt

=
[

r(t)Xt +
n∑

i=1

f (i)t (µi (t)− r(t)) + l(t)

]
dt +

n∑
i=1

n∑
j=1

f (i)t σi j (t) dW ( j)
t . (7.1)

This case can be treated by modifying our previous analysis, as we now show. To that end,
define first the function κ(x, t) and the constant � by

κ(x, t) := exp
{

−
∫ t

0
r(u) du

}
x −

∫ t

0
exp

{
−
∫ s

0
r(u) du

}
l(s) ds. (7.2)

� := b exp

{
−
∫ T

0
r(u) du

}
−
∫ T

0
exp

{
−
∫ s

0
r(u) du

}
l(s) ds. (7.3)

The optimal value function and optimal policy for maximizing the probability that the investor
achieves the wealth level b by the terminal time T are given in the following theorem.

Theorem 7.1. For an investor whose wealth process follows (7.1),

	(t, x; b, T ) := sup
f

P(t ,x)(X
f
T ≥ b) = �

(
�−1

(
κ(x, t)

�

)
+
√∫ T

t
θ(s)′θ (s) ds

)
(7.4)

and the associated optimal investment policy is

f (l)t (x; b) := arg sup
f

P(t ,x)(X
f

T ≥ b)

=

�−1(t)(µ(t)− r(t)1)√∫ T

t θ(s)′θ(s) ds


[ exp

{ ∫ t

0
r(u) du

}
�

]
φ

(
�−1

(
κ(x, t)

�

))
. (7.5)

Remark 7.1. An analysis similar to that done after Theorem 3.1 shows that under this policy,
the investor stops investing in the risky stocks altogether, i.e., f (l)t (x; b) = 0, when κ(x, t) ≥
� as well as when κ(x, t) ≤ 0. The former case is in effect for wealth levels, x , that satisfy

x ≥ b exp
{

−
∫ T

t
r(u) du

}
−
∫ T

t
exp

{ ∫ s

t
r(u) du

}
l(s) ds, (7.6)

while the latter case occurs for wealth levels that satisfy

x ≤
∫ t

0
exp

{ ∫ t

s
r(u) du

}
l(s) ds. (7.7)

The economic interpretation of (7.6) is clear since we may rewrite it as

x exp

{ ∫ T

t
r(u) du

}
+
∫ T

t
exp

{∫ T

s
r(u) du

}
l(s) ds ≥ b
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which shows directly that by investing current wealth (x) and all future income in the riskless
asset, the goal b can be reached with certainty at time T .

The interpretation of (7.7) is perhaps more interesting, since the right hand side of (7.7)
is the level of wealth that would have been achieved at time t by simply investing all the
income until that time directly into the risk-free asset. Thus if wealth ever falls to that level,
the investor following policy f (l)t would stop investing in the risky stocks and just put all
wealth into the risk-free asset. Therefore, as opposed to the case without income treated
earlier, wealth is effectively bounded away from 0, and so the investor with positive income
can never go bankrupt under policy f (l)t . Moreover, this lower bound on wealth acts as a sort
of ‘performance bound’ on the investor: if the performance of the risky stocks is such that
wealth drops to the value of the income stream invested in the risk-free asset, investment in the
risky stocks stop.

This behavior differs significantly from the behavior of a utility maximizer with an income
stream. For example, in the constant coefficients case with l(s) = l, it can be shown that the
optimal policy for an investor who wishes to maximize expected logarithmic utility of terminal
wealth at time T , is to invest

�−1 (µ − r1)
(

x + l

r
(1 − e−r(T −t))

)

in the risky stocks (cf. [15]). Thus a utility maximizer essentially capitalizes future earnings
(till T ) at the risk-free rate and then invests as if his current fortune already included this
amount. Therefore, even if wealth goes negative, so long as x > −(l/r)(1 − e−r(T −t)), the
investor still invests a positive amount in the risky stocks. Not so for the probability maximizer
who behaves in the manner described above. In essence, a utility maximizer uses income to
take extra risks, by borrowing against future earnings, while our Theorem 7.1 shows that a
probability maximizer relies on income to become more cautious.

