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To this day, despite the increasingmotor capability of robotic devices, elaborating efficient

control strategies is still a key challenge in the field of humanoid robotic arms. In particular,

providing a human “pilot” with efficient ways to drive such a robotic arm requires thorough

testing prior to integration into a finished system. Additionally, when it is needed to

preserve anatomical consistency between pilot and robot, such testing requires to

employ devices showing human-like features. To fulfill this need for a biomimetic test

platform, we present Reachy, a human-like life-scale robotic arm with seven joints from

shoulder to wrist. Although Reachy does not include a poly-articulated hand and is

therefore more suitable for studying reaching than manipulation, a robotic hand prototype

from available third-party projects could be integrated to it. Its 3D-printed structure and

off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade

robot. Using an open-source architecture, its design makes it broadly connectable and

customizable, so it can be integrated into many applications. To illustrate how Reachy

can connect to external devices, this paper presents several proofs of concept where it

is operated with various control strategies, such as tele-operation or gaze-driven control.

In this way, Reachy can help researchers to explore, develop and test innovative control

strategies and interfaces on a human-like robot.

Keywords: robotic arm, humanoid robot, research testbed, 3D printing, open-source, rehabilitation engineering

1. INTRODUCTION

While robotic systems keep improving in terms of motor capabilities thanks to progress in
mechatronics, developing control strategies and interfaces allowing a human to harness the full
potential of an advanced robotic arm proves to be a key challenge in the field of humanoid
robotics and in particular, rehabilitation engineering. Indeed, user surveys and reviews (Biddiss
and Chau, 2007; Cordella et al., 2016) have already revealed that the lack of functionality and the
necessity of a long and difficult training were some main reasons behind upper-limb prosthesis
abandonment. As examples drawn from some of the most advanced devices currently on the
prosthesis market, Michelangelo (Ottobock) and i-limb quantum (Touch Bionics) hands include
too many actuators for an amputee to operate them independently, and their control relies a lot
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on pre-programmed grip patterns. Even in the case of an able-
bodied human, the gap between robotic devices’ complexity and
available command signals highlights the need for efficient and
usable control interfaces and strategies.

To bridge this gap, researchers have investigated techniques
to retrieve additional input data from the human. One of
these solutions is the sensor fusion approach, which intends
to combine measurements from multiple sensors running at
once. This approach can be used with various devices and
sensing modalities (Novak and Riener, 2015), whether vision-
based, kinematic, or physiological. In particular, as object
recognition from egocentric videos can help grasping actions
for neuroprostheses (de San Roman et al., 2017), recent works
explored how a robotic system could be controlled by fusing
eye-tracking with EMG (Corbett et al., 2013, 2014; Markovic
et al., 2015; Gigli et al., 2017) or ElectroEncephaloGraphy (EEG)
signals (McMullen et al., 2014; Wang et al., 2015). Other works
also investigated how Augmented Reality (AR) can be employed
to provide relevant visual feedback about a robotic arm’s state
(Markovic et al., 2014, 2017), with the aim of improving the
control loop.

Another approach to overcome this limit is to reduce the
need for command signals, by making the robotic system take
charge of part of its own complexity. In this way, techniques are
developed to allow a human to drive a robot through higher-level,
task-relevant commands instead of operating the robot directly
in actuator space. A common implementation of this approach
is to perform endpoint control through Inverse Kinematics (IK),
which convert command signals from the 3D operational space
into the actuator space. IK solving is a key research topic in
the whole field of robotics, including autonomous humanoid
robotics (Bae et al., 2015; Rakita et al., 2018), but can also be
employed to manage the kinematic redundancy of human-driven
robots (Zucker et al., 2015; Rakita et al., 2017;Meeker et al., 2018).

To evaluate the performance of control techniques, virtual
reality (VR) has been employed for more than a decade
(Hauschild et al., 2007; Kaliki et al., 2013; Phelan et al., 2015;
Blana et al., 2016). Recently, this approach also benefits from the
increasing availability of VR development kits on the market,
e.g., Oculus (Facebook Technologies, LLC) and VIVE (HTC
Corporation), making it easier for researchers to integrate a
virtual test environment into their experimental setup. However,
a robotic system simulated within a virtual environment would
not behave the same way as a physical device, inherently subject
to mechanical limits and imperfections. Indeed, VR setups
usually implement a simplified device (e.g., ideal, friction-less
actuators) in a simplified context (e.g., ignoring gravity). As
a result, conclusions drawn from assessments performed in a
virtual test environment may not be directly applicable to an
actual robot.

On the other hand, some researchers use actual robotic arms
to get more realistic data from the testing phase. Works from
the literature are found to employ both commercially available
devices (Rakita et al., 2017; Meeker et al., 2018) and prototype
systems (McMullen et al., 2014; Bae et al., 2015) in their research.
More specifically, in the field of prosthetics, many multi-DoF
devices have been developed as experimental prototypes, such

as the UNB hand (Losier et al., 2011), the Yale hand (Belter and
Dollar, 2013), and the SmartHand (Cipriani et al., 2011).

Among such research devices, the ones developed by Dawson
et al. (2014) and Krausz et al. (2016) were designed with the aim
of being inexpensive and easily available to other researchers, as
open-source systems including 3D-printed parts. Indeed, as 3D-
printing allows to produce complex and custom shapes in small
batches at a low cost, this manufacturing technique is useful when
developing products at the prototype stage. Besides, the fact that
the same parts can be produced by many different 3D printers
participates notably in the shareablity of these designs.

