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Abstract

Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several
algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear
programming (MIBLP) based on metabolic networks, and use duality theory to transform bi-level optimization problem of
large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of
MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT) method
can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack
the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli
for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our
algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all
the alternative deletion strategies which lead to the same industrial objective.
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Introduction

In the 21st century, metabolic engineering has been pinned

outstanding hopes on many aspects, such as energy, environ-

ment pollution, climate improvement, food sources and human

health [1]. Since Jay Bailey, Joe Valino and Greg Stephano-

poulos published their classic papers [2,3] of metabolic

engineering, the concepts and methods of metabolic engineering

have been elucidated in the 1990s. The technique of DNA

recombinant made it possible to manipulate genetic changes,

and this effectively broke through the traditional breeding

possibilities and was widely applied to industrial production

strains. As one of the main technologies of recombinant DNA,

gene knockout method was widely used to improve the

conversion ratio of strains for the products. Earlier gene

deletion strategies were mainly based on the analysis of local

metabolic pathway and the experience of experiment. With the

development of systems biology and synthetic biology, utilizing

cellular network model combining with different mathematical

methods, genetic operation in metabolic engineering tended to

rationality and metabolic engineering has come into the era of

system metabolic engineering [4]. At the same time, constraint-

based modeling (CBM), including genome-scale metabolic

network models [5–12] and flux balance analysis (FBA) [13],

made it possible to bypass the requirements of detailed enzyme

kinetic information by analyzing the function of genome-scale

metabolic networks through relying solely on simple physical–

chemical constraints.

There were a series of published algorithms to predict the target

reactions for deletion to improve the productivity of chemicals.

OptKnock [14] used bi-level optimization strategy to solve the

conflict of cell growth and maximum bioengineering objective;

RobustKnock [15] was similar to OptKnock, but utilized min-max

strategy to get a more robust solution; the GDLS algorithm [16] was

used for reduced metabolic models employing Gene-Protein-

Reaction associations to predict gene knockouts; OptGene [17] used

evolutionary search procedure for solving the resulting combinatorial

optimization problem; OptReg [18] and OptStrain [19] extended

OptKnock in some functions as fusing non-host reactions and the

strength of gene expression. Main characteristics of these algorithms

were: 1) based on metabolic networks, 2) towards reactions as deletion

targets, 3) bi-level strategy, exactly mixed integer bi-level linear

programming (MIBLP). When solving the bi-level optimization, these

algorithms learnt from OptKnock, used duality theory and

transformed bi-level optimization to single-level one.

The motivation of this study is: Although it is a good idea to use

bi-level optimization strategy to coordinate cellular growth and

bioengineering objective, where the MIBLP contains integer

control variables of the upper problem appearing in the inner

problem, the solution of large scale MIBLP is intractable and there

are only a few methods [19], as we know, which can be used to

solve it. OptKnock was the base of other algorithms (Robust-
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Knock, GDLS and so on) and OptKnock just cited a previous

work [20] where the authors did not prove the validity of their

solving method for MIBLP as well. The method used in

OptKnock and so on was to regard the control variables of the

upper problem as parameters, to transform the inner problem to

its dual form, to require the primal and dual objectives to be equal

and then to combine them, and finally got a single level one, a

mixed integer linear programming. However, they did not include

the lower-level primal variables in the dual objective and thus,

erroneously derived a MILP (mixed integer linear programming)

formulation, as also stated by DeNegre in his dissertation (page 15)

[21]. Explicitly, in the process of transforming to single level

problem and when assigning auxiliary variables to inner problem,

the constraint vmin
j
:yjƒvjƒvmax

j
:yj was not assigned. If it was

assigned, a mixed integer nonlinear programming (MINP) would

be derived, but not a MILP one. We provided an appendix as

Text S1 to point out the problem.

The solving approaches for the MIBLP problems depend only

on the structure of inner problem [21]. Although it is difficult to

cope with the large-scale MIBLP with integer control variables of

the upper problem but appearing in the inner problem, if the inner

problem is continuous, Karush-Kuhn-Tucker (KKT) method can

be used to reformulate the MIBLP to a single level one [22,23]. In

this study, we adopt KKT technique [24,25] to attack the

intractable problem of the solution of MIBLP. We defined the

name of our algorithm as ReacKnock, for the targets that our

method predicted were reactions as well.