Proof. Let gt := exp{− ∫ t
0 r(s) ds} ft , and for the remainder of this section only, let Y g

t be
defined now by

Y g
t := exp

{
−
∫ t

0
r(u) du

}
X f

t −
∫ t

0
exp

{
−
∫ s

0
r(u) du

}
l(s) ds (7.8)

where X f
t is as in (7.1). Then a simple application of Itô’s formula shows that

dY g
t = g′

t (µ(t)− r(t)1) dt +
n∑

i=1

n∑
j=1

g(i)t σi j (t) dW ( j)
t ≡

n∑
i=1

n∑
j=1

g(i)t σi j (t) dW̃ ( j)
t (7.9)

which is the same as (6.13) and (6.14). Thus we observe immediately that if

U (t, y; c) = sup
g

P(Y g
T ≥ c | Yt = y),

with optimizer g∗
t , then U (t, y; c) and g∗

t are given by (6.16) and (6.17). Now, by (7.8), we
see that

sup
g

P(Y g
T ≥ c | Yt = y) ≡ sup

f
P

(
X f

T ≥ c exp
{ ∫ T

0
r(u) du

}

+
∫ T

0
exp

{ ∫ T

s
r(u) du

}
l(s) ds | Yt = κ(x, t)

)
(7.10)
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where κ(x, t) is given by (7.2). Thus we may invert this to deduce that in terms of a goal
problem for X f

t given by (7.1), with arbitrary b, we have

sup
f

P(X f
T ≥ b | Xt = x) = U (t, κ(x, t);�),

as well as

f (l)t (x; b) = exp
{∫ t

0
r(u) du

}
g∗

t (κ(x, t);�),

where the function U (t, •; •) is defined by (6.16), g∗
t (•; •) is defined by (6.17), κ(x, t) by

(7.2) and � by (7.3). Direct substitution then shows that U (t, κ(x, t);�) = 	(t, x; b, T ) of
(7.4) and that the policy given in (7.5) is indeed optimal for the problem of maximizing the
probability of attaining the goal b by time T .

Remark 7.2. It is tempting to extend the analysis here to include the case of liabilities as
well, however for this case the optimal policy allows wealth to become negative. This raises a
variety of new problems and issues which will be discussed elsewhere.

8. Beating another portfolio

In this section we apply our earlier results to derive optimal portfolio strategies for an
investor, such as a fund manager, who is interested solely in beating a given stochastic bench-
mark. The benchmark is most typically an index, such as the S&P 500. In particular, it is just
one specific portfolio strategy. We consider first the problem of beating the benchmark portfo-
lio by a given percentage, which is the focal point of active portfoliomanagement. We then find
the related policy which corrects for the downside risk. When the benchmark portfolio strategy
is the optimal growth policy, then the ratio of the wealth from any arbitrary portfolio strategy
to the benchmark is in fact a supermartingale, and as such problems arise. Nevertheless, we
are able to find a strategy which does achieve the maximal possible probability of beating the
optimal growth policy by a prespecified percentage by a fixed deadline.

8.1. Beating the benchmark portfolio by a given percentage

Here we consider the objective of ensuring that X f
T exceeds the terminal value of a bench-

mark portfolio, QT , by a preset percentage. To that end, we will find it more convenient to use
a geometric, or proportional parameterization of the model, i.e., instead of parameterizing the
problem by taking ft to be the vector of absolute amounts invested in the stocks, we instead—
for the remainder of this section—let f (i)t denote the proportion of wealth invested in stock
i at time t , with ft := ( f (1)t , . . . , f (n)t )′ now denoting the corresponding column vector of
proportions. Then under this parameterization, it is clear that the wealth process evolves as
(compare with (2.3))

dX f
t = X f

t

n∑
i=1

f (i)t
dSi(t)

Si(t)
+ X f

t

(
1 −

n∑
i=1

f (i)t

)
dBt

Bt

= X f
t

[
r(t) +

n∑
i=1

f (i)t (t)(µi (t)− r(t))

]
dt + X f

t

n∑
i=1

n∑
j=1

f (i)t (t)σi j (t) dW ( j)
t , (8.1)

upon substituting from (2.1) and (2.2).
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Similarly let the benchmark portfolio, {Qt , 0 ≤ t ≤ T } be defined by

dQt = Qt

[
r(t) +

n∑
i=1

π
(i)
t (µi (t)− r(t))

]
dt + Qt

n∑
i=1

n∑
j=1

π
(i)
t σi j (t) dW ( j)

t , (8.2)

where π t = (π
(1)
t , . . . , π

(n)
t )′ is the (column) vector of portfolio weights in the benchmark

process.
An interesting objective related to active portfolio management is then to choose a policy

that maximizes the probability that for a fixed T , X f
T exceeds Qt by a predetermined percent-

age, say λ. Denote the resulting optimal policy by f π , i.e.,

{ f πt } = arg sup
f

P(X f
T > (1 + λ) · QT ).

