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Manipulation in Clutter with Whole-Arm Tactile Sensing

Advait Jain1 Marc D. Killpack1 Aaron Edsinger2 Charles C. Kemp1

1Healthcare Robotics Lab, Georgia Tech 2Meka Robotics

Abstract—We begin this paper by presenting our approach
to robot manipulation, which emphasizes the benefits of making
contact with the world across the entire manipulator. We assume
that low contact forces are benign, and focus on the development
of robots that can control their contact forces during goal-
directed motion. Inspired by biology, we assume that the robot
has low-stiffness actuation at its joints, and tactile sensing across
the entire surface of its manipulator. We then describe a novel
controller that exploits these assumptions. The controller only
requires haptic sensing and does not need an explicit model of
the environment prior to contact. It also handles multiple contacts
across the surface of the manipulator. The controller uses model
predictive control (MPC) with a time horizon of length one, and
a linear quasi-static mechanical model that it constructs at each
time step. We show that this controller enables both real and
simulated robots to reach goal locations in high clutter with
low contact forces. Our experiments include tests using a real
robot with a novel tactile sensor array on its forearm reaching
into simulated foliage and a cinder block. In our experiments,
robots made contact across their entire arms while pushing aside
movable objects, deforming compliant objects, and perceiving the
world.

I. INTRODUCTION

Research on robot manipulation has often emphasized col-

lision free motion with occasional contact restricted to the

robot’s end effector. In essence, most of the manipulator’s

motion is intended to be free-space motion and unintended

contact is considered to be a failure of the system. In contrast,

animals often appear to treat contact between their arms and

the world as a benign and even beneficial event that does

not need to be avoided. For example, humans make extensive

contact with their forearms even during mundane tasks, such

as eating or working at a desk.

Within this paper, we present progress towards new founda-

tional capabilities for robot manipulation that take advantage

of contact across the entire arm. Our primary assumption is

that, for a given robot and environment, contact forces below

some value have no associated penalty. For example, when

reaching into a bush, moderate contact forces are unlikely to

alter the robot’s arm or the bush in undesirable ways. Likewise,

even environments with fragile objects, such as glassware on

a shelf, can permit low contact forces. While some situations

merit strict avoidance of contact with an object, we consider

these to be rare, and instead focus on default strategies that

allow contact.

In order to keep contact forces low enough to avoid penal-

ties, we further assume that the robot arm has compliant

actuation at its joints and tactile sensing across all of its

surfaces. Low-stiffness compliant actuation can reduce contact

forces due to perturbations, error, and other sources. Tactile

sensing enables direct monitoring of contact forces (and the

distribution of contact forces). These assumed hardware capa-

bilities for the robot’s actuation and sensing are also analogous

to capabilities found in animals.

Fig. 1: Left: View of foliage from the robot’s perspective.

Two rigid blocks of wood are occluded by the leaves. Right:

Image of the robot after it has successfully reached the goal

location using the controller we present in this paper. The red

circle denotes the position of the end effector.

Our main contribution in this paper is a novel controller

that enables a robot arm to move within an environment

while regulating contact forces across its entire surface. The

controller uses model predictive control (MPC) with a time

horizon of length one and a linear quasi-static mechanical

model. At each time step, the controller constructs a model

and solves an associated quadratic programming problem in

order to minimize the predicted distance to a goal subject to

constraints on the predicted contact forces.

We also empirically evaluate our controller’s performance

with respect to the task of haptically reaching to a goal location

in high clutter (see Fig. 1). We assume that the clutter can

consist of a variety of fixed, movable, and deformable objects,

and that the robot does not have a model of the environment in

advance. This task is representative of real-world challenges

for robots, such as retrieving objects from rubble, foliage, or

the back of a shelf. It is also representative of an animal

reaching for food while foraging.

We tested our controller under a variety of conditions with

a simulated robot, a real robot with simulated tactile sensing,

and a real robot with real tactile sensors across its forearm.

For many of the tasks, the robots compressed, bent, or moved

objects out of the way with their arms while reaching the goal

location. Our results demonstrate that the model predictive

controller has a higher success rate and lower contact forces

compared to a baseline controller.

A. Biological Inspiration

Animals serve as an inspiration for our research (see Fig. 2),

especially in terms of the capabilities they exhibit, their

sensing, and their actuation.

Animals dramatically outperform current autonomous

robots within unstructured environments, such as when for-

aging in dense foliage. During these activities, animals often

ar
X

iv
:1

30
4.

61
46

v1
  [

cs
.R

O
] 

 2
3 

A
pr

 2
01

3



2

Fig. 2: We propose foundational capabilities for robotic manipulation that will enable robots to make and exploit contact with

their environment. While foraging for food, animals and humans make contact at multiple locations on their arm and operate

in cluttered environments. (a) A raccoon reaches into a bird house to find eggs and young (webpage, 2011a). (b) A Long-tailed

Macaque grasps fruit in dense foliage (webpage, 2011b). (c) When noodling, people find catfish holes from which to pull fish

out (webpage, 2011c). (d)-(e) A person makes contact along his forearm while reaching for an object in the back of a shelf

and refrigerator. (All images used with permission)

make contact with the world at multiple locations along their

arms, and reach into visually occluded spaces.

Touch is an important sensory modality for successful forag-

ing (Dominy, 2004; Iwaniuk and Whishaw, 1999). In general,

animals can usefully manipulate the world in the absence of

vision. As an extreme example, the star-nosed mole uses the

sense of touch almost exclusively while foraging (Catania,

1999). Humans also competently manipulate the world without

vision, as the reader can demonstrate by haptically exploring

the underside of a nearby table. Inspired by these capabilities,

our goal is to develop methods that degrade gracefully when

deprived of non-haptic modalities, such as vision and audition.

Animals also serve as inspiration for our decision to assume

the presence of whole-body tactile sensing. Although whole-

body tactile sensing is currently rare in robotics, it is nearly

ubiquitous in biology, which suggests that it is advantageous

for operation in unstructured environments. Organisms from

small nematodes to insects and mammals are able to sense

forces across their entire bodies (Bianchi, 2007; Goodman,

2006; Lederman and Klatzky, 2009; Lumpkin et al, 2010).

Sensing forces also plays an important role in avoiding injury.

For example, loss of sensitivity in a human diabetic’s foot is

a strong risk factor for injuring the foot (Sims Jr et al, 1988).

As has often been noted, tactile sensing also supports human

manipulation (Johansson and Flanagan, 2009).

Compliant actuation at the joints is another common char-

acteristic in animals that we have chosen to emulate (Alexan-

der, 1990; Hogan, 1984; Migliore et al, 2005). Robotics

researchers have demonstrated that compliant joints lower

interaction forces during incidental contact and can be ben-

eficial for unmodeled and dynamic interactions (Buerger and

Hogan, 2007; J. Pratt and Pratt, 2001; Pratt, 2002; Pratt and

Williamson, 1995). This capability is now relatively common

within robotics, although we use stiffnesses that tend to be

lower than other published research. For example, in some

postures, the stiffness at the end effector is a factor of five

lower than those reported by DLR in Ott et al (2007). The

values we use are similar to measured stiffnesses of humans

during planar reaching motions (Shadmehr, 1993).

Fig. 3: Example illustrating the available range of motion for

a 1 DoF arm if the controller uses a safety margin with non-

contact sensing (left), allows contact with an object (middle),

and allows the arm to push into compliant and movable objects

(right).

B. Benefits of Whole-body Contact and Tactile Sensing

Given our emphasis on whole-body contact and whole-body

tactile sensing, we now illustrate some of the performance

benefits associated with these design decisions.

One benefit of allowing contact with the arm is the increased

effective range of motion of the manipulator. As illustrated

in Fig. 3, the performance loss due to avoiding contact is

exacerbated by safety margins and an inability to apply forces

that compress or move objects. Similarly, if the robot has

a compliant exterior, avoiding contact forfeits the additional

range of motion achievable by compressing this exterior.

Animals appear to use this method to achieve greater motion

while in contact and squeeze through openings. The reader can

gain some insight into this by noting the compressibility of the

human forearm that results from the soft tissues surrounding

the endoskeleton.

Whole-body tactile sensing with high spatial resolution also

has advantages in terms of distinguishing between distinct

contact configurations and force distributions, and measuring

forces with high sensitivity. Prior research has attempted to

use the geometry of links, measurements of joint torques and

force-torque sensors to estimate contact properties (e.g, Bicchi

et al (1993); De Schutter et al (1999); Eberman and Salisbury

(1990); Kaneko and Tanie (1994)). However, interpretation of

data from these sensors can often be ambiguous in multi-
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Fig. 4: Some multi-contact conditions can not be detected

(left) or distinguished (right) using only joint torque sensing

or force-torque sensors mounted at the joints. We can detect

and distinguish between these conditions using tactile sensors

covering the arm.

contact situations (Salisbury, 1984). In practice, the estimation

can also be sensitive to the configuration of the manipulator,

the fidelity of the torque estimates, and friction and flexibility

at the joints (Dogar et al, 2010; Eberman, 1989).

