
METHODS ARTICLE
published: 15 November 2013
doi: 10.3389/fninf.2013.00028

Reaction-diffusion in the NEURON simulator

Robert A. McDougal1*, Michael L. Hines 1 and William W. Lytton 2,3,4

1 Department of Neurobiology, Yale University, New Haven, CT, USA
2 Department Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, USA
3 Department of Neurology, SUNY Downstate, Brooklyn, NY, USA
4 Kings County Hospital, Brooklyn, NY, USA

Edited by:

Andrew P. Davison, Centre National

de la Recherche Scientifique, France

Reviewed by:

Upinder S. Bhalla, National Center

for Biological Sciences, India

Padraig Gleeson, University College

London, UK

Zbigniew Jedrzejewski-Szmek,

George Mason University, USA

*Correspondence:

Robert A. McDougal, Department of

Neurobiology, Yale University,

Sterling Hall of Medicine C-303, 333

Cedar Street, PO Box 208001, New

Haven, CT 06520-8001, USA

e-mail: robert.mcdougal@yale.edu

In order to support research on the role of cell biological principles (genomics, proteomics,

signaling cascades and reaction dynamics) on the dynamics of neuronal response in health

and disease, NEURON’s Reaction-Diffusion (rxd) module in Python provides specification

and simulation for these dynamics, coupled with the electrophysiological dynamics of the

cell membrane. Arithmetic operations on species and parameters are overloaded, allowing

arbitrary reaction formulas to be specified using Python syntax. These expressions

are then transparently compiled into bytecode that uses NumPy for fast vectorized

calculations. At each time step, rxd combines NEURON’s integrators with SciPy’s sparse

linear algebra library.

Keywords: computational neuroscience, python, reaction-diffusion, neurodynamics, numerical integration

INTRODUCTION
In a quest to study the brain in silico, computational neuroscience

has long focused on electrophysiology. This focus is partly because

electrical signaling is a relatively accessible form of neuronal activ-

ity. The GENESIS [genesis-sim.org; Bower and Beeman (1998)],

MOOSE [moose.ncbs.res.in], and NEURON [neuron.yale.edu;

Carnevale and Hines (2006)] allow modelers to predict the col-

lective electrical activity of networks of neurons based on their

connectivity, the morphologies of the individual cells, and the

distribution of ion channels.

Neurons are more than mere objects with interesting elec-

trical properties: they are cells, and as with any cell, there is

an enormous amount of chemical signaling in their interior

(Blackwell, 2005; Brown et al., 2011). The cell and systems biol-

ogy communities have developed many tools and methods for

numerically simulating intracellular chemical dynamics. There

are two broad classes of simulation types: stochastic and deter-

ministic. Stochastic simulation is most appropriate when the

number of molecules is low in a region of interest, either because

the concentration is low or the region is small. Such simula-

tions may track individual molecules in a meshless geometry as in

MCell [mcell.cnl.salk.edu; Stiles and Bartol (2001)] or Smoldyn

[www.smoldyn.org; Andrews et al. (2010)]. Alternatively, stochas-

tic simulations may monitor the number of molecules by com-

partments and update these values via the Gillespie method

(Gillespie, 1976) or related algorithms. When the dynamics are

insensitive to changes in a small number of molecules, deter-

ministic simulation may be employed. In this case, the dynamics

may be expressed in terms of a partial differential equation

(PDE) which may be solved by a variety of algorithms, including

finite elements and finite volumes. Finite volumes turns the PDE

problem into a large system of ordinary differential equations,

which may be then solved using a variety of techniques, some

implicit some explicit. The Virtual Cell [nrcam.uchc.edu; Loew

and Schaff (2001)] and STEPS [steps.sourceforge.net; Wils and

De Schutter (2009)] support both stochastic and deterministic

simulation. In some models, there may be more possible states

than expressed states, for example when a molecule has a large

number of binding sites. Rule based strategies, such as are used

with BioNetGen [bionetgen.org; Faeder et al. (2009)], allow the

efficient simulation of such models, with minimal performance

penalty for unexpressed states.