Methods

Mathematical presentation of ReacKnock
The mathematical model of ReacKnock was similar to

OptKnock and it was also a bi-level optimization structure. The

first level (the upper problem) was to maximize bioengineering

objective (vchemical) and the second level (the inner problem) was

for cellular growth (vbiomass). But we made a small modification to

the model of OptKnock for concision. We moved the constraints

of vatp§vatp main and vbiomass§v
target
biomass to be included in

vmin
j ƒvjƒvmax

j . Binary variable y vector was used to indicate

some reactions being deleted or not. The mathematical expression

of ReacKnock was:

maximize
y

vchemical

s:t: yj~f0,1g,Vj[R

K1ƒ
PR
j~1

(1{yj)ƒK2

maximize
v

vbiomass

subject to

PR
j~1

Sij
:vj~0

vmin
j ƒvjƒvmax

j

vmin
j
:yjƒvjƒvmax

j
:yj

Vj[R, Vi[M

2
666666664

3
777777775

2
666666666666664

ðIÞ

Here M is the set of metabolites and R is the set of reactions with

size r; yj is the control variable of the j-th reaction of R, and it will

force the flux vj to zero in case of yj~0, mimicking the gene

knockout scenario; K1 and K2 are the scope for search; S is the

stoichiometry matrix, v is the distribution of flux; vmin
j and vmax

j are

the flux boundaries of every reaction.

Method to solve the MIBLP model
For the solution of bi-level linear programming (BLP), KKT

method can be used to transform bi-level problem to a single level

problem [22,23]. Audet and Bard have given the transformation

[24,25]. Firstly, we reformulated the MIBLP to a standard formation

min C1
:x

s:t: A1
:xzB1

:yƒb1

y[f0,1g

min C2
:x

s:t: A2
:xzB2

:y ƒb2

x is free

ðIIÞ

Here y is the control variables from upper level, x is corresponding to

flux v. A1, B1, C1, A2, B2, C2 are matrixes in proper dimensions.

A1~
�00

�00

" #
, B1~

{�11

�11

" #
, b1~

K2{r

r{K1

" #
,

A2~

S

{S

I

{I

I

{I

2
666666666664

3
777777777775

, b2{B2
:y~

~00

~00

vmax

{vmin

vmax:y

{vmin:y

2
666666666664

3
777777777775

Here �11 is 16r vector with element 1, �00 is 16r vector with element 0

and ~00 is r61 vector with element 0.

The Lagrangian for the inner is

L(x,l)~C2xzlT(A2xzB2y{b2). The KKT condition for the

standard inner problem can be derived as the following.

+xL(x,l)~C2zlTA2~0

+lL(x,l)~A2xzB2y{b2ƒ0

lT:(b2{B2y{A2x)~0

l§0

ðIIIÞ

Where lT:(b2{B2y{A2x)~0 is equivalent to lT(b2{B2y)~
{C2x, which can be further written as

lT(b2{B2y)~lT
1
:~00zlT

2
:~00zlT

3
:vmax{lT

4
:vmin

zlT
5
:vmax:y{lT

6
:vmin:y

~lT
3
:vmax{lT

4
:vmin

and l5,l6ƒ(1{y):D with D~100

The nonlinear terms lT
5
:vmax:y{lT

6
:vmin:y can be removed. This

is due to if y = 0, they will be zero; or if y = 1, the corresponding

ReacKnock
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constraints for the auxiliary variables l5 and l6 are repeated

constraints and thus inactive, the auxiliary variables l5 and l6 will

be zero.

So the above MIBLP (II) can be reformulated to a single level

one, a MILP (IV) through (III).

min C1
:x

s:t: A1
:xzB1

:y ƒb1

C2zlTA2~0

A2xzB2yƒb2

C2xz(lT
3
:vmax{lT

4
:vmin)~0

l5,l6ƒ(1{y):D

D~100 , l§0, x is free:

ðIVÞ

This MILP can be solved by some commercial softwares, such as

Gurobi 5.0 [26].