In this paper, we present Reachy, a life-size test platform to be
used by researchers to explore, develop, and test control strategies
and interfaces for human-driven robotics. Relying on technical
solutions drawn from similar works, we aimed at designing
a robot that would be affordable, shareable, and “hackable”
compared to high-end prototypes or commercially available
robotic arms; but also more human-like than industrial-grade
robots. Indeed, Reachy benefits from its closeness to a human
arm in terms of scale and shape, as well as motor features and
joint structure. Additionally, even though its use cases are not
limited to this field, this robotic platform is primarily intended
for applications in prosthetics and rehabilitation engineering.

2. ROBOT DESIGN

2.1. Design Principles
Reachy was created with the aim of providing researchers with a
robotic platform on which to test control interfaces and strategies
that would be employed to drive a robotic arm. In order to
make the robot a relevant tool in the field of rehabilitation
technologies, its structure puts the emphasis on human-likeness.
Indeed, Reachy is meant to emulate the behavior of a life-size
human upper limb, while being fixed at shoulder level on an
unmovable support.

Besides, another major requirement of Reachy’s design
was to ensure that the robot is suitable for a variety of
applications ranging from neuroprostheses to teleoperated
manipulators. Thus, in order for Reachy to be a versatile
platform, we intended to make it extensively customizable,
as well as easily and broadly connectable. Ensuring extensive
experimental reproducibility in this context requires the platform
to allow for thorough hardware modifications, as well as the
sharing of said modifications within the scientific community.
Therefore, we chose to develop Reachy’s design on the following
principles and technical solutions: 3D-printed plastic skeleton
parts; off-the-shelf actuators, mechanical components and
electronics; free and open-source sharing of both software and
hardware resources.

Reachy was designed by the creators of the Poppy project
(Lapeyre et al., 2014), a family of robots for research, art
and education that rely on a common software and hardware
architecture, but display a variety of shapes, features and
purposes. In particular, the first robot of this family, Poppy
Humanoid, was originally designed to investigate the role of
morphology in biped locomotion (Lapeyre et al., 2013), thus
generating the need for a platform whose parts could easily
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be redesigned, produced then assembled. The aforementioned
design principles directly stem from the philosophy and technical
solutions that drove Poppy’s development.

2.2. Hardware
Reachy was initially developed as a “full-length” arm, that is to
say, a prototype comprising the three segments of the human
upper-limb, from shoulder to hand. In this “standard” version,
Reachy weighs 1.4 kg and measures 60 cm from shoulder to
wrist, with dimensions and proportions similar to those of a
human adult’s right arm. These prototypes have been equipped
and tested with various end-effectors (see Figure 1B): a basic
sphere, a jointless anthropomorphic hand, or a two-prong clamp
providing a minimal grasping feature. Furthermore, as the robot
is meant to be customized and “hacked”, Reachy users can adapt
its distal end to fit an existing robotic hand chosen among
available research prototypes (Losier et al., 2011; Belter and
Dollar, 2013; Krausz et al., 2016). For instance, a new prototype
featuring the Brunel hand (OpenBionics) as the end-effector has
undergone development in order to expand the robot’s features
and capabilities.

In its standard version, the robot comprises seven
independent DoF, each of them actuated by a dedicated motor.
The first three motors operate the gleno-scapulo-humeral joint
in a simplified way, by performing three consecutive rotations:
shoulder flexion-extension, shoulder abduction-adduction, and
humeral lateral-medial rotation. The three motors’ rotation axes
intersect at a single point, located at the center of the second
motor’s shaft (see Figure 1A). The shoulder assembly also
comprises two roller bearings to facilitate the operation of the
first and third DoF. In order for the robot to remain reasonably
easy to model and build, this assembly does not reproduce the
system of interdependent rotations and translations forming the

FIGURE 1 | Reachy in its standard version. (A) Architectural diagram

describing the software stack, from the high-level software interface to the

motors. Dashed lines indicate the joints’ rotation axes. (B) Currently available

end-effectors. From top to bottom: spherical, conical, hand-shaped, and

articulated clamp.

gleno-scapulo-humeral complex, but still allows for a wide range
of motion. The fourth and fifth motors operate respectively
elbow flexion-extension and forearm pronation-supination,
the latter being mounted with a ball bearing. Finally, the last
two motors operate the wrist joint by performing consecutively
radial-ulnar deviation and flexion-extension. Their respective
rotation axes are orthogonal, however they do not intersect;
instead, the two motors are linked by a short piece joining the
forearm and end-effector. This interval between rotation axes
shares some resemblance to that which separates a human’s wrist
joint axes, even though it is slightly too large because of the
actuator size.