Electrical and chemical signaling not only coexist: they are inti-

mately involved with one another (Blackwell, 2005). Membrane

potential variations, the basis of electrical signals, are cre-

ated and maintained through the movement of ions through

ion channels and pumps. These ion channels and pumps are

modulated by chemical factors both inside and outside the

cell. Meanwhile, these same chemical modulators factors are

themselves created or admitted by membrane processes that

are responsive to electrical potential and to other modulators

(De Schutter, 2008). Experimental neuroscience is developing

new methods to probe chemical dynamics and electrophysi-

ology simultaneously. These new techniques provide us with

new data to constrain our computational models, and new

ability to evaluate our models by making testable predictions.

Parallel innovation in both experimental and simulation neu-

rotechnologies move us toward connecting these previously

distinct domains of research. This is effected by development

of multiscale models which enable us to connect pharma-

cological causes (chemical treatments) to clinical effects—

treatments of neurological diseases manifesting at neuronal, neu-

ronal network, and higher scales (Lytton, 1997; Ferrante et al.,

2008).

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00028/abstract
http://www.frontiersin.org/people/u/88491
http://www.frontiersin.org/people/u/396
http://www.frontiersin.org/people/u/2277
mailto:robert.mcdougal@yale.edu
http://genesis-sim.org
http://moose.ncbs.res.in
http://neuron.yale.edu
http://mcell.cnl.salk.edu
http://www.smoldyn.org
http://nrcam.uchc.edu
http://steps.sourceforge.net
http://bionetgen.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

NEURON and GENESIS have long been sufficiently

general that they can support such multiscale models. In

NEURON’s case, arbitrary reaction dynamics can be specified

in NMODL with diffusion via NMODL’s LONGITUDINAL_

DIFFUSION statement. For GENESIS, the Chemesis tool

[krasnow1.gmu.edu/CENlab/software.html] provides similar

functionality. Unfortunately, this previous NEURON approach

is very demanding of the modeler who must (1) write and

debug NMODL, a compiled language; (2) explicitly handle

any subcompartment discretization including fluxes between

subcompartments, and (3) adjust concentrations due to mem-

brane fluxes. This last task requires computing the correct

surface-to-volume ratio, which is complicated due to the fact that

NMODL can only directly access the diameter at the midpoint

of the segment. Stochastic changes are possible, but only if the

corresponding algorithm is explicitly embedded in the NMODL.

To better address the needs of multiscale modeling, we have

now re-implemented the NEURON simulator’s approach to the

specification of reaction-diffusion models. From this, the scale

of molecular interaction can be coupled to the scales of single-

neuron and network modeling that has been NEURON’s focus

(Carnevale and Hines, 2006). This rxd extension introduces sup-

port for multiple regions, thus supporting certain classes of seg-

ment subcompartments. Users specify regions in geometric terms

and the extension uses this data and the full morphology infor-

mation to handle fluxes and compute accurate surface areas and

volumes. In this way, the specification of geometry has been sep-

arated from the specification of dynamics. Likewise, the required

skill levels and risk of user error have been reduced. We designed

our model specification format in a way that is independent of

the dimensionality of the discretization and of integration strat-

egy. This extension—distributed with NEURON as the Python

module neuron.rxd—may be freely used and extended under

the terms of the GPL license, version 2.

The development version includes experimental support for

deterministic three-dimensional simulation, and we are actively

working on stochastic support. For this paper, we focus on

using this extension in a one-dimensional deterministic context,

support for which was first introduced in NEURON 7.3.

Certain key parts of the NEURON reaction-diffusion exten-

sion were necessarily written in C/C++ in order to obtain max-

imal efficiency for inner loops. However, most of the code,

including all of the interface code, was written in Python

(Davison et al., 2009). This choice was facilitated by the fact that

NEURON already utilizes Python as one of two supported inter-

preted languages for controlling NEURON models (Hines et al.,

2009). The ctypes module provided ready access to NEURON’s

otherwise-unexposed internal methods, including the newly writ-

ten reaction-diffusion support code. In the development version,

we have begun to use the Cython compiler to accelerate selected

Python code, a process which is continuing.