Fig. 4 shows two examples of contact conditions that will

result in ambiguity if a robot only uses joint torque sensing or

force-torque sensors mounted at the joints. In the first example,

the resultant force and torque on the robot arm is zero, but it is

wedged between two contacts. The second example illustrates

that contact over a large area, and a high force at a single

point can result in the same total resultant force and torque.

Distinguishing among these situations can be advantageous.

For example, a high total force distributed over a small area,

such as due to contact with the edge of a cinder block or

a small branch, has greater potential to damage the robot or

the world, respectively. Similarly, the same large total force

distributed across a large area due to contact with tall grass

or leaves is less likely to damage the robot or the world.

Moreover, the geometries associated with distinct contact

regions, such as a rigid point, line, or plane, imply distinct

options for subsequent movement.

More generally, for many manipulation tasks, the manipu-

lator primarily influences the world via contact forces with

other forms of physical interaction, such as heat transfer,

being uncontrolled or irrelevant. As such, we expect that

direct measurement of contact forces will enable superior

manipulation capabilities.

C. Challenges Associated with Reaching in High Clutter

For this paper, we focus on the task of reaching to a goal

location in high clutter. This entails a number of challenges,

including the following:

• Lack of non-contact trajectories: As clutter increases,

approaches that avoid contact with the environment will

have a diminishing set of trajectories that can successfully

perform the task. If the robot is interacting with movable

or compliant objects, such as foliage, reaching the goal

while applying low forces might be possible but non-

contact trajectories may not exist.

• Contact with only the end effector may be inefficient or in-

feasible: Removing or rearranging the clutter by making

serial contact with only the end effector may be inefficient

or infeasible. For example, given an environment with

multiple compliant objects (e.g., plants) it may not be

possible to first bend each of the objects out of the way

one at a time without plastic deformation. Instead, an

efficient solution would be to directly reach to the goal

and allow multiple contacts to occur with the compliant

objects and the arm.

• Clutter can consist of unique objects and configurations

that have not been encountered before: For some types

of natural clutter, such as dense foliage, each object

encountered can be unique. Objects could be fixed, mov-

able, rigid, deformable, granular, fluid-like, and dynamic.

Likewise, the configuration of the environment can be

unique. Statistical properties may be informative, but a

specific environment may only be encountered once by

the robot.

• Observation of geometry is obstructed: Low visibility due

to occlusion will often prevent conventional line of sight

sensors, such as cameras and laser range finders, from

modeling the geometry of the clutter in advance (see

Fig. 1).

• Mechanics are difficult to infer without contact: Non-

contact sensing provides limited ability to infer the me-

chanical properties of the clutter, such as whether or not

an object can be bent or moved out of the way. Likewise,

objects may be mechanically coupled in complicated

ways, such as through adhesion or unobserved rigid

connections.

Notably, many approaches to manipulation are poorly

matched to address these challenges. For example, approaches

that rely on preexisting detailed models, estimation of mod-

els via conventional line-of-sight sensing, or collision-free

motions with the arm would fare poorly under real-world

conditions at which animals excel (e.g., Kavraki and LaValle

(2008); Saxena et al (2008); Srinivasa et al (2009); Stilman

et al (2007)).

D. Our Approach

In contrast, our approach directly addresses these challenges

associated with high clutter due to the following properties:

• We explicitly allow multiple contacts across the entire

surface of the arm: Our approach assumes that the

entire surface of the manipulator is covered with pressure

sensing elements (tactile pixels or taxels), and that every

taxel could be simultaneously in contact with the world

at any given moment.

• We do not require a detailed model of the environment

prior to contact: Our approach only requires that initial

parameters appropriate for the robot, the environment,

and the task be provided to the robot’s control system

in advance. For our current controller, this includes the

force magnitude below which no penalty is expected, and

the initial stiffness estimate assigned to new contacts.

• We only require contact-based sensing: Our approach

only requires contact-based sensing. Our current con-

troller only makes use of haptic sensing in the form of

joint angles1 and taxel responses. Through this contact-

based sensing and a kinematic model of its own arm, the

controller estimates the instantaneous contact geometry

1Due to the low-stiffness virtual visco-elastic springs at the robot’s joints,
the joint angles over time directly relate to the joint torques.
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and the stiffness associated with each contact in order

to generate a local model. Future work may make use of

non-contact sensing, which would be complementary, but

this is not required.

E. Organization of this Paper

The rest of this paper is organized as follows. In Sec. II

we discuss related research on manipulation in clutter, multi-

contact manipulation, motion planning with deformable ob-

jects, robot locomotion, and model predictive control. Next,

in Sec. III, we derive our model predictive controller for the

task of reaching to a goal location in a cluttered environment.

We describe the hierarchy of controllers running on our robot,

the linear quasi-static model that the controller uses, and the

quadratic program that the controller solves at each time step.

We then describe three testbeds that we used to empirically

test the performance of our controller (Sec. IV) and the

baseline controller that we compared our model predictive

controller against (Sec. V). Next, we describe the experiments

that we ran in Sec. VI. We end with a discussion of our work

in Sec. VII and conclude with a brief summary of our results

in Sec. VIII.

II. RELATED WORK

A. Manipulation in Clutter

Within this paper, our goal is to enable robots to reach to

a goal location in cluttered environments and manipulate with

multiple contacts across the entire arm using haptic sensing.

In contrast, robotics research has often addressed the task of

generating collision free trajectories (e.g, Kavraki and LaValle

(2008); LaValle and Kuffner (2001); Lozano-Perez (1987)),

generating reaching motions in free space (e.g, Hersch and

Billard (2006); Metta et al (2011); Stulp et al (2009)), and

manipulating objects in uncluttered environments (e.g, Hsiao

et al (2010); Jain and Kemp (2010a); Natale and Torres-Jara

(2006); Pastor et al (2011); Romano et al (2011); Saxena et al

(2008)).

Research has also looked at the problem of manipulation

in cluttered environments. However, most prior research on

manipulation in clutter with autonomous control and during

teleoperation (e.g, Leeper et al (2012)) restricts contact be-

tween the robot and its environment to the end effector. Often,

prior research has also used non-contact, line of sight sensors

and required pre-existing models of objects.

Stilman et al (2007) describes an algorithm for planning

in an environment with movable obstacles. Within software

simulation, the planner uses geometric models of all the

objects in the world to enable a robot to rearrange clutter by

grasping and moving objects, and opening doors.

Dogar and Srinivasa (2011) presents a framework to plan

a sequence of actions such as pushing and grasping objects

to rearrange clutter prior to grasping an object. The actions

currently used within the framework restrict contact to the

robot’s end effector and avoid other contact with the world.

The implementation relies on estimating the pose of objects in

the environment using visual and geometric models (created

during an off-line modeling stage). Additionally, for now, the

planned actions are executed without sensor feedback.

Mason et al (2011) describes a simple end effector design

that can be used to grasp a single marker from a cluttered

pile of nearly identical markers, and haptically estimate the

marker’s pose after grasping it. This is the most similar work

in spirit to ours, since it investigates manipulation in high

clutter, does not use a detailed model of the environment

prior to contact, allows multiple contacts across the surface

of the end effector, and uses haptic sensing. Their “Let the

fingers fall where they may.” approach to grasping in clutter

has other notable similarities to our approach to reaching

in clutter. Both approaches use greedy controllers that are

run iteratively, and both approaches ignore the details of

how the clutter responds to the robot’s actions. However,

our approach performs more complex feedback-based control

of the manipulator and does not use a simple mechanism

nor simple sensing, which they emphasize. This is in part

because we wish to regulate the contact forces. More degrees

of freedom also appear to improve the performance of our

controller, although we do not yet have reportable results to

support this claim. In addition, we focus on reaching in clutter,

rather than grasping, and present empirical results for diverse

environments, in contrast to their experiments with a collection

of durable, rigid, nearly-identical, manufactured objects.

B. Multi-contact Manipulation

Park and Khatib (2008) presents a framework for controlling

a robot with multiple contacts along the links. It generalizes

previous direct force control methods (Khatib, 1987; Raibert

and Craig, 1981) to not require force and motion to be along

orthogonal directions in Cartesian space and to allow for

contacts at points other than the end effector.

This method requires a full dynamic model of the robot and

assumes stationary and rigid contacts. Further, this framework

assumes that the robot has at least six degrees of freedom

(DoF) for each contact, to control the contact force and torque

vector (Sentis et al, 2010). A seven degree of freedom arm, like

the robot arm that we use, with multiple contacts is unlikely

to have six independent degrees of freedom for each contact.

Using this framework, results have been shown in simula-

tion (Sentis and Khatib, 2005; Sentis et al, 2010), and on a

real robot in relatively controlled settings (Petrovskaya et al,

2007). No results have been shown in cases where the robot

makes additional unpredicted contact with the environment or

loses contact at some locations.