We chose to employ Robotis Dynamixel servomotors1 to
actuate Reachy’s seven DoF. These motors are all-in-one modules
that provide a good trade-off between accuracy, speed and
robustness in mechanical terms, as well as embedded sensors
monitoring angular speed and position. They also allow the
individual tuning of an internal Proportional-Integral-Derivative
(PID) controller, maximum torque and mechanical compliance.
Due to these features, Dynamixel servomotors enable a high
level of modularity while being able to produce rich motor
behaviors. For that matter, this range of actuators is commonly
used in the field of robotics, including humanoid robots (Ha
et al., 2011; Ly et al., 2011; Hild et al., 2012; Schwarz et al., 2013;
Dawson et al., 2014). Apart from actuators, only few additional
mechanical components are needed to assemble Reachy’s joints,
namely: the three aforementioned bearings, and transmission
wheels to insert on each servomotor’s shaft. In particular, as all
these actuators include an individual gearbox, Reachy’s assembly
does not require extra reduction mechanisms for joint actuation.

Three different models of Dynamixel motors are included in
Reachy’s standard version. The most powerful one is an MX-
106 and operates the most proximal DoF of the robot, shoulder
flexion-extension, while the shoulder’s remaining DoF and elbow
joint are actuated by MX-64. As these four joints support the
heaviest loads while the robot is put inmotion, the corresponding
motors were chosen accordingly. The forearm and wrist joints,
which do not require as much power, are operated by AX-18,
lighter and smaller than MX servomotors, so that the robot’s
weight distribution leans toward the proximal end.

Regarding the robot’s skeleton, the limbs’ design relies on
a trellis-like structure to reduce the weight and keep assembly
simple, by providing easy access to screw holes. This open, low-
density structure also improves motor heat dissipation thanks
to freer air circulation. Prototypes and current versions of
Reachy were printed in polyamide or Poly-Lactic Acid (PLA),
two materials commonly used in the additive manufacturing
industry. Their low cost, availability and compatibility with most
desktop 3D printers make them ideal for prototyping, while
their durability and printing resolution make them adequate for
finished products with good quality standards.

2.3. Electronics and Software
Reachy’s motors are connected with each other in a series using
three-pin connectors and powered by a pair of 12 V×5 A power

1http://en.robotis.com/subindex/dxl_en.php
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supply units, for a total power of 120 W. At one end of the series,
a USB adapter allows for plugging into a computer. The robot
is then controlled through a serial port with a software interface
called Pypot, which handles the communication with Dynamixel
servomotors to drive the robot, e.g., sending motor commands,
retrieving data from embedded sensors. This architecture is
illustrated in Figure 1A.

Developed as part of the Poppy project, this software base
is common to the whole Poppy-Reachy family of Dynamixel-
powered robots. Following an open-source approach, Pypot was
entirely written in Python in order to enable cross-platform
deployment, as this language is compatible with most desktop
operating systems as well as some embedded systems for single-
board computers. Python programming also allows for fast
development by emphasizing code readability and conciseness,
so that developers can efficiently produce clear programs whether
their project is of small or large scale. Besides, Reachy users
can take advantage of numerous Python libraries dedicated to
scientific computing, and already in use within the scientific
community. This allows them to combine Reachy’s features
with techniques such as signal processing or machine learning,
without having to resort to other languages or software.

While its open-source nature provides expert programmers
with extensive freedom over the system, Pypot is also intended
to be accessible to beginners. In particular, it provides high-
level motor commands over the joints’ angular positions and
mechanical compliance, so that any user can program a trajectory
and put the robot in motion with only a few lines of code (see
Supplementary Material). Additionally, tutorials are provided to
Reachy users in the form of Jupyter notebooks (Kluyver et al.,
2016), which are interactive development supports combining
source code, formatted text, plots, and graphical input/output
widgets. Jupyter notebooks can be created from a Web navigator
and don’t require any dedicated code editor. As a result, this
software environment is accessible enough to allow Poppy robots
to be currently used as educational platforms in several middle
and high schools2.

Pypot also includes features to operate a virtual robot within
the simulator V-REP (Freese, 2015), as illustrated in Figure 2. In
this way, users can experiment and verify their developments on
a simulated Reachy before deploying them on an actual robot in a
physical setup.Migrating from a simulated to an actual robot, and
vice versa, does not require any modification on the source code
apart from a single keyword while configuring the connection
to a robot.

2.4. Features
2.4.1. Motor Performance
Reachy’s motors can sustain up to 10 min of continuous
operation and are able to work for as long as a full day when
tasked with short, out-of-charge movements alternating with
short resting periods. They provide a payload capacity of about
500 g at endpoint level, that the robot can handle for a few
minutes. Their embedded load and temperature sensors also
allow to automatically trigger resting phases, in order to prevent

2http://perseverons.espe-aquitaine.fr/sp6-robotique-inria/

FIGURE 2 | An actual Reachy robot (A) and its simulated counterpart (B), set

in the same posture.

overheating during prolonged operation or after exposing the
robot to significant strain. As a result, Reachy can be programmed
to work autonomously for extended periods of time without
putting the actuators at risk.

Out of charge, Dynamixel motors can reach amaximum speed
of 500◦/s and a maximum acceleration of 10,000◦/s2. When they
operate in their nominal angular speed range, their performance
allows the robot’s joint to reach their goal positions with a delay
from 50 to 100 ms. This responsiveness makes it thus possible
to develop real-time control schemes within which a human
is continuously driving the robot. As a consequence, the robot
can move its endpoint safely at a speed up to 2 m/s, with an
acceleration of 10 m/s2.

Thanks to its three DoF at shoulder level, Reachy’s full-length
version can perform complex movements and postures in a wide
range of action in the 3D space. As a result, Reachy benefits from
having a workspace similar to that of a human adult’s arm, within
a 65 cm-radius sphere centered on its shoulder.