Let Z f
t (π) = X f

t /Qt , with Z f
0 = X0/Q0. A simple application of Itô’s formula then gives

dZ f
t = Z f

t ( ft − π t )
′(µ(t)− r(t)1 − �(t)π t ) dt + Z f

t

n∑
i=1

n∑
j=1

( f (i)t − π
(i)
t )σi j (t) dW ( j)

t .

(8.3)

In the next theorem, we provide the optimal policy and the optimal value function. It
depends solely on the current value of the ratio of the two portfolios, Zt , as it is obvious that

sup
f

P(X f
T > (1 + λ)QT | X f

t = x, Qt = y) ≡ sup
f

P

(
Z f

T > 1 + λ | Z f
t = x

y

)
.

Theorem 8.1. Let Z f
s = X f

s /Qs be defined by (8.3). Then

F(t, z; λ, T ) := sup
f

P(Z f
T > 1 + λ | Zt = z) = �

(
�−1

(
z

1 + λ

)
+
√∫ T

t
γ (s) ds

)
(8.4)

and the optimal (proportional) control f πt , defined as

f πt := arg{sup
f

P(Z f
T > 1 + λ | Zt = z)},

is

f πt (z; λ,π t) = π t +

 π∗

t − π t√∫ T
t γ (s; π s) ds


(1 + λ

z

)
φ

(
�−1

(
z

1 + λ

))
(8.5)

where the function γ (·; ·) is defined by

γ (t; π t ) := (π∗
t − π t )

′�(t)(π∗
t − π t ) (8.6)

where π∗
t = �−1(t) (µ(t)− r(t)1).
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Proof. Let ĝt = ft − π t , with components ĝ(i)t = f (i)t − π
(i)
t , and let µ̂(t) be defined by

µ̂(t) = µ(t)− �(t)π t . (8.7)

Then it is clear that we have

dZ f
t = Z f

t

(
ĝt (µ̂(t)− r(t)1) dt +

n∑
i=1

n∑
j=1

ĝ(i)t σi j (t) dW ( j)
t

)

which, with µ̂(t) replacing µ(t), is equivalent to the ‘proportional control’ parameterization
of Y g

t of (6.14) considered previously, with gt = Z f
t ĝt . As such its value function is U (t, z :

1 + λ) of (6.16), with µ̂(t) replacing µ(t), which is equivalent to (8.4). Similarly, the optimal
control is then given by ĝ∗

t = g∗
t (z; 1 + λ)/z, where g∗

t (·; ·) is given by (6.17), with µ̂(t)
replacing µ(t). Recalling now that f πt = π t + ĝ∗

t , and substituting back for µ̂(t) gives the
control in (8.5).

8.2. Controlling for downside risk

The previous development gives a policy under which the maximal probability of beat-
ing the benchmark by λ% is F(0, z0; λ, T ) = �

(
�−1(z0/(1 + λ)) + √( ∫ T

0 γ (s; π s) ds
))

.
However, as noted earlier, the nature of this policy is such that we also have the downside risk
that the ratio at the terminal time might end up at 0, with P(Z∗

T = 0) = 1− F(0, z0; λ, T ), and
so bankruptcy is possible. This probably entails too much risk-taking for most applications.
Instead, consider then the following objective: the portfolio manager’s goal is to beat the
prescribed benchmark by λ%, with the additional proviso that the portfolio never underper-
form the benchmark by another given percentage, say δ%. Formally, the portfolio manager’s
objective then is to determine the optimal policy f δ that solves

sup
f

P

(
Z f

T ≥ 1 + λ, inf
0≤s≤T

Z f
s ≥ 1 − δ

)
. (8.8)

Denote this optimal value function by F̂(t, z; λ, δ, T ). The change of variable Z̃ f
t := Z f

t −
(1 − δ), then shows that

F̂(t, z; λ, δ, T ) := sup
f

P

(
Z f

T ≥ 1 + λ, inf
t≤s≤T

Z f
s ≥ 1 − δ | Zt = z

)

≡ sup
f

P

(
Z̃ f

T > λ+ δ, inf
t≤s≤T

Z̃ f
s ≥ 0 | Z̃t = z − (1 − δ)

)
.