In contrast, our controller uses a linear quasi-static model

of the robot’s interaction with the environment and does not

assume that the robot has six degrees of freedom for each con-

tact. On a real robot with a tactile skin sensor, we demonstrate

that our controller can operate in cluttered environments with

multiple unpredicted contacts with compliant, rigid, movable,

and fixed obstacles across the entire arm of the robot.

Research in motion planning for humanoid robots has

shown that a robot with geometric models of its environment

can make contact at multiple, predetermined locations on its

body to better perform a task, such as lean on a table to take a
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large foot step (Legagne et al, 2011), use contacts at hands and

knees to climb a ladder in simulation (Hauser et al, 2005), and

use contact between the hand and a table while sitting down

(Escande and Kheddar, 2009). These approaches require a

complete geometric model of the world (which can be difficult

or impossible to obtain unless the robot is operating in a

controlled environment), assume stationary and rigid contacts,

and do not incorporate sensor feedback as the robot (real or

simulated) executes the planned kinematic trajectory. These

approaches attempt to maintain balance on the humanoid robot

while we assume that the robot is statically stable.

There is also research on multi-contact manipulation within

the context of using all the surfaces of a multi-fingered hand,

or the entire body to grasp and manipulate a single object (e.g,

Bicchi (1993); Bicchi and Kumar (2000); Hsiao and Lozano-

Perez (2006); Platt Jr et al (2003)).

C. Motion Planning with Deformable Objects

Manipulation research often assumes that objects that the

robot interacts with are rigid. At the same time, there is

research on motion planners that allow the robot to make

contact with, and push into deformable objects (e.g. Frank

et al (2011); Patil et al (2011); Rodriguez et al (2006)).

However, these approaches assume knowledge of the specific

configuration of the objects and require accurate and detailed

models of how objects deform. We avoid these assumptions

in our work.

These approaches build object deformation models by using

data-driven methods for a specific object, or computationally

expensive physics simulations that use the physical properties

of the objects. Accurate object deformation models can be hard

to obtain in realistic and cluttered environments. Additionally,

if multiple objects are in contact with each other and the

specific configuration is unknown, then building these models

before making contact may not be feasible.

D. Robot Locomotion

Our approach to robot manipulation has similarities to

approaches that have been successful for robot locomotion.

For example, researchers have developed robots that locomote

in cluttered environments without detailed geometric models

of the terrain nor planning over long time horizons (Raibert

et al, 2008; Saranli et al, 2001). Likewise, whole body contact,

and contact in general, has not been considered undesirable.

For example, robots have used contact all over their bodies

to traverse the ground and swim in granular media (Maladen

et al, 2010; McKenna et al, 2008). Additionally, the use of

simple mechanical models, compliance, and force sensing is

common for robot locomotion (Garcia et al, 1998; J. Pratt and

Pratt, 2001; Pratt, 2002; Raibert et al, 2008).

E. Model Predictive Control

One of the initial application areas for model predictive

control (MPC) was chemical process control (Garcia et al,

1989). It is often referred to as receding horizon control

when used for control of aerial vehicles (Abbeel et al, 2010;

Bellingham et al, 2002). MPC has also been used in research

in robot locomotion (e.g, Erez et al (2011); Manchester et al

(2011); Wieber (2006)), and for controlling robot manipulators

(e.g, From et al (2011); Ivaldi et al (2010); Kulchenko and

Todorov (2011)).

III. MODEL PREDICTIVE CONTROLLER

The controller that we have developed uses linear model

predictive control (MPC) with a time horizon of length one.

Specifically, using the notation of Morari and Lee (1999), our

controller uses a linear discrete time model of the system,

x(k + 1) = Ax(k) +Bu(k), (1)

where x(k) is the state of the system and u(k) is the control

input.

At each time step, k, the controller computes a sequence

of control inputs, u∗(i), i = k . . . (k + N − 1), to minimize

a quadratic objective function of x(k), . . . , x(k + N) and

u(k), . . . , u(k+N−1), subject to linear inequality constraints

on x(k), . . . , x(k + N) and u(k), . . . , u(k + N − 1), where

N is the length of the time horizon of the model predictive

controller. This defines a quadratic program (Morari and Lee,

1999). The controller then uses only the first control input, i.e.

it sets u(k) = u∗(k), and reformulates the quadratic program

at the next time step. In this paper, we use a time horizon of

length one (N = 1), and recompute the A and B matrices in

Eq. 1 at each time step.

In the rest of this section, we describe our model predictive

controller for manipulation with multiple contacts. First, in

Sec. III-A, we give an overview of the controller that we have

developed. Next, we present the hierarchy of controllers run-

ning on our robot in Sec. III-B. In Sec. III-C we describe the

linear quasi-static model that our model predictive controller

uses, and detail the quadratic program that we solve at each

time step Sec. III-D. We then describe some extensions to the

quadratic program in Sec. III-E.

A. Overview of the One-Step Model Predictive Controller

The model predictive controller that we have developed uses

a linear discrete time model of the system, a one step time

horizon, and attempts to move the end effector along a straight

line to the goal subject to constraints on the predicted contact

forces.

It explicitly allows the robot to apply any force less than a

don’t care force threshold at each contact. Our controller has

the following parameters that influence its behavior:

• Goal location (xg ∈ ℜ3): This is the location that the

controller attempts to move the end effector to.

• Contact stiffness matrices (Kci ∈ ℜ3×3): These are the

controller’s estimates of the stiffness matrices for each

contact location along the arm. In this paper, we assume

that the stiffness at each contact is non-zero along the

direction normal to the surface of the robot arm and is

zero in the other directions.

• Don’t care force thresholds (f thresh
ci

∈ ℜ3): The con-

troller attempts to keep the force at each contact below
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Goal Location

Model Predictive Controller

φ = φk−1 +∆φ∗

τ = Kj(φ− θ) +Dj θ̇ + τ̂g
“Simple” Impedance

Control (Hogan and

Buerger, 2005)

Mθ̈ + Cθ̇ +
∑n

i=1
JT
ci
fci + τg = τ Plant

Joint

Encoders

Joint Encoders,

Tactile Skin

xg ∈ ℜ3

∆φ∗

τ

φ

θ, θ̇

θ, fci , Jci
50-100Hz

1kHz

Fig. 5: Block diagram showing the hierarchical control struc-

ture and the equations of motion. Details are in Sec. III. The

controller frequencies are specific to our implementation.

this value, and applies no penalty to contact forces below

this threshold.

• Maximum rate of change of contact force (∆frate
ci

∈ ℜ3):
This term limits the predicted change in the contact force

over one time step with the goal of preventing large and

abrupt changes in the contact force.

• Safety force threshold (fsafety
ci

∈ ℜ3): If the contact

force, fci , exceeds this safety threshold value, the con-

troller stops updating the virtual trajectory and we report

it as a failure of the controller.

In this paper, we perform experiments on three different

testbeds, described in Sec. IV. The precise meaning of contact,

and thus the don’t care force threshold and other parameters

of the model predictive controller, depends on the specific

testbed, as described in Sec. IV-E.

B. Control Structure

In this work, we use a hierarchical control structure with an

inner 1kHz real time joint space impedance controller, termed

“simple” impedance control by Hogan and Buerger (2005),

and an outer model predictive controller that runs at 50-100Hz,

as shown in Fig. 5.

Researchers have argued for the benefits of robots with low

mechanical impedance (Buerger, 2006; Pratt, 2002). As has

often been noted, these arguments are particularly relevant

for manipulation in unstructured environments, since robots

are likely to be uncertain about the state of the world. At

minimum, low impedance can reduce the forces and moments

resulting from unpredicted contact, and thus reduce the risk

of damage to the robot, environment, and nearby people.

1) “Simple” Impedance Control: For a detailed description

and analysis of this form of impedance control, we refer

the reader to Hogan and Buerger (2005). The input to the

1kHz “simple” impedance controller, φ, is called a virtual

trajectory. The controller uses feedback from the joint encoders

to command torques at the joints, τ , that are given by

τ = Kj(φ− θ) +Dj θ̇ + τ̂g(θ). (2)

Kj and Dj are constant m×m diagonal joint-space stiffness

and damping matrices, θ ∈ ℜm and θ̇ ∈ ℜm are the current

joint angles and joint velocities, and τ̂g ∈ ℜm is a gravity

compensating torque vector which is a function of θ. The robot

arm has m joints.

As a result, the closed loop system behaves as if the arm is

connected to the joint-space virtual trajectory, φ, via torsional

visco-elastic springs at the joints. If φ is held constant,

“simple” impedance control can be shown to result in stable

interaction with passive environments for contacts all over the

arm (Hogan, 1988; Hogan and Buerger, 2005).