2.4.2. Application in Prosthetics
Thanks to its human-like shape and joints, Reachy is suitable for
applications in the field of upper-limb rehabilitation engineering,
as a life-size test platform. Indeed, Reachy can emulate the
behavior of a prosthetic arm in order to test and validate control
schemes before implementing them on a genuine prosthesis. In
this context, it also benefits from being notably cheaper than
most commercially available upper-limb prostheses, thanks to its
hardware architecture.

Indeed, 3D-printing technology has already been employed to
create numerous arm prosthesis prototypes, whose designs are
being developed by creators ranging from DIY enthusiasts and
hobbyists, to researchers and engineers, as detailed in ten Kate
et al. (2017). The fact that more than half of these 3D-printed
devices’ designs are shared online and available for free, shows
how these creators take advantage of the interoperability of most
desktop printers. This review also highlights how the production
cost of these devices is one of the decisive aspects that sparkled
the growth of this category of prosthetic devices, so much so
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that some 3D-printed prosthetic arms have recently went beyond
the prototype stage and entered the market, such as the Hero
Arm (OpenBionics).

Compared to the devices listed in this review, Reachy
stands as one of the few models to address amputation above
the elbow. Additionally, even though the predominance of
transradial amputations among upper-limb disabilities explains
the rarity of this type of prosthesis, Reachy is intended to
enable research at multiple amputation levels. Indeed, the robot
can be employed as a mockup device for any level of upper-
limb amputation, when training a patient to produce muscle
activity before being fit with a myoelectric prosthesis. This
allows a patient to begin training even before being able to
wear a prosthesis, e.g., while the stump is still cicatrizing.
Obviously, such a training cannot replace experience with an
actual prosthesis, especially because of the differences in terms
of point of view, embodiment and perception of weight and
inertia. Nonetheless, it can take place in a patient’s rehabilitation
as a complementary or preliminary training, with the aim of
getting familiar with myoelectric control as well as motors’
responsiveness and accuracy.

In this context, the patient’s lost motor functions are emulated
with Reachy’s corresponding joints while the robot’s more
proximal actuators are locked in a given posture. In this
way, the patient can practice performing appropriate muscle
contractions and receive relevant feedback from the robot
moving accordingly, following a given prosthesis control scheme.
In a more advanced setup, the patient’s residual limb movements
can even be tracked and reproduced on these motors, instead
of being locked. Such a setup could turn out to be useful as
well for testing control strategies using residual limb motion
as input signal to drive the prosthesis (Kaliki et al., 2013;
Merad et al., 2016).

Regarding the end-effector, in respect to grasping with an
arm prosthesis, a fixed wrist often requires the patient to
perform extra shoulder and elbow movements to compensate
for the lack of distal mobility. Thus, enabling wrist motion
proves to be quite useful for a patient (Kanitz et al.,
2018), as it enables a more natural and comfortable use.
In this way, Reachy’s 2-DoF wrist makes it suitable to
address this aspect of prosthesis control. In combination with
forearm rotation, these motor functions at wrist level allow
the robot to put its endpoint in a wide variety of 3D
orientations, enabling different grasping types depending on the
item of interest.

Finally, Reachy’s customizable architecture allows users
to design, print and assemble custom fixings, so that a
part of the robot can be mounted on an actual prosthetis
socket or harness, and worn by an amputee (see Figure 3).
Whether at transradial or transhumeral level, the robot’s
skeleton parts can be modified so that its dimensions are
adjusted to the wearer’s morphology, to fit best with the
stump’s anatomy as well as the sound limb’s proportions.
Obviously, Reachy is not meant to replace a prosthesis
for daily use, but a socket-mounted version of Reachy
could as well be employed for training patients with
myoelectric control.

FIGURE 3 | Virtual illustration of a possible evolution of Reachy:

socket-mounted version worn by a transhumeral amputee.

2.5. Comparison With Existing Robotic
Arms
In order to put Reachy’s performance and abilities in perspective
with existing robotic devices, we compared it with several related
robotic arms, considering various aspects and features.

The Bento Arm (Dawson et al., 2014) is a robotic arm
employed in research and upper-limb rehabilitation to emulate
a myoelectric prosthesis. It includes five joints from humerus to
end-effector, each actuated by a Dynamixel motor. Its mechanical
structure follows human-like shapes and proportions, and relies
mostly on 3D-printed plastic parts. In this sense, this robot is
very similar to Reachy, although the upper arm includes only
a single DoF at humeral level, and none at shoulder level. As a
consequence, its workspace is limited to a 22 cm-wide circular
area centered on the elbow, for a payload capacity of only
300 g. This narrow range of motion and limited upper-arm
actuation make the Bento Arm unsuitable for research on whole-
arm movements, unless it is mounted on a prosthesis socket.
As a rehabilitation device, it focuses on emulating a transradial
prosthesis but appears to be inappropriate with respect to higher
levels of amputation. In particular, it cannot be employed to study
or reproduce coordinations between upper-arm joints.