But this last term is precisely the problem considered earlier in Theorem 9.1, where the
non-negativity condition was implicit. As such, we know that F̂(t, z; λ, δ, T ) =
F(t, z − (1 − δ); λ + δ − 1, T ), where F(t, •; •; T ) was defined in (8.4). Explicitly, we
have

F̂(t, z; λ, δ, T ) = �

(
�−1

(
z − (1 − δ)

λ+ δ

)
+
√∫ T

t
γ (s; π s) ds

)
. (8.9)
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Similarly, the optimal policy for this problem is therefore given by

f δt (z; λ, δ,π t ) = π t +

 π∗

t − π t√∫ T
t γ (s; π s) ds


( λ+ δ

z − (1 − δ)

)
φ

(
�−1

(
z − (1 − δ)

λ+ δ

))
.

(8.10)

It is interesting to note that this policy invests more (for a fixed z) in the risky stocks than
does f πt of (8.5). This follows from the fact that φ

(
�−1(u)

)
/u is decreasing in u, and for

z ≤ 1 + λ, we have (z − (1 − δ)) /(λ+ δ) < z/(1 + λ), for all δ.

8.3. Can we beat the optimal growth policy?

Suppose now that π t is the optimal growth policy, π∗
t given by

π∗
t := �−1(t)(µ(t)− r(t)1) ≡ (σ (t)′)−1θ(t). (8.11)

As noted earlier, this policy maximizes the ‘growth rate from investment’, see e.g. [16], and is
also sometimes referred to as the market portfolio.

When we place π∗
t back into the evolutionary stochastic differential equation for Z f , and

simplify, we find that {Z f (π∗)t } satisfies

dZ f
t ≡ Z f

t ( f ′
t − π∗

t )
′σ (t) dW t (8.12)

implying that Z f
t is a non-negative local martingale and hence a supermartingale for every

admissible policy ft . In fact, since Z f is bounded above by 1 + λ in our application, it is
indeed a martingale, although in general we would need to restrict our attention to policies that
satisfy the Novikov condition (i.e., E(exp{(1/2) ∫ t

0 f ′
s fs ds}) < ∞, for all t ) to ensure that Z

is a martingale.
Since Z f is a martingale we have E(Z f

t | Fs ) = Z f
s for all policies ft . Thus, since Z f is

now a ‘fair game’, it is not clear if we can find an optimal strategy to beat it in finite time.
Note that for π t = π∗

t , we have γ (t; π∗
t ) = 0, for all t , and the value function of (8.4)

evaluated at γ = 0 gives F(t, z; λ, T ) = z/(1 + λ), which is of course consistent with the
martingale inequality P(Z f

T > 1 + λ | Z f
t = z) ≤ z/(1 + λ), which holds for all admissible

policies f . Since the right hand side of this inequality is independent of the policy, we can
extend it to

sup
f

P(Z f
T > 1 + λ | Z f

t = z) ≤ z

1 + λ
.

However, the value function F of (8.4)—treated as a function of γ—is not continuous at
γ = 0. Moreover, the policy, f πt of (8.5) is indeterminate when π t = π∗

t , since we also have
γ (t; π∗

t ) = 0. However, it turns out that this policy does have a limit as π t → π∗
t .

To see this, take π t = (1 − ε)π∗
t in (8.5). When we do this we find that it reduces to

f πt (z; λ, (1 − ε)π∗
t ) = (1 − ε)π∗

t +

 π∗

t√∫ T
t θ (s)′θ(s) ds


(1 + λ

z

)
φ

(
�−1

(
z

1 + λ

))
.