Unlike other approaches to force control and impedance

control, “simple” impedance control does not explicitly model

the dynamics of the arm nor the impedance at the end effector

(Albu-Schaffer et al, 2003; Sentis et al, 2010). We have found

in our previous work that in practice this form of impedance

control, also referred to as “equilibrium point control”, allows

the robot to interact with the world in a stable, compliant, and

effective way (Edsinger and Kemp, 2007a,b; Jain and Kemp,

2009a,b, 2010b).

Other researchers have looked at similar robotic control

strategies in simulation (Gu and Ballard, 2006), in free-space

motions (Williamson, 1996), in legged locomotion (Migliore,

2009), and in rhythmic manipulation from a fixed based

(Williamson, 1999).

2) Model Predictive Controller: The model predictive con-

troller is part of the outer feedback control loop that runs

between 50-100Hz in our implementation, as shown in Fig. 5.

The input is a goal location, xg ∈ ℜ3, that the controller

attempts to reach. The controller uses feedback from the joint

encoders and the tactile skin to compute ∆φ∗ ∈ ℜm, an

incremental change in the virtual joint-space trajectory. This

∆φ∗ is the control input, u(k), of Eq. 1.

We will now derive the model predictive controller.

C. Linear Discrete-Time Model

In this section, we derive a discrete time linear quasi-static

model, similar to Eq. 1, for the arm and its interaction with the

world that our model predictive controller uses. Specifically,

the model will be of the form

θ(k + 1) = θ(k) +B∆φ(k), (3)

where θ ∈ ℜm is the state of the system (vector of joint angles

for a robot with m joints), the control input ∆φ ∈ ℜm is the

incremental change in the joint-space virtual trajectory of the

impedance controller, and B ∈ ℜm×m.

We begin by assuming that the robot has a fixed and

statically stable mobile base and the arm is in contact with

the world at n locations. We denote the ith contact as ci. The

equations of motion in joint space are

M(θ)θ̈ + C(θ, θ̇)θ̇ +

n
∑

i=1

JT
ci
(θ)fci + τg(θ) = τ, (4)
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Fig. 6: Graphical representation of a planar version of the

quasi-static mechanical model with torsional springs at the

joints of the robot and linear springs at contacts that our

model predictive controller uses, as described in Sec. III-C.

where fci ∈ ℜ3 is the force at the ith contact, Jci ∈ ℜ3×m is

the Jacobian matrix for contact ci, τg ∈ ℜm is the vector of

torques due to gravity at each joint, and τ ∈ ℜm is the vector

of torques applied by the actuators at the joints. Eq. 4 ignores

effects such as friction at the joints, but is commonly used in

robotics (Featherstone and Orin, 2008).

Combining the equations of motion (Eq. 4) with the

impedance control law (Eq. 2) gives us the model of the arm

and its interaction with the world as

Mθ̈ + Cθ̇ +

n
∑

i=1

JT
ci
fci + τg = Kj(φ− θ) +Dj θ̇ + τ̂g. (5)

In this paper, as an approximation, we assume that the dynam-

ics are negligible, and that the gravity compensating torques

are perfect. So, we remove all terms with θ̈ or θ̇ from Eq. 5,

and set τ̂g = τg to get

n
∑

i=1

JT
ci
fci = Kj(φ− θ), (6)

which is a quasi-static model. In Eq. 6, the torques at the joints

due to the contact forces (left-hand side) balance the torques

applied by the actuators in the joints (right-hand side).

For the contact model, we ignore friction at the contacts

and assume that each contact behaves like a linear spring with

the contact force along the normal vector of the surface of

the robot arm. These assumptions are similar to the Hertzian

contact model (Johnson and Johnson, 1987; Kao et al, 2008).

This results in a mechanical model with torsional springs at

the joints and linear springs at the contacts, shown in Fig. 6.

If we take the difference of Eq. 6 at time instants k and

k + 1, we get

n
∑

i=1

JT
ci
(k + 1)fci(k + 1)− JT

ci
(k)fci(k) =

Kj(φ(k + 1)− φ(k)− θ(k + 1) + θ(k)). (7)

We assume that the change in the configuration of the arm in

one time step, θ(k + 1)− θ(k), is small and we approximate

Jci(k + 1) with Jci(k). This reduces Eq. 7 to

n
∑

i=1

JT
ci
(k)(fci(k + 1)− fci(k)) =

Kj(∆φ(k)− θ(k + 1) + θ(k)), (8)

where ∆φ(k) = φ(k + 1) − φ(k) is the control input of the

model predictive controller, see Eq. 3 and Fig. 5.

Using the linear elastic spring model for the contacts, shown

in Fig. 6,

fci(k + 1)− fci(k) = KciJci∆θ(k), (9)

where ∆θ(k) = θ(k + 1) − θ(k). We can now use Eq. 9 to

rewrite Eq. 8 as

θ(k + 1) = θ(k) +

(

Kj +

n
∑

i=1

JT
ci
KciJci

)−1

Kj∆φ(k).

(10)

(

Kj +
∑n

i=1
JT
ci
KciJci

)

is the sum of a positive definite

matrix, Kj , and positive semi-definite matrices, JT
ci
KciJci ,

and is therefore positive definite and invertible.

Eq. 10 is in the same form as Eqns. 1 and 3. This is the

linear discrete time model of the system that our controller

generates and uses at each time step. We use contact forces

and locations from whole-arm tactile sensing, and joint angles

from encoders at the joints to estimate fci , Jci , and Kci .

The linear form of Eq. 10 allows us to frame the opti-

mization as a quadratic program, which can be solved effi-

ciently (Sec. III-D). Additionally, we empirically demonstrate

in Sec. VI that our controller performs well in the task of

reaching to a goal location in cluttered environments.

D. Quadratic Program to Compute ∆φ∗

In this section we describe the quadratic program (QP) that

our model predictive controller solves at each time step.

Specifically, using the terminology of Boyd and Vanden-

berghe (2004), our optimization variable is ∆φ, an incremental

change in the joint-space virtual trajectory, and we minimize

a quadratic objective function subject to linear equality and

inequality constraints. We use the open source OpenOpt frame-

work to solve the quadratic program (Kroshko, 2011).

In this paper, the objective function is of the form

∑

i

αigi, (11)

where gi are quadratic functions of the optimization variable

∆φ, and αi are empirically tuned scalar weights.

We set up the quadratic program such that the solution,

∆φ∗, will result in the predicted position of the end effector

which is closest to a desired position subject to constraints on

the predicted change in the joint angles and contact forces.
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1) Move to a Desired Position: The first term of quadratic

objective function of Eq. 11 attempts to move the end effector

to a desired position. It is of the form

g1 = ‖∆xd −∆xh‖
2
, (12)

where ∆xh = xh(k + 1) − xh(k) is the predicted motion of

the end effector (or hand) and ∆xd ∈ ℜ3 is the desired change

in the end effector position in one time step. In this paper, we

attempt to move the end effector in a straight line towards the

goal, xg ∈ ℜ3, and compute

∆xd =

{

dw
xg−xh

‖xg−xh‖
if ‖xg − xh‖ > dw

xg − xh if ‖xg − xh‖ ≤ dw
, (13)

where dw is a small constant distance. We use the kinematic

relationship

∆xh = Jh∆θ, (14)

where Jh ∈ ℜ3×m is the Jacobian at the end effector (or hand),

and ∆θ = θ(k + 1) − θ(k) is the change in the joint angles

predicted by the linear quasi-static discrete time system model

of Eq. 10. We can now express the objective function g1 as a

quadratic function of ∆φ:

g1 =

∥

∥

∥

∥

∥

∥

∆xd − Jh

(

Kj +

n
∑

i=1

JT
ci
KciJci

)−1

Kj∆φ

∥

∥

∥

∥

∥

∥

2

. (15)

2) Joint Limits: We also add two linear inequality con-

straints to keep the predicted joint angles within the physical

joint limits. These are of the form

∆θmin ≤ ∆θ ≤ ∆θmax, (16)

where ∆θmin and ∆θmax are the difference between the min-

imum and maximum joint limits and the current configuration

of the robot. Using Eq. 10 we can rewrite the inequalities of

Eq. 16 as linear inequalities in ∆φ.

3) Contact Forces: For each contact, we attempt to restrict

the contact force fci to be below a don’t care force threshold

f thresh
ci

and limit the predicted change of the contact force,

∆fci = fci(k + 1)− fci(k), in one time step. This results in

two inequalities for each contact,

∆fmin ≤ ∆fci ≤ ∆fmax, where (17)

∆fmin = −frate
ci

, and (18)

∆fmax = min
(

frate
ci

, f thresh
ci

− fci
)

. (19)

frate
ci

is a threshold on the maximum allowed predicted change

in the contact force in one time step. The term (f thresh
ci

−
fci) in Eq. 19 explicitly allows contact forces below f thresh

ci

without any additional cost.

From Eqns. 9 and 10, the inequalities of Eq. 17 can be

expressed as linear inequalities in ∆φ.

