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Reaction-Controlled Morphology of Phase-Separating Mixtures
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The role of externally-controlled chemical reactions in the selection of patterns in phase-separating
mixtures is presented. Linearized theory and computer simulation show that the initial long-wavelength
instability characteristic of spinodal decomposition is suppressed by chemical reactions, which restrict
domain growth to intermediate length scales even in the late stages of phase separation. Our findings
suggest that such reactions may provide a novel way to stabilize and tune the steady-state morphology
of phase-separating materials.
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Pattern formation in reaction-diffusion systems occu
throughout nature. It is well known, for example, that sp
ral waves and other interesting steady-state patterns can
generated by simple chemical reactions [1]. In contra
transient patterns are formed during phase separation
spinodal decomposition in both small molecule and pol
mer mixtures [2,3]. These patterns, whose characteris
length scale depends on the specificity of the compone
of the mixture, coarsen and disappear when macrosco
phase separation is achieved at asymptotically long tim
It would be desirable to devise a mechanism by which the
phase-separating morphologies could be stabilized. In t
Letter, we argue that chemical reactions can be used to s
bilize and tune the characteristic length scale of patter
arising in phase-separating materials. Unlike the usual s
nario of spinodal decomposition, where concentration flu
tuations of all length scales larger than a certain critic
length scale spontaneously grow with time, we show th
chemical reactions introducetwo cutoff lengths, thereby
restricting the growth of fluctuations to a narrow range o
length scales. Pattern tunability is achieved through a
propriate selection of the rate constants governing the e
ternally controlled chemical reactions [4]. Interestingly
our simplest model describing this phenomenon results
an equation identical in form to an empirical equation use
to model microphase separation in block copolymer me
[5] and other systems [6] where short-range attractive a
long-range repulsive interactions compete. However, u
like the majority of these pattern-selecting systems, chem
cal reactions offer a tremendous opportunity to contr
the final morphology of phase-separated materials, es
cially polymers. Since the kinetics of spinodal decompo
sition in polymer mixtures and small molecule mixture
is similar in many respects [7], for simplicity we focus
here on the effect of chemical reactions on small molecu
systems [8].

Consider a mixture of molecules of typesA and
B which has been quenched to a thermodynamica
unstable state, and which simultaneously undergoes
reaction [4]
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G2

nCC , (1)

whereG1 and G2 are the temperature-dependent forwar
and backward reaction rates, respectively, and theni are
the stoichiometric coefficients. The equations of motio
for the concentrationfisx, td of componenti are
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nC
C 1 hC ,

whereJi  2
P

j MijsdFydfjd, F is the free energy func-
tional appropriate to the mixture, and thehi ’s are reac-
tion terms arising from spatial inhomogeneities. Alterna
approaches to the coupling of diffusion and chemical rea
tions are possible [9]. In these equations, the local tran
port of heat and momentum, which in general couple
mass flow [10], has been ignored. The essential phys
underlying the stabilization and tunability of pattern for
mation in phase-separating materials can be illustrated
considering a simpler, two-component system undergoi
the following reaction:

A
G1
%
G2

B . (3)

The equation of motion for this immiscible, chemically
reactive system is [11]

≠f

≠t
 M===2 dFhfj

df
2 G1f 1 G2s1 2 fd , (4)

where we have dropped the subscript “A” on the lo-
cal concentrationf and assume incompressibility (fA 1

fB  1). Quenching below the spinodal temperature wi
result in demixing via spinodal decomposition and, simu
taneously, mixing via the reactionA%B.

The free energy functionalFhfj is typically written
as the sum of the bulk free energyfsfd, which has a
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double-well structure below the critical point, and th
usual square-gradient approximation to the interfacial fr
energy [2,3,12]. For small molecules mixtures, Eq. (4
can be written as [13]

≠f

≠t
 L===2

√
≠f
≠f

2 2k===2f

!
2 sG1 1 G2df 1 G2 , (5)

whereL ; MkBT andfsfd has been divided bykBT . We
linearize Eq. (5) about the initial average concentratio
before the quench,f0, and replacef by f0 1 df, where
df is a small perturbation aboutf0 [2]. After Fourier
transforming, we obtain

≠ ˜dfk

≠t
 f2kLk2sk2

c 2 k2d 2 sG1 1 G2dg ˜dfk

1 fG2 2 sG1 1 G2df0gdskd , (6)

where s≠2fy≠f2df0 , 0 in the two-phase region,kc ;
sj ≠2fy≠f2 j f0y2kd1y2, anddskd  0s1d whenk fi 0 (k 
0). For nonzero values ofk, this equation is solved by a
simple exponential function [14],

˜dfkstd  ˜dfks0devskdt, (7)

with the growth rate

vskd  2kLk2sk2
c 2 k2d 2 sG1 1 G2d . (8)

Figure 1 shows the growth factorvskd for spinodal de-
composition both with and without chemistry. Withou
chemistry (G1  G2  0), the growth factor is the usual
one predicted from Cahn’s linear theory, with a cuto
at large wave vectorkc. Thus concentration fluctuations
with k . kc decay and those withk , kc grow, with the
maximum growth rate occurring forkm  kcy

p
2 . How-

ever, the simultaneous occurrence of the reactionA%B
decreases the usual growth factor by an amount prop
tional to the sum of the forward and backward reactio
ratesG1 andG2. This shifts the small-wavelength cutoff
to larger wavelengths, and introduces a large-waveleng
cutoff. Thus concentration fluctuations at large wave