Alternative solution
The above MILP (IV) may probably have multiple integer

solutions, i.e. for different deletion strategies but the industrial

objective was the same. As we knew, up to date, there was no

optimization tool which can directly provide multi integer

solutions for a MILP. Here we utilized an approach named

Combinatorial Bender’s cut [27] to get those alternative integer

solutions. The idea of Bender’s cut proposed by Balas and Jeroslow

was that from an existing solution, iteration was used while the

following binary cut was added in each iteration to exclude an

existed solution.

X
i[B

yi{
X
i[N

yiƒ Bj j{1, B~fiDyi~1g, N~fiDyi~0g

All the multiple solutions can be obtained by this way.

Method to testify the deletion strategies
When we obtain a deletion strategy from a prediction

algorithm, we get the values of cell growth and industrial objective

at the same time. It is best to substitute the deletion strategy to the

metabolic network model, delete those target reactions (or

enzymes) predicted, do the FBA, and see whether cell growth

and industrial objective are the same with the values we predict by

our algorithm. But for the reason that FBA usually has multi

solutions, so when we do FBA testification and if a strategy does

not get to the predicted value of industrial objective, we can’t

decide the strategy is valid or not. But FBA can be used to testify

growth.

To multiple solutions of FBA, Flux Variability Analysis (FVA)

can provide an estimation of the flux scope of every reaction in the

FBA model. We think it is a good way to testify deletion strategies

predicted. After substituting the deletion strategy to the metabolic

network model, delete those target reactions (or enzymes)

predicted, we do the FVA now and compare the maximum value

of industrial objective with what we predict.

Results

To evaluate the performance of ReacKnock in comparison with

previous algorithms (OptKnock), we applied ReacKnock on a

genome-scale metabolic network model of E. coli metabolism,

named iAF1260 [5], to predict knockout strategies for producing

various chemicals. Predicted strategies provided were 5 reaction

deletions. The metabolic network model includes 1260 enzyme-

coding genes, accounting for 2382 reactions and 1668 metabolites.

Focusing on minimal medium with glucose as sole carbon source,

we applied ReacKnock and OptKnock respectively towards the

production of different chemicals that can be secreted from E. coli.

We can’t obtain the original algorithm program of OptKnock and

OptKnock algorithm in this study was from the corresponding

function of COBRAToolbox [28], but it was not clear whether the

OptKnock function in COBRA has been modified and been

corrected from the original paper [14]. Table 1 gave the

comparison result under aerobic condition. Organic acids

producible from E. coli may be produced probably both under

anaerobic condition (such as Ethanol) and aerobic condition (such

as Threonine). Here, it was for the reason of computational aspect

that we used unified aerobic condition. Of course, it is easy to get

the results under anaerobic condition. In order to show the change

of flux distribution after removing those target reaction, intracel-

lular flux distributions for each chemical production using

ReacKnock and OptKnock were respectively provided in Table
S1 and S2, and flux distribution of wild strain was also provided

in the tables for comparison. At the same time, detailed maps of

metabolic flux distributions were respectively provided in Figure
S1 where those reactions with relatively large flux were shown. As

for the whole names of Knockout enzymes (reactions), please refer

to the supplementary materials of Ref [5] where it provided the

whole names of every reaction. The software to solve MILP that

we used here was Gurobi 5.0 and Matlab [29].

There are several merits of our algorithm over previous

methods. 1) First and especially, ReacKnock will return all the

alternative deletion strategies in the same search scope with the

near industrial objective. This will be very useful in strain design

and can provide alternative gene operation strategies. All the

previous algorithms just give only one deletion strategy for a given

deletion number. Table 2 has shown the first ten alternative

solutions for predicting 6-reaction deletions to produce Succinate

on the E. coli_iAF1260. All these ten solutions were consistent with

the results of FVA and FBA. Intracellular flux distributions for

each solution were provided in Table S3. 2) In most cases, the

objective value for a given chemical predicted by ReacKnock is

higher than the value predicted by OptKnock and is much more

near the theoretical conversion ratio (Max_yield). As we demon-

strated in Appendix, the solving method of OptKnock for MIBLP

was not precise in mathematics, and we think this may be the first

reason why OptKnock is unable to find the optimal solution.

When running OptKnock for these chemical targets, we have set

the maximum computation time to be 3600 s. The second reason

may lie in that it will take a very long time to get the optimal

solution while the permitted time is not enough. We have also tried

not to set the maximum computation time (actually default setting

in COBRA toolbox) and the yields of the targeted chemical

products seemed not improved obviously. We provided new

solutions and computation time of OptKnock in Table S4.