E. Extensions to the Quadratic Program

In this section, we describe three extensions to the quadratic

program of the previous section (Sec. III-D) that we use in the

experiments of Sec. VI.

1) Squared Magnitude of ∆τ : To discourage large changes

in the joint torques in one time step, we add a term

g2 = ‖∆τ‖
2

= ∆φTKT
j Kj∆φ, (20)

to the objective function after multiplying it with a scalar

weight α2, see Eq. 11. This term is useful in preventing large

motions of the redundant degrees of freedom.

2) Decrease Contact Forces Above Don’t Care Threshold:

Due to modeling errors and unmodeled dynamics, the force at

some contact (or a number of contacts) can go above the don’t

care force threshold (fci > f thresh
ci

). In this case, we modify

the inequality constraints of Sec. III-D3 for these contacts to

prevent an increase in the predicted force. We also add an

additional term g3 to the objective function that encourages

the controller to decrease the forces at these contacts. This is

of the form

g3 =
∑

i

∥

∥∆fd
ci
−∆fci

∥

∥

2

if fci > f thresh
ci

, (21)

where ∆fd
ci

is the desired change the contact force in one time

step and ∆fci is the change in the contact force as predicted

by the linear model that our controller uses. We set ∆fd
ci

as

a force with a constant magnitude and a direction opposite to

fci . Using Eqns. 9 and 10, we can express g3 as a quadratic

function of ∆φ.

3) Limits on the Virtual Trajectory: On the robot Cody,

described in Sec. IV-B, the joint-space impedance controller

limits the virtual trajectory to be within the physical joint

limits. To account for this, we add two additional linear

constraints on ∆φ:

∆φmin ≤ ∆φ ≤ ∆φmax. (22)

IV. EXPERIMENTAL TESTBEDS

We evaluated our model predictive controller using three

different testbeds: 1) a software simulation testbed with a 3

DoF planar arm, 2) a hardware-in-the-loop skin simulation

testbed with a real 7 DoF arm, and 3) a skin sensor covering

the forearm of a real 7 DoF arm. The same MPC code

written in Python runs on all three experimental testbeds. For

visualization, we use the rviz program which is part of the

Robot Operating System (Quigley et al, 2009).

A. Software Simulation

This testbed allows us to simulate a large number of trials.

We use the open source physics simulation library, Open

Dynamics Engine (Smith et al, 2011), to simulate a planar

arm with three rotational joints, a 1kHz joint-space impedance

controller, and tactile skin covering the entire surface of the

arm with a simulated taxel resolution of 100 taxels per meter.

Fig. 7 shows a visualization of the simulated robot, tactile

skin, and taxels.

The simulated three link planar arm has kinematics and joint

limits similar to a human operating in a plane parallel to the

ground at shoulder height with a fixed wrist. The three joints

correspond to torso rotation, shoulder, and elbow.
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Fig. 7: Left: Visualization of the three link planar arm

with tactile skin interacting with obstacles within the software

simulation testbed. Red obstacles are rigid and fixed, while

gray obstacles are rigid and movable. Right: Visualization of

the whole-arm tactile skin. The orange points are 1cm apart

and represent the centers of the simulated taxels. The green

arrows are the contact force vectors and the red arrows are

the normal components of the contact forces.

The arm interacts with rigid cylindrical obstacles that are

either fixed or movable. In isolation, a movable object can slide

in the plane if the force applied to it exceeds friction (∼ 2N),
while the fixed obstacles remain stationary regardless of the

force applied to them.

B. The Robot

Fig. 8 shows the robot Cody that we use for experiments in

this paper. Cody has two compliant 7 DoF arms from Meka

Robotics with series elastic actuators (SEAs) for torque control

at each degree of freedom. The joint space impedance control

on Cody runs at 1kHz. Cody has a Segway omnidirectional

mobile base which we control with a PID controller that uses

visual odometry as described in our previous work (Killpack

et al, 2010).

As part of this research we have developed a tactile skin

sensor that covers the right forearm of Cody, as shown in

Fig. 9 and described in Sec. IV-C. We currently have tactile

skin covering its right forearm only.

For experiments in realistic conditions, described in

Sec. VI-D, we wanted to be able to sense contact forces on

more distal parts of the arm. To do this, we 3D printed a

cylindrical cover for the wrist of the robot, shown in Fig. 9.

We use the wrist force-torque sensor to measure the resultant

force applied to the environment by the distal part of the arm

beyond the forearm. Due to this cover, the experiments with

the forearm tactile skin sensor use only the first four degrees

of freedom of the arm.

C. Real Tactile Skin Sensor

Fig. 9 shows the tactile skin sensor that covers the forearm

of the robot Cody. Meka Robotics and the Georgia Tech

Healthcare Robotics Lab developed the forearm tactile skin

sensor, which is based on Stanford’s capacitive sensing tech-

nology, as described in Ulmen et al (2012).

The forearm skin sensor consists of 384 taxels arranged

in a 16 × 24 array. There are 16 taxels along the length of

the cylindrical forearm and 24 taxels along the circumference.

Fig. 8: The robot Cody with two compliant 7 DoF arms and

a tactile skin sensor covering its right forearm.

Fig. 9: Left: Tactile skin sensor on the right forearm of Cody

(underneath the black neoprene sleeve) as well as a 3D printed

cover for the wrist. Right: Two additional layers (thin white

compression sleeve and black padded sleeve) that we added

on top of the tactile skin sensor (blue) once we mounted it on

the robot.

Each element has a dimension of 9mm×9mm and a sensing

range of 0−30N . We can obtain the 16×24 taxel array sensor

data at 100Hz using Robot Operating System (ROS) drivers.

On the robot Cody, we added two additional layers on top

of the forearm skin sensor to cover the open parts of the joints,

protect the skin sensor, and make the exterior of the arm low

friction. These are shown on the right in Fig. 9. The white

sleeve is a thin neoprene McDavid compression arm sleeve,

and the black layer is a padded Ergodyne neoprene elbow

sleeve designed for human athletes.

D. Hardware-in-the-loop Skin Simulation

Since we currently do not have whole-arm tactile skin on

Cody, we have built a hardware-in-the-loop simulation testbed

to be able to simulate whole-arm skin and test our controller

on a real robot arm.

Fig. 10 shows the current implementation of this testbed.

We use an OptiTrak motion tracking system to register the

positions of the obstacles, and the pose of the the robot in a

common coordinate frame. We then use geometric collision

detection from OpenRAVE (Diankov and Kuffner, 2008) and

models of the robot arm and obstacles to estimate the region

over which each link of the robot makes contact with the

obstacles.
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Fig. 10: Left: Different components of the hardware-in-the-loop testbed. Middle Left: Close-up of one instrumented obstacle

showing the force-torque sensor at the base of an extruded aluminum rod which we have covered in bubble wrap. Middle

Right: Cody attempting to reach to a goal location (green). Right: Visualization of the simulated tactile skin.

We have also mounted a six-axis force-torque sensor at the

base of each obstacle to measure the resultant force applied

to each obstacle. This testbed allows us to simulate skin on a

real robot with 7 DoF arms.

For every instrumented obstacle and robot link pair, we

estimate at most one contact location as the centroid of the

contact region and use the force measured by the force-torque

sensor as the contact force. If multiple links make contact

with the same obstacle, we divide the force vector’s magnitude

equally among all the links.

E. Tactile Feedback in the Different Testbeds

There are differences in the tactile feedback in each of the

three testbeds that change the precise meaning of contact force

and contact location.

Within the software simulation testbed (Sec. IV-A), contact

force refers to the normal component of the force applied by

the robot to the environment over the surface covered by one

taxel of the simulated tactile skin. Contact location refers to

the centroid of the simulated taxel.

Within the hardware-in-the-loop skin simulation testbed

(Sec. IV-D), contact force refers our estimate of the force that

a link of the real robot applies to an object. We use at most one

contact location between each link of the robot and an object as

the centroid of the contact region computed using geometric

collision detection. We currently do not simulate individual

taxels or compute the normal component of the contact force

within the hardware-in-the-loop skin simulation testbed.

Lastly, on the real robot with the tactile skin sensor, for

contacts on the forearm of the robot, contact force refers to

the normal force applied to the environment as measured by

one taxel of the real tactile skin sensor (Sec. IV-C). Contact

location refers to the centroid of the taxel. Additionally, for

the distal part of the arm beyond the forearm, we get a single

resultant contact force using a wrist force-torque sensor, as

described in Sec. IV-B, and we use the center of the force-

torque sensor as the contact location.

F. Low Stiffness at the Joints

We use the impedance controller to maintain low stiffness at

the joints of both the real robot Cody and the robot within the

software simulation. Within software simulation, the robot has

joint stiffness values of 30, 20, and 15 Nm/rad from proximal

to distal joints. These values are similar to measured stiffnesses

of humans during planar reaching motions (Shadmehr, 1993).