EXAMPLES

To place this work in specific contexts, we utilize two examples:

the first is a simple phenomenological model of wave propaga-

tion, while the second compares the NMODL and rxd ways to

handle ion accumulation and diffusion in a model taken from the

literature.

WAVE PROPAGATION

Just as action potentials are propagating waves of electrical activ-

ity, some chemical signaling occurs in the form of concentration

waves. For example, multiple groups have sought to model cal-

cium waves in pyramidal cells (Coombes et al., 2004; Peercy,

2008). The full models involve multiple species and channels. For

simplicity, we begin with a single species and a single reaction that

together exhibit key features of the wave: (1) calcium diffuses,

(2) at low concentrations, calcium is cleared, while (3) above a

threshold, calcium will tend to an asymptotic value. One exam-

ple of a rate of change that satisfies (2) and (3) is (0 − c)(α −
c)(1 − c). For concentrations c between 0 and α, the rate is neg-

ative, so concentration will decrease. Conversely, between α and

1, the rate is positive and concentration will increase. When com-

bined with diffusion, the corresponding equation is known as the

scalar bistable equation, which is a problem that has been studied

extensively in its own right (Fife, 1979). In our framework, this

model may be implemented in eleven lines of code as shown in

Figure 1.

ACCUMULATION AND DIFFUSION: NMODL vs rxd

We now consider a more typical reaction-diffusion problem

with a branched geometry and interaction with ion channels.

Fleidervish et al. (2010) models the influx and diffusion of sodium

ions in response to action potentials in a stylized pyramidal neu-

ron. These changes modulate ion channel dynamics by altering

the reversal potential, and in other models, channel gating may

also be sensitive to ion concentration (for example, models with

calcium gated potassium channels).

The traditional way to express these sodium kinetics is shown

in Figure 2A, excerpted from the ModelDB entry [senselab.

med.yale.edu/modeldb/ShowModel.asp?model=136715] for

Fleidervish et al. (2010). The three red lines, in order: (1) define

the volume per unit length, (2) define the diffusion rate, here

the diffusion constant times the cross-sectional area, and (3)

describe the change in ionic mass due to membrane flux, which is

proportional to the current times the surface area. The geometry

is mixed in with the description of the dynamics. The rest of the

file provides the information necessary for NEURON to use this

mechanism. The same dynamics can be specified with far fewer

lines using the rxdmodule, as shown in Figure 2B. The resulting

690 compartment model runs to 3000 ms in 1.49 s on our test

computer.

ORGANIZING REACTION-DIFFUSION SIMULATIONS

NEURON is a simulation environment that has been built up

over the past several decades through accretion, with the addi-

tion of multiple integrators (e.g., CVODES, LSODA), a graphical

environment (InterViews), an interpreted language by Kernighan

and Pike (HOC) (Kernighan and Pike, 1984), a compiled kinet-

ics definition scheme from the National Biomedical Simulation

Resource (NMODL) (Hines and Carnevale, 2000), morphol-

ogy tools for Eutectics and Neurolucida microscopy programs,

and several others (Gardner et al., 2003). One of the chal-

lenges of working in this complex, multitool environment is

the need for coordination between and across the pieces. The

recent addition of Python to this suite is highly advantageous

since it gives immediate access to a number of immediately

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 2

http://krasnow1.gmu.edu/CENlab/software.html
senselab.med.yale.edu/modeldb/ShowModel.asp?model=136715
senselab.med.yale.edu/modeldb/ShowModel.asp?model=136715
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

useful tools: NumPy, SciPy, Matplotlib, etc. Additionally, as we

will show here, Python can provide “glue” across the differ-

ent internal components. To do this, Python must be coordi-

nated with the other 2 languages, with the integrators, and with

the GUI.