Although there was a distance between the maximum production

predicted by ReacKnock and the theoretical conversion ratio, this

is due to the constraint of deletion number. As an example, we

computed 15-reaction deletion for succinate production which

could get the maximum production to 13.97. The 15 reactions

were ‘‘3OAS120, AKGt2rpp, CO2tpp, FUMtex, GLCNt2rpp,

GLUDy, GLYCL, GND, PDH, PFL, PGI, PPKr, PSP_L,

PYRt2rpp, TDECOAI’’. 3) ReacKnock is stable and all the rates

of chemical objective predicted by ReacKnock were consistent

with the results of FVA and FBA. OptKnock is instable in the

cases of Hydrogen production, and it can’t provide effective

ReacKnock
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deletion strategies for the chemical productions. 4) Our algorithm

does not confine to a given number of gene deletions and it searches

in a given scope defined by K1 and K2, such as between 5 to 20

genes. 5) Our algorithm will need shorter time than previous

approaches. Our computation environment is a server, sugon A840-

G with 4 AMD Opterons and 48 cores, and CPU speed is 2.2 GHz.

When using OptKnock to do 5 gene deletion study, it will need tens

of minutes in a run, and of course, will need much more in actual

gene deletion calculations (such as .10 genes). In general, our

algorithm will need no more than several minutes in a run and

especially do not restrict to the scale of gene deletion. All the

computational results of ReacKnock were obtained with setting

computation time as 10 minutes. Actually, OptKnock will need

more time for we have set the terminal time to be 3600 s when

running it, and for comparison and in Table S4, we also provided

the result of OptKnock with setting computation time as 10 minutes.

Discussion

For the scarcity of dynamic data, genome scale metabolic

network models based on constraint-based modeling (CBM)

provide a possible way to describe the metabolism of cells. FBA

Table 1. Comparison of the predictions by ReacKnock, Optknock and Wild_type.