On Cody, we use the same stiffness settings as our previous

work (Jain and Kemp, 2009b, 2010b). We set the stiffness

for the three degrees of freedom in the shoulder at 20, 50,

and 15 Nm/rad, one DoF in the elbow at 25Nm/rad and

2.5Nm/rad for the wrist roll degree of freedom. For the last

two wrist joints, the robot uses position control that relates

the motor output to joint encoder readings and ignores torque

estimates from the deflection of the springs. Consequently,

the wrist is held stiff, except for the passive compliance of the

SEA springs and cables connecting the SEA to the joints.

These stiffness settings are lower by a factor of between 400

and 1000 than the PUMA 560 manipulator (Kim and Streit,

1995). In some postures, the stiffness at the end effector is a

factor of five lower than work on door opening with Cartesian

impedance control described in Ott et al (2007).

V. APPROACHES USED FOR COMPARISON

In this section we describe two approaches against which

we compared our model predictive controller’s performance.

The first is a baseline controller, and the second is a state of

the art geometric motion planner that has full knowledge of the

environment. We performed comparisons against the baseline

controller both on the real robot and in software simulation.

We used the geometric motion planner to estimate optimal

success rates for trials in software simulation as detailed in

Sec. V-B.

A. Baseline Controller

Our baseline controller uses the same joint-space impedance

control as the model predictive controller to maintain low

stiffness at the joints. However, it does not use feedback from

the tactile skin except to define a safety stopping criterion.

Specifically, this controller computes

∆φ∗ =
(

JT
h Jh

)−1

JT
h ∆xd, (23)

where ∆φ∗ ∈ ℜm is the incremental change in the joint-space

virtual trajectory (see Fig. 5), Jh ∈ ℜ3×m is the Jacobian at

the robot’s end effector (or hand) and ∆xd ∈ ℜ3 is the desired

Cartesian motion of the end effector computed from Eq. 13.
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The baseline controller monitors the tactile skin sensor values

and stops if the force at any contact goes above the safety

force threshold, fsafety
ci

.

If we ignore joint limits, use only g1 (see Eq. 12) as the

objective function, and the arm is not in contact with the world,

then Eq. 23 is the solution of the quadratic program for our

model predictive controller. In free-space both controllers will

attempt to move the end effector along a straight line to the

goal, with identical low stiffness settings at the joints.

In previous work, we have shown that a robot with low

stiffness at the joints can successfully open doors and drawers

with linear virtual trajectories for the end effector (Jain and

Kemp, 2009a,b).

B. Motion Planner

For experiments in the software simulation testbed we

also compare against a bi-directional RRT motion planner

as implemented in OpenRAVE (Diankov and Kuffner, 2008).

The motion planner has complete knowledge of the cluttered

environment and ignores movable obstacles. We remove the

movable obstacles because the motion planner that we use

does not plan for movable obstacles.

We use the bi-directional RRT motion planner to estimate

whether or not a solution exists for a given goal location

and configuration of the clutter. We use this to estimate what

the best success rate would be for a given set of trials. It is

important to note that this could be an over estimate, since

in some situations it may be impossible to remove all of the

movable obstacles, and the remaining movable obstacles might

block potential solutions.

VI. EXPERIMENTS

We now describe the experiments that we performed to test

our model predictive controller. Through these experiments,

we empirically demonstrate that our controller can effectively

control three different robot arms, a simulated 3 DoF of planar

arm with simulated tactile skin (Sec. VI-B), a real 7 DoF

arm with torque controlled joints and simulated tactile skin

(Sec. VI-C), and the first 4 DoF of the same real robot arm

with a forearm tactile skin sensor (Sec. VI-D).

We compare our controller to a motion planner (in software

simulation) and to the baseline controller within the task of

reaching to a goal location in a cluttered environment in Secs.

VI-B1, VI-C3, and VI-D2.

Additionally, we provide illustrative examples of the robot

operating in realistic conditions using the forearm tactile skin

sensor (Sec. VI-D1), as well as ways in which the parameters

of the model predictive controller can be used to influence its

behavior, such as controlling the contact force (Secs. VI-B2

and VI-C2), and using online estimates of contact stiffness to

reach the goal location faster (Sec. VI-C1).

Due to implementation differences, the precise meaning of

contact force and contact location is different for the three

testbeds, as described in Sec. IV-E.

TABLE I: Results from 2420 trials in software simulation.

Estimated MPC (up to MPC Baseline
Optimal 6 Reaches) (Single Reach) Controller

Success rate 98.2% 91.1% 78.6% 30.5%
Avg. max.

- 20.1N 13.3N 72.0N
contact force
Avg. contact

- 3.76N 5.9N 28.6N
force

A. Pull Out and Retry

In the experiments described in Secs. VI-B1, VI-C3, and

VI-D2, we have an additional control layer above the model

predictive controller that makes a decision to stop the current

controller if the end effector is not moving, pulls the arm

out, moves the mobile base to a different location or selects a

different starting configuration for the arm, and retries reaching

to the goal. The details of this are outside the scope of this

paper, and we treat this functionality as a black box for the

current paper.

Some of the failures in Sec. VI-B1 were caused by a failure

of our current approach to pulling the arm out. Pulling out

did not fail for any of the trials described in Secs. VI-C3 and

VI-D2.

B. Software Simulation Testbed

In this section we describe experiments on a large number

of trials of reaching to a goal location in an environment

consisting of fixed and movable cylindrical obstacles within

the software simulation testbed, described in Sec. IV-A and

Fig. 7.

We generated multiple test trials by first deciding on the

number of fixed and movable obstacles. We then generated

the coordinates for the center of each cylindrical obstacle

in succession by uniformly sampling a coordinate within a

fixed workspace of 0.27m2. We repeated this until we found

a collision free coordinate for each obstacle in turn. We also

generated a random goal location, xg , with the same sampling

procedure.

If accepted for publication, we will release code, data, and

instructions to reproduce the results presented in this section.

1) Comparison over 2420 Trials: In this experimental

comparison, we selected 11 different values for the number

of fixed and movable obstacles (from 0 to 20 in steps of 2)

and generated 20 trials for each choice of number of movable

and fixed obstacles for a total of 11× 11× 20 = 2420 trials.

We compared the estimated optimal success rate using

the motion planner (Sec. V-B) with the baseline controller

(Sec. V-A) and the model predictive controller.

We allowed the model predictive controller to retry up to 5

times. If an attempt to reach to the goal failed, the controller

tried to pull the arm out to a new starting location for the end

effector, waited for a fixed timeout period, and then retried

reaching to the goal irrespective of the success or failure of

pulling out. We refer to this as MPC with up to 6 reaches.

We set the don’t care force threshold, f thresh
ci

, to 5N and

the safety force threshold, fsafety
ci

to 100N for each contact

ci for all the trials.



12

Fig. 11: Sequence of images showing the simulated robot successfully reaching to the goal location (green circle) using MPC

for one of the trials within the software simulation testbed (see Sec. VI-B2). The red obstacles are rigid and fixed, while the

gray obstacles are rigid and movable.

Fig. 12: Median, first, and fourth quartiles for the contact

force for 100 trials as a function of the don’t care force

threshold parameter, f thresh
ci

.

Table I shows the results from this comparison. The model

predictive controller with a single reach had a success rate that

was 48.1 percentage points more than the baseline controller,

which corresponds to a 157.7% increase in the success rate.

For successful trials, the average speeds of the end effector

were comparable. The average speed was 0.049m/s for the

baseline controller and 0.043m/s for the model predictive

controller.

Allowing the model predictive controller to retry further

increased the success rate by 12.5 percentage points (a 16%

increase). Additionally, the estimated optimal success rate

(with full knowledge of the world and ignoring all movable

obstacles) was 7.1 percentage points greater (or 7.8% better)

than the model predictive controller with multiple reaches.

Lastly, the model predictive controller kept the contact forces

lower than the baseline controller, see Table I.

2) Regulating Contact Forces: As described in Sec. III-A,

our model predictive controller places no penalty on contact

forces between zero and f thresh
ci

, the don’t care force thresh-

old.

To test the influence of f thresh
ci

experimentally, we gener-

ated 100 trials with 20 fixed and 20 movable obstacles. We

then ran the model predictive controller with five different

force thresholds on these 100 trials, and recorded all the

contact forces every 10ms (at 100Hz). We used the same value

for f thresh
ci

for each contact. Fig. 11 shows the simulated robot
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Fig. 13: When the robot uses online estimates of the stiffness

at the contacts (instead of conservative constants), it can push

into deformable objects more aggressively, and complete the

task of reaching to a goal location faster, shown in Fig. 14.

successfully reaching to the goal location for one of these

trials.

Fig. 12 shows the median and first and fourth quartile of

all contact force magnitudes over the 100 trials for different

values of f thresh
ci

. The correlation coefficient between f thresh
ci

and the median force was ≥ 0.998 providing evidence that the

f thresh
ci

parameter of our model predictive controller can be

used to predictably influence the contact forces.