The GummiArm (Stoelen et al., 2016) is an experimental
bio-inspired robotic arm comprising 10 tendon-driven joints,
actuated by 19 Dynamixel motors. With eight of its joints
enabling variable stiffness, this robot can perform movements
in a workspace similar to that of a human arm while being safe
to physically interact with. Similarly to Reachy, its 3D-printed
skeleton parts and open-source approach allow for replication
and modification by users. However, its higher number of
actuators and tendon-based mechanics make it more expensive
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(over 5,000$ in spare parts, over 11,500$ as a kit) as well as more
suitable for research on bio-inspired actuation and compliant
motor control than on rehabilitation engineering. Indeed, most
upper-arm, elbow and forearm prostheses are actuated by a single
motor per joint in a non-compliant fashion, instead of emulating
human biomechanical structures.

The Modular Prosthetic Limb (MPL) (Johannes et al., 2011)
is an experimental robotic upper-limb prosthesis, comprising 26
joints actuated by 17 motors. Its high-grade components and
anthropomorphic design allow it to reach human-like strength
in the wide range of motion offered by its joints. Compared to
Reachy, this robot offers much better motor performance, such as
a payload capacity of 15 kg and a joint speed of 120◦/s. However,
these abilities also come with a higher power consumption (24 vs.
5 V for Reachy) and a heavier weight (4.7 vs. 1.2 kg for Reachy).

The DLR Hand Arm System (Grebenstein et al., 2011) is an
experimental bio-inspired robotic arm, now integrated to the
humanoid robot David as its upper limb. It includes six DoF in
the arm and 19 in the hand, actuated by a total of 52 motors. Its
tendon-driven mechanical structure allows the robot to operate
dexterously at a speed and in a workspace comparable to those of
a human, making it clearly more capable than Reachy in terms
of motor performance. However, its bidirectional antagonist
joints require numerous motors and mechanical components,
a dedicated transmission architecture and a dense electronics
network managing both actuation and sensing.

Due to their price and complexity in terms of electronics
and mechanics, these advanced robotic devices are much more
difficult to replicate or customize in depth. In this sense, their
users depend significantly on the robot’s designers and makers
to assemble, modify and repair it, whereas Reachy’s design
allows users to handle every step of the fabrication process. Its
architecture is simple enough to allow non-experts to build it and
connect it to a computer. Regarding control and interfacing, both
of these robots rely on complex control architectures (Bridges
et al., 2011; Grebenstein et al., 2011) running in Simulink,
proprietary software owned by MathWorks, Inc. In this regard,
the pieces of software operating these devices are less open and
more difficult for a user to modify or adapt to a given use
case. Conversely, Reachy benefits from its open-source software
architecture providingmany interfacing options, with a variety of
command signals and external software tools.

Although Reachy does not compare to these advanced robots
in terms of performance, its connectability and highly modifiable
structure make it a suitable research platform. In this sense,
we wish to promote Reachy as a complete platform combining
both hardware and software characteristics fostering replication,
customization and versatility. We are not aware of a similar
robotic system that would offer as many possibilities, based on
the comparison detailed in this section.

2.6. Sharing Philosophy
Reachy is developed in partnership with and distributed by Pollen
Robotics3 as a fully open-source project. Besides, users willing

3https://www.pollen-robotics.com/en/our-products/humanoid-robot-arm-
reachy/

to assemble the robot by themselves can buy all the hardware
in spare parts, at a total price below 4,000$ for the standard
version. Any laboratory can build their own Reachy, modify its
components and customize it at will, on both hardware and
software sides. This allows researchers to adapt the robot to their
specific needs and interface it with their own devices and tools.

The source files from the Computer-Aided Design (CAD)
models of the different printable parts are shared under the
Creative Commons BY-SA license4 and available online5. The bill
of materials and software components that are specific to Reachy
are shared under the Lesser GNU General Public License6 and
available online in the project’s repository7. The Pypot library
is shared under the GNU General Public License8 and available
online in a dedicated repository9.

As Reachy relies on the same software and hardware
architecture as Poppy robots, it is worth noting that its users
can benefit from the help and contributions shared by the Poppy
project’s community on its repository10. Indeed, this community
hub gives access to many tips regarding the different aspects of
the robot, from configuring and assembling the servomotors to
setting up the software tools and troubleshooting.

3. PROOFS OF CONCEPT

In order to illustrate Reachy’s interfacing capabilities, we
developed several proofs of concept where the robot’s features
are combined or expanded with various external devices and
software tools. All the proofs of concept described below were
developed in Python, to further demonstrate the interfacing
potential provided by this language.

3.1. Inverse Kinematics for Endpoint
Position Control
Determining a set of motor angles that put a robot’s endpoint at
a target position in its operational space is a common problem in
the field of robotic arms, and is usually referred to as the Inverse
Kinematics (IK) problem. As it comprises seven independent
DoF, Reachy typically displays kinematic redundancy, implying
that there is an infinite number of distinct solutions to this
problem for each reachable target position. Thus, in order to
drive the robot’s endpoint position to a given target, one needs
to determine which set of angles to apply, among the infinity of
possible sets. However, the numerical expression of this under-
constrained geometrical problem is non-linear, which makes
analytic solving impractical and costly in terms of computation.