Chemical
target Strain

Prod.
rate

Growth
rate

FVA max
Prod. rate

FBA max
Growth rate Reactions to be deleted as example

Succinate (Max_Yield) 14.93

Wild_type 0 0.885 0.0001 –

ReacKnock 9.96 0.1173 9.96 0.1173 ACtex; ATPS4rpp; CO2tex; PGL; THD2pp

OptKnock 6.3 0.552 6.31 0.552 ACt2rpp; GND; PSP_L; SUCDi; SUCOAS

Ethanol (Max_Yield) 18.56

Wild_type 0 0.885 0.000024 –

ReacKnock 18.5 0.104 18.46 0.104 ATPS4rpp; FORtex; GLUDy; O2tex; THD2pp

OptKnock 18.2 0.121 18.19 0.121 ACt2rpp; ATPS4rpp; GLUDy; PPKr; SUCDi

Acetate (Max_Yield) 25.69

Wild_type 1.68 0.885 1.68 –

ReacKnock 22.7 0.145 22.7 0.145 CO2tex; F6PA; GLCDpp; PFK; PGL

OptKnock 18.3 0.116 18.25 0.116 3OAS120; ATPS4rpp; ENO; GLU5K; SUCDi

Hydrogen (Max_Yield) 76.64

Wild_type 9.81 0.885 9.81 –

ReacKnock 66.65 0.119 66.65 0.119 ETOHt2rpp; G6PDH2r; H2Otpp; PGM; TKT2

OptKnock 1000.0 0.885 9.81 0.885 no deletion

Formate (Max_Yield) 43.69

Wild_type 0.0021 0.885 0.00223 –

ReacKnock 32.08 0.127 32.08 0.127 ACALD; EDD; ENO; H2Otex; PPS

OptKnock 25.5 0.142 25.54 0.142 12PPDStex; H2Otex; PGI; PGL; PGM

Glycolate (Max_Yield) 25.69

Wild_type 0 0.885 0.000039 –

ReacKnock 18.27 0.129 18.27 0.129 ACtex; AKGDH; ATPS4rpp; MALS; PGCD

OptKnock 17.4 0.142 17.43 0.142 ACtex; AKGDH; ATPS4rpp; FALDtpp; GLCNtex

D-Lactate (Max_Yield) 18.56

Wild_type 0 0.885 0.000019 –

ReacKnock 18.52 0.10 18.52 0.10 ASNS2; ATPS4rpp; CBMKr; ETOHtex; O2tex

OptKnock 18.5 0.101 18.51 0.101 ATPS4rpp; ETOHt2rpp; IMPD; LEUtex; O2tex

Fumarate (Max_Yield) 16.08

Wild_type 0 0.885 0.0000082 –

ReacKnock 13.45 0.152 13.45 0.152 CO2tex; CYTBO3_4pp; FORtppi; PDH; PYRtex

OptKnock 9.4 0.127 9.39 0.127 3HAD140; ATPS4rpp; CO2tpp; PFL; TKT2

Threonine (Max_Yield) 11.22

Wild_type 0 0.885 0 –

ReacKnock 0 0.885 0 0.885 ANHMK;DHORD5;GTHRDHpp;OMBZLM;VPAMT

OptKnock 0.000000012 0.774 0.0000237 0.774 ACALDtpp; ACtex; ETOHt2rpp; Htex; TRPS1

The following constraints were applied: glucose consumption rate is 10, cell growth is no less than 0.1, maintenance energy metabolism is 8.39, oxygen consumption
rate is no higher than 18.5. All the rate unit is mmol/g(Dw)h. Max_yeild means the maximum conversion ratio at the given condition.
doi:10.1371/journal.pone.0072150.t001

ReacKnock
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has been used successfully to simulate the phenotype of cells. But

in metabolic engineering, we hope to know in silicon what the

response of cell to the gene deletion operation is. Therefore, bi-

level optimization is a pertinent strategy to consider cell growth

and industrial objective together. But when we use integer control

variables to indicate the decision of deletion or not for some

reactions, this type of bi-level optimization, known as MIBLP,

become very difficult to solve. In fact, the inner problem of MIBLP

on which we focus here is continuous and the solving approaches

for MIBLP depend only on the structure of inner problem. In this

article, we utilize KKT method to solve the MIBLP model which

is the core of previous predictive algorithms of gene deletion study.

There are several merits of ReacKnock: 1) Our algorithm can

provide all the alternative deletion strategies in given deletion

number. 2) ReacKnock may give better predictions than previous

methods in term of production rate or conversion ratio. 3)

ReacKnock is more stable and reliable than previous tools.

ReacKnock may obey the original FBA model, i.e. applying FVA

to predict the possible production rate under knockout strategies of

ReacKnock reveals possible rates that are very near to the results of

ReacKnock. 4) The computation time of ReacKnock is greatly

shorter than that of previous algorithms. 5) ReacKnock does not

confine to single, double or triple knockouts, and it searches a scope

which we can define at first, such as 5–20 reactions (enzymes).

ReacKnock will return the best set which should be deleted.

It should be noticed that, sometimes, the optimal knockout

strategy found by ReacKnock and OptKnock is not SUFFICIENT

condition for optimal production. Due to the inherency of multiple

solutions of FBA approach, ReacKnock and similar can only ensure

that there is at least a distribution of metabolic flux leading to

maximal production yield. This means with the given set of gene

deletions, there are multiple flux distribution modes which all have

the same maximal growth rate but different production rate. Only a

few modes lead to the maximal production rate. Therefore, the

experimental practice according to the prediction of ReacKnock or

OptKnock may show less optimal or even bad production yield. It is

of strong need to develop new algorithms searching for sufficient

solutions with which the cell is obligated to produce the target

product at the maximum yield.

Alternative deletion strategies are actually interrogation of

multiple solutions of the MILP (mixed integer linear programming)

transformed from MIBLP. COBRA toolbox provides a method

named random sampling [28,30,31] to determine the size and shape

of the steady-state flux space defined by the constraint–based model

of metabolic network, i.e. a linear optimization problem (LP). The

random sampling in COBRA toolbox is Monte Carlo sampling.