C. Hardware-in-the-loop Skin Simulation Testbed

In this section we present results using a real robot and

simulated tactile skin within the hardware-in-the-loop skin

simulation testbed, described in Sec. IV-D and Fig. 10.

1) Online Stiffness Estimation: One of the parameters of

our model predictive controller is the modeled stiffness at each

of the contacts along the arm. This determines how much

the robot is willing to move along the contact normal. For

example, if the controller’s estimate of the stiffness at a contact

is high, it will attempt to push into that contact slowly, since

its contact model will predict that a small motion will result

in a large increase in the contact force.

In this section we describe our initial efforts in estimating

the stiffness online. We set up an experiment where the robot

had to push into a deformable object (pillow) to reach to a

goal location, as shown in Fig. 14. We performed two trials.
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Fig. 14: Sequence of images showing the robot pushing on a deformable red pillow to reach to a goal location (green).

TABLE II: Model predictive controller vs the baseline con-

troller in the hardware-in-the-loop testbed.

MPC Baseline Controller

Success rate 5/5 3/5
Avg. max. contact force 5.6N 17.7N
Avg. contact force above

5.5N 14.3N
f thresh
ci

(5N)

In one trial, the robot used a static and conservative value (high

stiffness) for the stiffness at all contact locations. In the second

trial, the robot started with the same conservative estimates,

but then estimated the stiffness online while interacting with

the pillow. Fig. 13 shows that when the robot updated its

estimate of the stiffness, it was able to push into the pillow

more aggressively and reach the goal location faster than when

the stiffness value was a conservative static value.

To estimate the stiffness, we used a history of contact

locations and contact forces as returned by the simulated tactile

skin. We estimated the stiffness along the current contact

normal as the slope of the line (fit using least squares) that

describes the change in the normal component of the force

with motion of the contact location along the contact normal.

A video of this experiment is part of the supplementary

materials.

2) Selective Control of Force Applied to Different Regions

in the Environment: With this experiment, we illustrate that

the model predictive controller can be used to selectively

control the contact force in different regions. We defined a

cylindrical volume in the world as ‘fragile’. If the location

of a contact ci in the world frame was within the ‘fragile’

volume, we set the don’t care force threshold, f thresh
ci

, to 2N .

For contacts outside this volume, we set it to 5N . f thresh
ci

is

used in the inequality constraints of Eq. 17.

Fig. 15 shows the forces that the robot applied to the

environment during this trial. The histograms of contact forces

within and outside the ‘fragile’ region show that the model

predictive controller was able to selectively control the force

that it applied to different regions in the environment.

3) Model Predictive Controller vs Baseline Controller:

We performed five trials with the goal location in different

positions within the hardware-in-the-loop testbed, as shown in

Fig. 16. In each trial, the robot moved its mobile base to up

to three positions equally spaced along a line and facing the

Fig. 16: Five different goal locations within the hardware-in-

the-loop testbed that we used to compare the model predictive

controller and the baseline controller, described in Sec. VI-C3.

Fig. 17: Image showing the sharp edge and abrasive surface

of the cinder block used in the trial described in Sec. VI-D1.

instrumented obstacles, and then attempted to reach to the goal

location from a constant pre-determined arm configuration

using the model predictive controller. The robot successfully

reached each of the five goal locations from one of the three

positions. We set the don’t care force threshold, f thresh
ci

, to

5N and the safety force threshold fsafety
ci

to 20N for each

contact.

As mentioned in Sec. VI-A, we have an additional control

layer above the model predictive controller and the baseline

controller. This enables the robot to exhibit behavior such as

retrying a greedy reach from the left or right of a contact

location. A video of these five trials with MPC and the

additional control layer is part of the supplementary materials.

For each goal location, we ran the baseline controller with

the initial arm configuration and base position from which the

model predictive controller was successful. Table II shows the

results from the five trials. The baseline controller failed in

two out of five trials and resulted in the arm applying larger

forces on the environment. The mean contact force (including

the don’t care interval of 0 − 5N ) was 3.3N for the model

predictive controller and 8.1N for the baseline controller.
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Fig. 15: Experiment to demonstrate selective control of contact force in different regions using the model predictive controller.

Left: Skin visualization when some contacts are within the ‘fragile’ region (red cylinder) and other contacts are outside the

‘fragile’ region. The cyan circle is the goal location that the robot successfully reached. Middle: Histogram of contact forces

within the ‘fragile’ region. Right: Histogram of contact forces outside the ‘fragile’ region.

Fig. 18: Left: Five different goal locations that we used to compare the model predictive controller and the baseline controller,

described in Sec. VI-D2. The environment consists of compliant leaves and rigid blocks of wood (outlined in red). The red

circle denotes the position of the end effector. Middle: View of the foliage from the robot’s perspective. The rigid blocks of

wood are occluded by the leaves. Right: Image of the robot after it has successfully reached goal location 5. The red circle

denotes the end effector position.

D. Forearm Tactile Skin Sensor

In this section we describe results from our experiments

with the forearm tactile skin sensor, described in Sec. IV-C

and Fig. 9. Since the skin sensor currently covers only the

forearm of the robot, we restricted our experiments to not

have contacts on the elbow and upper arm of the robot.

Our simulated foliage is representative of foliage found in

nature. It consists of both compliant objects (plastic leaves)

and rigid and fixed objects (blocks of wood). The leaves can

result in a lot of occlusion for conventional line of sight

sensors. Furthermore, the leaves can often be pushed aside

with relatively low force but the blocks of wood can not.

The cinder block is a rigid, heavy, and fixed object, rep-

resentative of some of the objects a robot would encounter

in rubble. The diameter of the robot’s forearm (10cm) is

close to the size of the opening of the cinder block (14.5cm).

Additionally, the edges are sharp and the surface is abrasive

as illustrated in Fig. 17.

1) Illustrative Examples – Foliage and Cinder Block:

We performed one trial each of the robot reaching to a goal

location in foliage and reaching through the opening of a

cinder block. Fig. 20 shows two images and the histograms

of the contact forces for these two trials. Videos of these two

trials are part of the supplementary materials.

TABLE III: Model predictive controller vs baseline controller

in foliage.

MPC Baseline Controller

Success rate 3/5 1/5
Exceeded safety threshold (15N) 0/20 attempts 19/20 attempts
Avg. max. contact force 5.5N 14.5N
Avg. contact force above

5.2N 9.2N
f thresh
ci

(5N)

2) Model Predictive Controller vs Baseline Controller in

Foliage: For a more careful evaluation of the model predictive

controller and the baseline controller in realistic conditions

using the forearm tactile skin sensor, we performed five trials

with automatically generated goal locations that were equally

spaced along a line within our simulated foliage, as shown in

Fig. 18.

We started each trial by positioning the robot at the same

location in front of the clutter. The robot then autonomously

moved its mobile base to four roughly equally spaced positions

along a line, and attempted to reach to the goal location

using both the model predictive controller and the baseline

controller, as described in Fig. 19.

Table III shows the results from a total of twenty reach

attempts for each controller from the five trials. The model
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(a) Reaching to a goal location in foliage with multiple contacts along the arm. The forearm and 3D printed cover for the wrist are approximately outlined in red.
The goal location is vertically below the blue bulb, and is the cyan circle in the skin visualization.

(b) Reaching to a goal location (green) through the opening of a cinder block.
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(c) Histogram of contact forces while reaching to a goal location in foliage (left), and through the opening of the
cinder block (right).

Fig. 20: Cody reaching to a goal location in realistic conditions using its forearm tactile skin sensor, described in Sec. VI-D1.

predictive controller successfully reached goal locations 1,

3, and 5, while the baseline controller was only successful

for goal location 5. Further, the model predictive controller

successfully kept the contact forces around the don’t care force

threshold, f thresh
ci

, of 5N . In contrast, the baseline controller

exceeded the safety force threshold, fsafety
ci

, of 15N , 19 out

of 20 times. The mean contact force (including the don’t

care interval of 0 − 5N ) was 3.2N for the model predictive

controller and 4.5N for the baseline controller.

A video of these five trials is part of the supplementary

materials.

VII. DISCUSSION

Within this section, we discuss broader implications of our

research, future work, and current limitations.

A. The Big Picture

Our results suggest that our approach is well-matched to ma-

nipulation in real-world, high-clutter environments, although

further evaluation is required. There are also several broader

implications of our work, which we now discuss.

1) Greedy Control: The performance of our system sug-

gests that greedy feedback control can perform well in practice

and that detailed models of the environment and long time
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Move to next base position

Reach to goal with MPC

Pull out the arm

Reach to goal with Baseline controller

Pull out the arm

Fig. 19: Different steps that the robot performed for each of

the five trials in the model predictive controller vs baseline

controller comparison in foliage, described in Sec. VI-D2

horizon planning may not be necessary to achieve high per-

formance. This is similar in spirit to some research on bipedal

walking described in Byl and Tedrake (2008).