3.1.1. Local Optimization
Instead, a widespread method used by roboticists to solve IK
problems is to employ local optimization. This method relies on

4http://creativecommons.org/licenses/by-sa/4.0/
5http://cad.onshape.com/documents/66388ae9c63cef53d76acd77/w/
68c2411483d5bc65c7f54234/e/581d46ba9b8ee98de9d636ee
6http://gnu.org/licenses/lgpl-3.0.html
7http://github.com/pollen-robotics/reachy
8http://gnu.org/licenses/gpl.html
9http://github.com/poppy-project/pypot
10http://github.com/poppy-project
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a cost function, attributing a scalar value to any set of angles to
quantify to what extent it is a good solution with respect to the
IK problem: a lower cost means a better solution. Usually, this
cost function is based on the distance between the target and
the endpoint position, which can be analytically determined with
the geometrical model of the robot. Then, through a step-by-step
process, the optimization finds and returns a local minimum of
this cost function, that should correspond to one of the sets of
angles putting the endpoint at the required position.

We used the Python library IKPy (Manceron, 2015), a
generic IK solver, to apply this method on Reachy. The robot’s
software resources include a Universal Robot Description Format
(URDF) file describing Reachy’s mechanical properties, such as
the relative position and orientation of each joint and skeleton
part. These geometrical data can then be imported with IKPy
to build the corresponding kinematic chain, by going through
the sequence of joints from the robot’s base to its endpoint. In
this way, this interfacing between IKPy and Reachy’s software
interface can be performed straight out of the box, and works
as a standalone, without requiring any external device or specific
hardware. As a result, combining IKPy’s features with the motors’
command options provides a new and easy way to control
Reachy by sending 3D coordinates as commands, instead of joint
angles. A code sample showing how to use IKPy with Reachy is
available online11.

IKPy allows to set parameters for the optimization process
(e.g., maximum iteration number, convergence tolerance) when
calling it from another program. Thanks to these options
available in the code, users can fine-tune the process in respect
to the intended use case and available computing power. As an
example, after fine-tuning our setup through a trial-and-error
process, the model was able to reach a sub-centimetric accuracy
with a computing time below 100 ms on a desktop computer.
However, the kinematic chain employed with this method is a
theoretical model of the robot and does not take into account
the robot’s weight and joints’ mechanical play. On a physical
robot, as actual motors are unable to reach the exact angular
positions determined by IKPy, the endpoint tends to undershoot
when driven with this method. To assess endpoint accuracy, the
distance between the endpoint’s actual position and its target was
measured for eighty postures distributed in the robot’s range;
each measurement was performed after the robot moves for 1.5 s
then is asked to hold the posture for 3.5 s. We obtained a mean
distance to target of 87 mm (SD 23 mm), and also observed
that the endpoint usually reaches positions located under the
target. Indeed, position errors along the two cartesian horizontal
axes are roughly centered on zero (mean < 5 mm) whereas
along the vertical axis, this error is subject to a notable offset
(mean= 84 mm).

Nevertheless, this flaw is not blatantly noticeable if no
visible object materializes the target position in the operational
space. Besides, the vertical offset proves to be fairly consistent
over time and reachable space. Therefore, in the context of
a continuous endpoint position control, it can be dealt with

11http://github.com/pollen-robotics/reachy/blob/master/doc/notebook/
Kinematics.ipynb

during a calibration phase performed prior to the control phase.
In this way, this interfacing between IKPy and Reachy can be
conveniently employed in applications where there is no strong
need for endpoint accuracy in the operational space.

To assess repeatability, the robot was tasked to perform several
times the same movement while the endpoint’s position was
recorded with a motion tracking system (Optitrack V120 Trio,
Natural Point Inc.). Firstly, the robot was tasked to travel accross
a 40 cm-wide circle in a frontal plane, in 3.5 s. A comparison of
the recorded trajectories showed that on keyframes distributed
along the movement, for a given set of motor goals, the robot’s
resulting endpoint positions were spread within a 12 mm-radius
sphere. Then, the robot was tasked to reach a given posture
and hold it for several seconds before its endpoint position was
recorded. Over ten repetitions of this movement, the positions
were spread within a 5 mm-radius sphere. These results illustrate
Reachy’s ability to reach the same point in space in response to
the same motor commands, in both static and dynamic contexts.

3.1.2. Supervised Learning With an Artificial Neural

Network
On another hand, this gap between a theoretical model and
Reachy’s actual functioning can be reduced by employing
modeling techniques that do not intend to simulate the robot’s
ideal behavior. One of them consists in recording actual
movements performed by the robot and using them as “ground
truth” examples on which to perform supervised learning. The
goal is to build a set of movements where both motor angles
and endpoint coordinates are synchronously recorded, so that a
supervised learning algorithm can emulate the actual relationship
between these two quantities.

To apply this technique with Reachy, we first defined a
set of robot postures through physical demonstration: with its
motors set as compliant, the robot was manually placed in
various configurations while embedded sensors recorded the
joints’ angles. Then, based on the recorded angles, the robot
performed movements going from one of such demonstrated
postures to another, while the Optitrack V120 recorded the
actual endpoint position. We used an Artificial Neural Network
(ANN) to perform supervised learning on the captured joint
and endpoint data. ANNs are computational tools relying on
elementary logical units called “neurons” and connected between
them by weighted links, generally following a specific network
architecture (Reed and Marks, 1998). For several decades, these
tools have been used to perform supervised learning by tuning
the weights of these links based on the training data. In the field of
robotics, ANNs are typically employed to perform environment
sensing or effector control, including IK solving (Bouganis and
Shanahan, 2010; Duka, 2014; Almusawi et al., 2016).