Solution space (usually a polytope for a LP) is different from

alternative solutions of the LP (usually vertexes of the polytope for

the LP), if the LP has multiple solutions. Vertex enumeration will be

helpful to calculate the volume of the LP, but is usually N-P hard

problem. But in our case, the optimization problem is a MILP

transformed from the MIBLP. Multiple solutions of those integer

variables for the MILP are of discrete problem, and the discrete

property determines that it is not suitable for sampling. At the same

time, multiple solutions of our MILP are usually just several or tens

but not a great many as tested, and we hope to get these solutions

one by one by the method of Bender’s cut. So we believe Bender’s

cut is suitable for our MILP model solution to interrogate alternative

deletion strategies. Iterative method has been utilized before for

finding multiple solutions of a LP [32,33], supposing that the LP has

multiple solutions. This iterative method for LP is a little different

from the Bender’s cut method used here for MILP.

Supporting Information

Figure S1 Maps to show the intracellular flux distribu-
tions for each chemical production after deleting those
target reactions predicted by ReacKnock and OptKnock.
The intracellular flux distribution of wild strain was also provided

for comparison.

(RAR)

Text S1 Appendix to point out where the problem of
OptKnock is and to give the derivation of our algorithm.

(DOCX)

Table S1 Intracellular flux distributions for each chem-
ical production after deleting those target reactions
predicted by ReacKnock.

(XLSX)

Table S2 Intracellular flux distributions for each chem-
ical production after deleting those target reactions
predicted by OptKnock.

(XLSX)

Table S3 Intracellular flux distributions of multiple
strategies for succinate production after deleting those
target reactions by using ReacKnock.

(XLSX)

Table S4 Comparison between new predictions of
OptKnock with default setting of max computation time

Table 2. First ten alternative solutions provided by ReacKnock for predicting 6-reaction deletions to produce succinate on the
model E. coli_iAF1260 under aerobic condition with glucose Input = 210 mmol/g(Dw)h.

1 2 3 4 5 6 7 8 9 10

ACt2rpp ATPS4rpp ACGAMK ACtex 3HAD140 ACtex ACtex ACtex ACtex ACtex

ATPS4rpp CBMKr ACt2rpp ATPS4rpp ATPS4rpp ATPS4rpp ATPS4rpp ATPS4rpp ATPS4rpp ATPS4rpp

CO2tpp CBPS ATPS4rpp CO2tex CO2tpp CO2tex CO2tex CO2tpp CO2tex CO2tpp

PGL CO2tpp IDOND G6PDH2r FORtex GND PSERT G6PDH2r GND G6PDH2r

PSERT PFL PSP_L PSP_L FUM PSERT THD2pp PGCD PSP_L PSP_L

THD2pp THD2pp SUCDi THD2pp RPE THD2pp TKT1 THD2pp THD2pp THD2pp

0.108 0.109 0.129 0.108 0.128 0.108 0.108 0.108 0.108 0.108

10.24 9.73 9.13 10.24 9.35 10.24 10.20 10.24 10.24 10.24

The last two lines are growth rate and product rate respectively.
doi:10.1371/journal.pone.0072150.t002

ReacKnock
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in COBRA toolbox and old predictions (first time
computation) of OptKnock with setting computation
time to be 3600 s.

(DOCX)

Author Contributions

Conceived and designed the experiments: ZX. Performed the experiments:

ZX. Analyzed the data: ZX JS. Contributed reagents/materials/analysis

tools: ZX PZ JS YM. Wrote the paper: ZX.

References

1. Betenbaugh M, Bentley W (2008) Metabolic engineering in the 21st century:

meeting global challenges of sustainability and health. Current Opinion in

Biotechnology 19(5): 411–413.

2. Stephanopoulos G, Vallino JJ (1991) Network Rigidity and Metabolic

Engineering in Metabolite Overproduction. Science 252(5013): 1675–1681.

3. Bailey JE (2001) Complex biology with no parameters. Nature Biotechnology.

19: 503–504.

4. Blazeck J, Alper H (2010) Systems metabolic engineering: Genome-scale models

and beyond. Biotechnology Journal 5(7): 647–659.

5. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded

genomescale model of Escherichia coli K-12 (iJR904GSM/GPR). Genome

Biology. 4:R54.

6. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, et al (2007) A

genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that

accounts for 1260 ORFs and thermodynamic information. Molecular Systems

Biology 3: Art. No. 121.