This control is a continuous function of ε, and so we may evaluate it at ε = 0 to obtain

f πt (z; λ,π∗
t ) = π∗

t +

 π∗

t√∫ T
t θ (s)′θ(s) ds


(1 + λ

z

)
φ

(
�−1

(
z

1 + λ

))
. (8.13)
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The control function f πt (z, λ,π
∗
t ) in fact does achieve the optimal possible value, z/(1+λ).

We formalize this in the following.

Theorem 8.2. Suppose that the benchmark is the optimal growth policy given by π∗
t of (8.11).

Then the optimal value function is

sup
f

P(t ,z)(Z
f

T > 1 + λ) = z

1 + λ
(8.14)

and this optimal value can be achieved by the policy f πt (z, λ,π
∗
t ) in (8.13).

Remark 8.1. Note that the linear form of the value function in (8.14) precludes us from using
any HJB methods.

Proof. As noted above, since t{Z f
t , t ≤ T } is a martingale, the martingale inequality

provides the upper bound z/(1 + λ). Thus the equality in (8.14) will follow if we can find
a policy that achieves this upper bound. To see that f πt (z, λ,π

∗
t ) is such a policy, replace ft in

the stochastic differential equation (8.12) with f πt of (8.13), and denote the resulting process
by Z∗

t , and let H∗
t := Z∗

t /(1 + λ), to find

dH∗
t = −π∗

t
′σ (t)√∫ T

t θ(s)′θ(s) ds
φ(�−1(H∗

t )) dW t ≡ −1√∫ T
t θ(s)′θ(s) ds

φ(�−1(H∗
t ))θ (t)

′ dW t

(8.15)

for t < T , where the last equality follows from the fact that π∗
t = σ−1(t)′θ(t).

The solution to this stochastic differential equation is

H∗
t = �



∫ t

0 θ (s)′ dW s +
√∫ T

0 θ(s)′θ (s) ds�−1(H0)√∫ T
t θ (s)′θ(s) ds


 , for 0 ≤ t < T (8.16)

as can be verified by an application of Itô’s formula. An argument identical to that used in the
proof earlier shows that (8.16) is valid as well for t = T with H∗

T is equal to 1 or 0. As such,
examination of (8.16) shows that

P(H∗
T = 1) = P

(∫ T

0
θ(s)′ dW s > −

√∫ T

0
θ (s)′θ(s) ds �−1(H0)

)
≡ H0

where the last equality follows from the fact that
∫ T

0 θ(s)′ dW s ∼ N(0,
∫ T

0 θ(s)′θ (s) ds) under
P. The statement of the theorem now follows since H∗

t ≡ Z∗
t /(1 + λ).

Appendix. The argument in Heath [11]

The modification of Heath’s argument in [10] to the case treated in Section 6.2 is as follows:
for Y g

t defined by (6.14) and (6.15), let A := {ω : Y g
T ≥ c}, and so P(A) ≤ Y0/c. But

P(A) ≤ sup{P(B) : P̃(B) ≤ Y0/c}, and the ‘sup’ can be evaluated via the Neyman–Pearson
Lemma. Hence there exists a unique number λ such that P̃{dP/d P̃ ≥ λ} = Y0/c. But this
probability is, by (2.8), simply

P̃

(
exp

{∫ T

0
θ (s)′ dW̃ s − 1

2

∫ T

0
θ(s)′θ (s) ds

}
≥ λ

)
= Y0/c,
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and since under P̃,
∫ T

0 θ(s)′ dW̃ s ∼ N(0,
∫ T

0 θ(s)′θ(s) ds), we find

ln(λ) = −
√∫ T

0
θ (s)′θ(s) ds �−1(Y0/c)− 1

2

∫ T

0
θ(s)′θ (s) ds

and hence the corresponding P probability is

P

(∫ T

0
θ (s)′ dW s + 1

2

∫ T

0
θ(s)′θ (s) ds ≥

−
√∫ T

0
θ (s)′θ(s) ds �−1(Y0/c)− 1

2

∫ T

0
θ(s)′θ (s) ds

)

which, by virtue of the fact that
∫ T

0 θ (s)′ dW s ∼ N(0,
∫ T

0 θ(s)′θ(s) ds), is simply U (0, Y0; c)
of (6.16). Dynamic programming then applies for arbitrary (t, y) to give U (t, y; c) of (6.16).
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