Our results were obtained with a feed-forward multi-layer
perceptron including two fully connected hidden layers of,
respectively 64 and 128 neurons. We employed the TensorFlow
(Abadi et al., 2015) backend and Keras (Chollet, 2015), a Python
programming interface for ANNs to implement and train this
network to perform IK solving, that is to say: take endpoint
coordinates as input and return corresponding joint angles
as output.
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Relatively to using IKPy, implementing this method is more
demanding and requires to carry out the previously described
two-phase data acquisition process using motion capture
equipment. However, as this technique is based on movements
performed by the physical robot instead of a mechanically perfect
model, the ANN implicitly takes into account the deviations
between the motor commands sent to the robot and the angles
actually reached by the motors. As a result, this method proved
to be more accurate than the local optimization method with an
actual robot (mean distance to target = 25 mm, SD 11 mm). In
particular, it does not suffer from the aforementioned vertical
offset, as the position error along the vertical axis isn’t more off-
centered than along horizontal axes (mean < 14 mm for all three
axes). On another hand, the computing time required to perform
a single IK solving with this method remained consistently under
1ms, proving it to be much faster than local optimization.

Besides, building the training set through manual
demonstration of postures allows users to deliberately introduce
a bias in favor of a certain type of posture. In this way, such a bias
would be implicitly learned and emulated by the network, as its
output would be, by design, similar to the training set’s postures.
For instance, if one only records postures with a horizontal hand
and palm facing downwards, virtually all joint angles returned
by the network should correspond to postures displaying that
same characteristic.

Regarding network structure, we noticed that adding more
hidden layers or increasing their size does not draw significant
benefits and can even result in the network overfitting the
examples, while notably increasing the time required to train it.
Based on these observations, we hypothesize that more complex
network architectures, such as convolutional or recurrent
networks, may not be appropriate for the solving of this
IK problem.

As a conclusion on the topic of IK solving for Reachy, we
presented here two methods with notable differences regarding
accuracy, practicality or convenience. These methods also
illustrate how Reachy benefits from being connectable and
customizable, in the way that various solutions can be employed
to provide similar features, so that users can choose a solution
suitable for their needs. Other approaches could be employed
to perform endpoint position control, either based on existing
techniques from the literature, or developed ad hoc with more
specific requirements.

3.2. Tele-operation
Based on the endpoint position control feature made available
by these IK solving techniques, we developed a second proof
of concept, which we refer to as “tele-operation.” The goal of
this proof of concept is to provide users with an intuitive and
transparent way to drive the robot in real time, that would
not require them to send explicit, quantitative commands such
as joint angles or endpoint coordinates. With this aim, the
tele-operation driving mode works by continuously tracking a
subject’s hand trajectory and simultaneously mapping it on the
robot’s hand, considered its endpoint.

Our implementation of this driving mode makes use of the
Optitrack V120 Trio as the motion tracking system, to determine

the 3D position of a marker placed on the hand. We interfaced
the device with a Python program using OptiRX (Astanin, 2016)
to retrieve marker data in real time at 120 Hz. Before the control
phase, a calibration is performed to set the relation between the
subject’s reference frame, in which marker data is expressed, and
the robot’s reference frame, in which endpoint target coordinates
must be expressed. Then, both the robot and subject’s arms are
placed in the same initial posture: humerus along the body and
elbow flexed at 90◦ (see Figure 4). In this posture, the subject’s
and robot’s hand positions are saved in order to work as origin
points in their respective frames. At each instant of a 10 Hz
control loop, the former is used to compute the instantaneous
displacement vector of the subject’s hand, then the latter is used
to compute the robot’s hand target position, by mapping this
vector in the robot’s frame. Finally, using an IK solving method,
Reachy is put in motion so that its endpoint goes toward this
instantaneous target.

As a result, the subject can drive the robot by performing
natural arm movements, observing how Reachy mirrors them
and using this visual feedback to adjust the robot’s motion.
Obviously, the processing time as well as the fact that the
motors cannot instantly reach the goal angles sent as commands,
introduce a lag between its endpoint’s movement and the
subject’s hand trajectory. In the current setup, this lag is usually
comprised between 350 and 450 ms. This proof of concept
illustrates how one can implement a control strategy with Reachy,
that is: a way to put it in motion based on data acquired
by external devices. It also demonstrates how Reachy can be
controlled in a real-time fashion, while performing smooth and
steady movements.

A video clip showing a subject driving the robot in tele-
operation mode is available online12.

3.3. Gaze-Driven Control
Following on from vision-based assistive devices, we
developed a second proof of concept to explore how eye
movements and gaze behavior could be employed as a
source of commands to put Reachy in motion. With this
aim, we tried to interface the robot with eye-tracking
and image processing tools, in order to allow a subject to
drive Reachy by moving only their eyes instead of their
limbs. Eye tracking is a category of techniques aiming at
measuring eye movements or gaze direction, whether for
observation purposes or as input in an interactive setup
(Duchowski, 2003). In the field of robotics, eye-tracking
techniques have recently been employed to control robotic
arms, especially with applications in rehabilitation and assistive
technologies (Frisoli et al., 2012; McMullen et al., 2014;
Hortal et al., 2015).