7. Becker SA, Palsson BØ (2005) Genome-scale reconstruction of the metabolic

network in Staphylococcus aureus N315: an initial draft to the two-dimensional

annotation. BMC Microbiology 5: Art. No. 8.

8. Thiele I, Vo TD, Price ND, Palsson BØ (2005) Expanded metabolic

reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico

genome-scale characterization of single- and double-deletion mutants. Journal

of Bacteriology 187: 5818–5830.

9. Feist AM, Scholten JC, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling

methanogenesis with a genomescale metabolic reconstruction of Methanosar-

cina barkeri. Molecular Systems Biology 2: Art. No. 2006.0004.

10. Duarte NC, Herrgard MJ, Palsson BØ (2004) Reconstruction and validation of

Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale meta-

bolic model. Genome Research 14:1298–1309.

11. Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R (2007)

Genomescale reconstruction of metabolic network in Bacillus subtilis based on

high-throughput phenotyping and gene essentiality data. The Journal of

Biological Chemistry 282:28791–28799.

12. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genomescale

model of Escherichia coli K-12 (iJR904GSM/GPR). Genome Biology 4:R54.

13. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nature

Biotechnology. 28 (3): 245–248.

14. Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: A bilevel programming

framework for identifying gene knockout strategies for microbial strain

optimization. Biotechnology and Bioengineering 84(6): 647–657.

15. Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies

for chemical production: accounting for competing pathways. Bioinformatics

26(4): 536–543.

16. Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, et al (2009) Large-scale
identification of genetic design strategies using local search. Molecular Systems

Biology 5:296.
17. Pharkya P, Maranas CD (2006) An optimization framework for identifying

reaction activation/inhibition or elimination candidates for overproduction in

microbial systems. Metabolic Engineering 8: 1–13.
18. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational

framework for redesign of microbial production systems. Genome Research 14:
2367–2376.

19. Zeynep HG, Christodoulos AF (2005) Global optimization of mixed-integer

bilevel programming problems. Computational Management Science 2: 181–212.
20. Burgard AP, Maranas CD (2003) Optimization-based framework for inferring

and testing hypothesized metabolic objective functions. Biotechnology and
Bioengineering 82:670–677.

21. DeNegre S (2011) Interdiction and discrete bilevel linear programming D].
Bethlehem, Pennsylvania: Lehigh University.

22. Moore JT, Bard JF (1990) The Mixed Integer Linear Bilevel Programming

Problem. Operations Research 38 (5): 911–921.
23. Zeynep HG, Christodoulos AF (2005) Deterministic global optimization of

mixed integer bilevel programming problems. Computational Management
Science 2(3), 181–212

24. Audet C, Hansen P, Jaumard B, Savard G (1997) Links between linear bilevel

and mixed 0–1 programming problems. Journal of Optimization Theory and
Applications 93(2), 273–300.

25. Bard JF (1999) Practical Bilevel Optimization: Algorithms and Applications.
Springer, 1st edition.

26. Gurobi. Available: http://www.gurobi.com. Accessed: 5 Nov 2013.
27. Balas E, Jeroslow R (1972) Canonical cuts on the unit hypercube. SIAM Journal

of Applied Mathematics. 23 (1): 61–69.

28. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, et al (2007)
Quantitative prediction of cellular metabolism with constraint-based models: the

COBRA Toolbox. Nature protocols. 2: 727–738.
29. Matlab. Available: http://www.mathworks.com. Accessed: 5 Nove 2013.

30. Schellenberger J, Palsson BO (2009) Use of randomized sampling for analysis of

metabolic networks. J Biol Chem 284: 5457–5461.
31. Wiback SJ, Famili I, Greenberg HJ, Palsson BO (2004) Monte Carlo sampling

can be used to determine the size and shape of the steady-state flux space.
J Theor Biol 228: 437–447.

32. Reed JL, Palsson BØ (2004) Genome-Scale In Silico Models of E. coli Have
Multiple Equivalent Phenotypic States: Assessment of Correlated Reaction

Subsets That Comprise Network States. Genome Res 14(9): 1797–805.

33. Lee S, Phalakornkule C, Domach MM, Grossmann IE (2000) Recursive MILP
model for finding all the alternate optima in LP models for metabolic networks.

Comp Chem Eng 24: 711–716.

ReacKnock

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e72150