From our perspective, if empirical research with real robots

continues to support this conjecture, it would be a welcome

outcome. If one considers the complexity associated with

natural environments, such as swamps, rainforests, and caves,

a requirement for detailed models and long time horizon

planning seems extremely daunting, if not infeasible. Fluids,

gasses, granular media, biological materials, and active agents

are just a few of the complex contents found across the earth.

That biological organisms of all shapes and sizes regularly per-

form impressive feats of manipulation in these environments

demonstrates that the problems are not intractable and that

biology has found solutions worthy of emulation. Compliant

actuation and whole-body tactile sensing combined with a

willingness to make contact with the unknown may be impor-

tant characteristics of the biological solution to manipulation.

2) Reaching into the Unknown: Our results also suggest

that reaching into the unknown can be a reasonable action for

robots with compliant joints and whole-body tactile sensing.

As more robots with these underlying capabilities emerge,

the value of these attributes should become clearer, especially

given the current rarity of whole-body tactile sensing. So far,

we have demonstrated the feasibility of haptically reaching

into grass-like vegetation with hidden wooden objects, into a

constrained massive cinder block with coarse and sharp edges,

and into a field of rigid posts covered with compliant materials.

In these experiments, both the robot and the environment

were unscathed in spite of repeated reaches without explicit

foreknowledge of the environments’ contents. Demonstrating

success with more diverse environments, real natural environ-

ments, real tactile sensing across the entire robot arm, and

higher usable degrees of freedom will be important future

work.

3) Human Environments: Within this paper, we have fre-

quently referred to natural high-clutter outdoor environments,

such as foliage, in part because of our biological inspiration.

However, we expect that our approach and methods would

also be beneficial to manipulation in everyday human en-

vironments. Humans often encounter high clutter, such as

collections of objects on top of tables and shelves, and

inside drawers and other containers. Humans also reach into

constrained volumes, such as when retrieving objects from

under furniture, cleaning hard to reach areas, or performing

maintenance on machinery. We would expect service robots to

benefit from comparable capabilities. Assistive robots might

also benefit from our approach, since humans often make

contact with their arms and other parts of their body when

providing physical assistance to other people, such as when

helping someone get out of bed.
4) Emergent Intelligence: Although our low-level con-

troller is greedy and has been provided waypoints that are

always along a straight line from the end effector’s current

position to the goal location, to us the resulting qualitative

motion of the robot’s arm appears to be intelligent, com-

plex, and lifelike. To objectively support these notions would

likely require human-robot interaction studies, so they must

be treated skeptically. Nonetheless, like Herbert Simon’s ant

walking on the beach (Simon, 1996), the robot’s reactions

to the complexity of the world result in complex emergent

motion. For example, due to tactile sensing and the controller,

the robot can move against a compliant object until the force

is higher than desired and then pivot around it. Maneuvers

such as this appear to be sensible, even though they are not the

result of explicitly planned trajectories. Likewise, the robot can

easily respond to dynamic elements of the environment, since

it regenerates a model at each time step based on its tactile

sensing and greedily decides how to move. Our approach

and results relate strongly to behavior-based robotics (Brooks,

1991).

B. Future Work

The controller we have presented has promising perfor-

mance and its properties serve to illustrate our overall ap-

proach. Many opportunities exist to integrate this controller,

or similar controllers, into manipulation systems. We have

presented results with reactive behaviors, but we would expect

the controller to also be appropriate for the execution of

planned trajectories or commands from a teleoperator. Due to

the greedy controller and the potential for local minima, some

form of higher level control is required. Our approach has been

to develop higher level controllers that detect when the arm has

stopped making progress (reached a local minimum), and then

restart the controller with new initial conditions. How to best

design complementary higher level controllers and associated

representations with memory merits further inquiry.

There are also numerous avenues that remain open for

further development and evaluation of this controller and

similar controllers. For example, we have fixed the stiffness of

the robot’s joints to low constant values, which could instead

be varied at each time step. A related open question is how to

initialize and adapt the various controller parameters given a

robot, an environment, and a task. Data-driven methods from

machine learning might be a worthwhile direction for research

related to this question.

C. Limitations

In spite of its good performance in our experiments, the

current controller does have limitations that could motivate
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revisions of this controller, or new controllers entirely. First,

our contact model consists of a linear spring, which is

computationally favorable, but predicts adhesive forces when

breaking contact. Second, the controller places no penalty

on a predicted contact force that is less than f thresh
ci

, and

has a hard inequality constraint that prevents higher predicted

forces. Yet in practice, the actual contact forces sometimes

exceed this constraint. Currently, the controller handles this

by removing the constraint and adding a quadratic penalty,

which results in an objective function that varies over time.

It may be advantageous to instead use a constant objective

function that is smooth, hence softening the constraint.

Third, the current controller ignores dynamics. The resulting

quasi-static model is well-matched to slow motions. And, slow

motions are reasonable when performing haptically-guided

manipulation without a model in high clutter, since a collision

could occur at any moment. Nonetheless, taking dynamics

into account might enable the controller to attain better per-

formance at higher speeds, and better control of the arm’s

velocity. Fourth, so far, we have only tested the controller

for achieving a position of the end effector. Objectives such

as an arm posture or full pose of the end effector would be

better matched to some tasks. These and other objectives could

plausibly be represented as quadratic objective functions, but

we have not tested this possibility.

VIII. CONCLUSION

We have presented our approach to manipulation, which

from the outset emphasizes contact with the world. We as-

sume that low contact forces are benign, and focus on the

development of robotic systems that can control their contact

forces during goal-directed motion. Inspired by biology, we

assume that the robot has low-stiffness compliant actuation at

its joints, and tactile sensing across its entire surface.

We then described a novel controller that exploits these

assumptions. The controller only requires haptic sensing and

does not need a detailed model of the environment prior to

contact. It also explicitly allows multiple contacts across the

entire surface of the arm.

The controller uses model predictive control (MPC) with a

time horizon of length one, and a linear quasi-static model.

As quantitatively summarized in the following list, we have

empirically shown that our MPC controller enables a variety

of robots to haptically reach goal locations in highly cluttered

environments with low contact forces, and that it outperforms

a baseline controller that uses the same low-stiffness actuation

at its joints.

1) Successfully enables a simulated robot to reach to a

location in clutter: In an experiment with 2420 trials,

our MPC controller succeeded in 150% more trials than

our baseline controller, and had lower average contact

forces (5.9N vs. 28.6N ). Even though it is a greedy

controller, it was within ∼8% of optimal performance

when allowed to make up to 6 reach attempts. In

another experiment, the correlation between the MPC

controller’s don’t care force threshold and the median

applied force was ≥0.998, which indicates that this

controller parameter predictably influences the contact

forces applied by the arm.

2) Successfully enables a real robot with simulated

skin to reach to a location in clutter: Using the

MPC controller, our robot autonomously reached 5

human specified targets, while the baseline controller

only reached 3. The MPC controller had lower average

maximum force for reach attempts (5.6N vs. 17.7N for

baseline). In addition, we demonstrated that the robot

can apply less force to a designated fragile region, and

can estimate that a contact has low stiffness online

resulting in more aggressive and efficient progress to

a goal location.

3) Successfully enables a real robot with real skin to

reach to a location in real clutter: We performed a

fully autonomous evaluation of our MPC controller in

which it successfully commanded the real robot with

real forearm skin to reach 3 out of 5 automatically gen-

erated target locations within foliage (target locations

were not necessarily achievable and could be embedded

within rigid objects). The baseline controller succeeded

in reaching 1 out of 5 of these targets from the same

starting conditions as the MPC controller. The MPC

controller also achieved lower average maximum force

than the baseline controller (5.5N vs. 14.5N ), which

corresponds to the MPC controller’s don’t care force

threshold of 5N .

The MPC controller also enabled the robot to reach into

a cinder block representative of rubble, which demon-

strates the feasibility of moving against rigid, sharp and

coarse materials, and through constrained passages.

IX. SUPPLEMENTARY MATERIALS

1) Videos: We have prepared the following videos as part

of the supplementary materials:

• Model predictive controller vs baseline controller

within the hardware-in-the-loop testbed as described in

Sec. VI-C3.

• Online stiffness estimation with the hardware-in-the-loop

testbed as described in Sec. VI-C1.

• Illustrative examples of reaching in foliage and through

the opening of a cinder block using the real forearm

tactile skin sensor, described in Sec. VI-D1.

• Model predictive controller vs baseline controller in fo-

liage using the forearm tactile skin sensor, as described

in Sec. VI-D2.

• Video showing the “simple” impedance controller and

low stiffness at the joints for the robot Cody.

• The simulated robot reaching to the goal location in

one of the trials with the software simulation testbed

described in Sec. VI-B2.

2) Code: If accepted for publication, we will release our

code as open source. We will also provide instructions and

data to reproduce the results within the software simulation

testbed (Sec. VI-B).
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