The resulting setup relies on a camera filming a scene in
front of the robot, and a computer screen displaying its video
stream to a subject. The camera is placed so that the scene
matches with the robot’s reachable space, and hand-sized objects
of various colors and shapes are located within its range. They
are placed so that no visual occlusion occurs from the point of

12https://www.youtube.com/watch?v=Oa9mHMoDtYI
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FIGURE 4 | Tele-operation setup, shown during the calibration phase. Subject and robot are placed in the same posture while the Optitrack system (on the left)

records the coordinates of the reflecting marker placed on the subject’s hand. See this driving mode in operation at https://www.youtube.com/watch?v=

Oa9mHMoDtYI.

view of the camera, and no physical obstruction occurs when
the robot moves its endpoint toward an object. In this setup,
the screen acts as a 2-dimensional proxy between the robot’s
operational space and the subject’s field of view, in order to
use eye-tracking technology in a simpler context than 3D space.
We employed the GP3 HD eye tracker (Gazepoint) to locate
the focus of the subject’s gaze on the plane of the screen, and
identify the corresponding object in the robot’s reaching space
(see Figure 5). Then, the robot can be put in motion toward
this object’s position, either using pre-recorded postures, or a
combination of inverse kinematics and computer vision in the
scene in front of the robot.

Finally, using a Myo armband (Thalmic Labs Inc.), we
also integrated a basic form of myoelectric control to this
setup. This measuring device allows for the detection of a
specific muscle activation pattern, that can be interpreted as
a command signal. In this way, the subject can perform, for
instance, a voluntary co-contraction of forearm muscles to
trigger a movement by the robot. Whenever such a signal is
detected, the object on which the subject’s gaze is focused is
identified by the eye-tracking system, and Reachy is put in
motion accordingly.

It is worth noting that the processing of gaze data
performed to identify the object of interest remains very
basic in this simplified setup. In a daily life context, the
subject’s posture would be unconstrained. Furthermore, the
environment the subject acts in, performing its instrumental
activities of daily living, is cluttered. The distractors and
scene changes provoke saccades. When maintaining gaze on
the target object, the geometry in a dynamic scene is also
unstable due to micro-saccades. This is why a filtering of
gaze fixation signal along the time is needed (González-Díaz
et al., 2019). Moreover, today a localization of objects in a
gaze-predicted area can be solved together with an object-
recognition task, employing powerful deep CNN classifiers. This

allows for more precise object localization and also adaptation
to the scene dynamics due to the unconstrained motion of
the subject.

The source code employed in this proof of concept is available
online13. A video clip showing a subject performing gaze-driven
control is available online14.

4. CONCLUSION AND PERSPECTIVES

Reachy, a seven-DoF human-like robotic arm, was developed
to act as a test platform for research on human-driven
robotic arms. Following an open-source approach, its
design was elaborated to allow for easy sharing and
low fabrication cost, with the purpose of enabling
extensive customization in a wide variety of applications.
Software and hardware resources were made available
online so that researchers and laypeople can build a
Reachy robot and integrate it in their own experiments
and projects.

In the short term, immediate applications of Reachy
include the exploration, development and testing of control
strategies and interfaces for robotic arms. In this way,
several prototypes were produced and proofs of concepts
were developed in order to illustrate potential use cases
in various fields in relation with human-driven robotics.
As a broadly connectable platform, it allows to investigate
hybrid control strategies, combining biomechanical signals
with motion- or eye-tracking tools and computer vision
techniques (de San Roman et al., 2017; González-Díaz
et al., 2019). Reachy can also help study how vision-
based control strategies would help driving rehabilitation

13http://github.com/pollen-robotics/reachy/blob/master/applications/video_gaze.
py
14https://www.youtube.com/watch?v=qloR67AaqQ4
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FIGURE 5 | Gaze-driven control setup. On the right, various objects are located in front of a left-handed version of Reachy, and the resulting scene is filmed by the

camera placed over the robot’s shoulder. Its video feed is shown on the screen on the left, under which the eye-tracker is placed. The subject wears the Myo armband

on the right forearm to trigger a movement by the robot. See this driving mode in operation at https://www.youtube.com/watch?v=qloR67AaqQ4.

devices, such as an assistive arm fixed to a wheelchair, for
use by patients suffering from Spinal Cord Injury (SCI)
(Corbett et al., 2013, 2014).

On the longer term, Reachy can be employed as a
mockup device for research and training with upper-limb
neuroprostheses. In particular, it can help patients get familiar
with muscle signal production and myoelectric control prior to
being fit with an actual arm prosthesis. Additionally, thanks to its
motors’ control options, Reachy is suitable to address different
levels of amputation, by employing separate control modes to
drive proximal and distal joints. For instance, as a way to emulate
transhumeral amputation, Reachy can be controlled through a
“hybrid” teleoperation mode where shoulder joints reproduce
a patient’s actual shoulder motion while the other motors
are driven with a separate, artificial control strategy. Similar
approaches were investigated in recent works (Kaliki et al., 2013;
Merad et al., 2016), where natural shoulder motion (performed
by a subject) is used to infer artificial elbow and/or wrist motion
(performed by a virtual avatar or a wearable prosthesis). As a
general conclusion, Reachy can prove to be a versatile device
suitable for applications with multiple approaches for the control
of an upper-limb neuroprosthesis.
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