FIG. 1. Early-time growth factorvskd vs wave vectork, both
with (dotted line) and without (solid line) chemistry. In the
absence of chemical reactions, concentration fluctuations
all wave vectorsk , kc grow. Chemical reactions introduce
cutoffs both at largek and small k, so that growth occurs only
for intermediate-wavelength fluctuations.
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lengths (smallk) are suppressed by the reactions. Su
suppression of long-wavelength fluctuations is a natu
mechanism for pattern selection in a variety of system
[1,5,6], such as block copolymers. The mathematical o
gin of the similarity between spinodal decomposition wi
chemical reactions and ordering of block copolymers li
in the fact that a term linear inf in dynamics [Eq. (5)]
can be absorbed into a redefined free energy functiona
an additional nonlocal quadratic coupling off’s [5,15].

Our analysis shows that due to the reactions, only flu
tuations at an intermediate length scale grow initiall
However, solution of the full nonlinear equation is nec
essary to explore the later stages of phase separation w
the nonlinearities are important [15]. We numerically in
tegrated Eq. (5) on a two-dimensional lattice withfsfd,
the bulk free energy, taken as that for an incompressib
small molecule mixture,

fsfd
kBT

 f lnf 1 s1 2 fd lns1 2 fd 1 xfs1 2 fd ,

(9)

where the dimensionless interaction parameterx re-
lates the interaction energies between the two spec
of molecules [12]. We takek  xl2, where l is the
average range of the intermolecular interaction [12,1
Equation (5) can then be written as

≠f

≠t
 L===2

"
ln

√
f

1 2 f

!
2 2xf 2 2xl2===2f

#
2 sG1 1 G2df 1 G2 . (10)

Our simulations were performed by discretizing Eq. (1
using a simple finite difference scheme in two dimension
Computational details of the integration method will b
given elsewhere [7].

The critical point of the free energy in Eq. (9) is give
by fc  1y2 and xc  2. The concentration at each
lattice site was initialized tof  1y2 6 df, wheredf is
a random number in the rangef20.0001, 0.0001g. Lattices
of size2562 and larger were then quenched tox  4.0 for
various choices of equal forward and backward reacti
ratesG1 andG2 (zero heat of reaction is implied). When
G1  G2  0, the system phase separates in the usual w
[3,17]. This system is shown in Fig. 2 in the late stag
of phase separation after a time (a)t  512 and (b)t 
2048. Figures 3(a) and 3(b) show the same system as
Fig. 2(b) att  2048, but with G1  G2  0.05 and0.2,
respectively. Clearly, the steady-state, lamellar structu
exhibited by the reactive systems in Figs. 3(a) and 3(
is very different from the transient, interconnected, se
similar morphology of the nonreactive mixture in Fig. 2.

We measured the average domain sizeRstd by calculat-
ing [18] the inverse of the first moment of the structu
factor Ssk, td, for various choices of reaction rates. Fo
each system, the reaction rates were chosen to be eq
G1  G2 ; G. In the absence of chemistry (G  0) the
2035
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FIG. 2. Concentration field for2562 lattice at a time (a)t 
512 and (b) t  2048 following a quench of Eq. (10) to the
unstable region, in the absence of chemical reactions (i
G1  G2  0). A-rich regions are shown black andB-rich
regions are shown grey.

system exhibits the expected Lifshitz-Slyozov [19] growt
law at late times,

Rstd , ta, (11)

wherea  0.32 6 0.02 [17]. However, for nonzero reac-
tion rate, the domain growth saturates at a certain stea
state valueRF . In the steady state, dimensional analys
of Eq. (10) shows thatftg  f1yGg, so that the domain
sizeRF should obey the scaling law

RF , s1yGda . (12)

The steady-state inverse domain sizeR21
F is plotted double

logarithmically against the reaction rateG in Fig. 4.
2036
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FIG. 3. Concentration field for2562 lattice at a timet  2048
following a quench of Eq. (10) to the unstable region, wit
reaction rates (a)G  0.05 and (b) G  0.20. A-rich regions
are shown black andB-rich regions are shown grey. Furthe
evolution of the system tends to align domains, but the stea
state domain width has already been selected.

Indeed, we find thata appears to be approaching1y3 for
small reaction rates [20]. Thus, the simultaneous prese
of the chemical reactionA%B selects intermediate length
scales for growth, even in the late stages of spinod
decomposition [21].

The suppression of long-wavelength fluctuations by t
interplay between chemical reactions and thermodynam
instability provides a ubiquitous mechanism for patte
selection in nature. The underlying mechanism for pa
tern selection in typical reaction-diffusion systems aris
from a competition between diffusion and chemical re
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FIG. 4. Double logarithmic plot of equilibrium inverse aver-
age domain sizeR21

F vs G. The straight line has slope 1y3.

action [1]. The length scale characterizing the transie
patterns in spinodal decomposition of mixtureswithout
chemical reactions is dictated by the competition betwe
the square-gradient interfacial term and the thermod
namic instability inherent to the system. When externally
controlled chemical reactions and spinodal decompositi
occur simultaneously,these two selection mechanisms
combine to determine the length scale of the steady-st
pattern. The two mechanisms can be tuned independen
of one another, thereby allowing one to control the fina
microphase-separated structure of the material [4]. Gen
alization of the approach developed here to polymeric sy
tems and more complicated chemical reactions promis
to be of significant technological importance.
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