A user working in Python enables the reaction-diffusion exten-

sion via import rxd. Because the two coexisting interpreted

languages, Python and HOC, can freely call each other’s pro-

cedures and access each other’s objects, there was no need to

develop a separate interface for the HOC language. This feature

FIGURE 1 | A phenomenological model of wave propagation,

implemented in eleven coding lines of Python (A). (B) Plots of

concentration vs space at times as indicated. No additional code is

needed for the run or plotting; this panel is the result of running

the code in (A) with the CVode method using NEURON’s standard

Run Control panel. The plot with labels was generated with

NEURON’s Shape Plot GUI tool. The 600 ms simulation ran in 1.06 s

on our test machine.

FIGURE 2 | (A) The traditional way of modeling sodium increase due to ion

channel activity and diffusion in NEURON, excerpted from the model of

Fleidervish et al. (2010). The core of the calculation (red) mixes the geometry

and the modeling. To make a fair comparison, Figure 3A.ses has been

modified from the original version which used four lines of automatically

generated code to insert the nadifl mechanism. (B) In the rxd approach,

the code is shorter and clearer as less connectivity code is needed and as

rxd automatically handles ion influx and the effects of geometry on diffusion.

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

was particularly valuable in development of the experimental rxd

graphical user interface (GUI), which is written using the existing

NEURON interface to InterViews instead of a Python GUI library

to provide a consistent look-and-feel familiar to the NEURON

user. Similarly, additional simulation scripting of this Python-

based product can be done in either Python or HOC. For the

remainder of this text, we use Python examples.

We organized the simulation-scripting interface through a set

of questions that step the users through a logical sequence to

define 3 major aspects of structure and function required for

performing this type of simulation. (1) Where do the dynam-

ics occur? This is the primary structural question—we need to

define the spaces that will be involved. Generally these include

at least cytoplasm, but often other internal compartments will

also be involved. Limited support for diffusion in the extracellu-

lar Frankenhaeuser–Hodgkin space is provided, and we intend to

further support extracellular diffusion in the future. (2) Who are

the actors? All diffusing substances must be identified; these pro-

vide the state variables for the system. (3) What are the reactions?

We must determine which of the substances reach with which

other substances.

Although this sequence appears straightforward, there are

known complexities that we do not yet handle. A consistent diffi-

culty with biological reaction-diffusion is the following: how best

to identify a substance which can undergo a series of minor alter-

ations through phosphorylations or through calcium or other

cofactor bindings (Keller et al., 2008; Pepke et al., 2010; Lisman

et al., 2012). For example, the combinatorics of n phosphoryla-

tion sites allows these modifications to result in a single substance,

typically an enzyme, having the possibility to take on 2n forms, in

addition to the isoforms that arise based on alternative polypep-

tide subunit composition (Kelly et al., 2007). For such cases, it

is parsimonious to consider the forms (and isoforms) as simply

being variations on the same substance, saving us from having

to identify thousands of different variants with their associated

inter-variant reaction rates. Note that these variants may affects

rates of reactions with other substances (also multiform), so that

the current identity of an ensemble of forms plays a role in

determining reactions as well.

WHERE DO THE DYNAMICS OCCUR?—THE DOMAINS

For traditional neurophysiological simulations, the only areas of

interest were the plasma membrane and the 2 regions immedi-

ately adjacent to the membrane on either side. The membrane

provided the capacitance, and provides pores that are handled as

resistors and rheostats. The cytoplasmic and extracellular regions

directly adjacent to the membrane provide the Nernst potentials,

modeled as batteries in series with these rheostats and resis-

tors. By contrast, computational cell biology both takes us away

from the membrane littoral, into the depths of the cytoplasm.

This modeling also plumbs a variety of subcellular compart-

ments (endoplasmic reticulum, mitochondria, nucleus, etc.) that

play major roles in intracellular signaling, as well as into a large

number of substances and reactions that are the underpinnings

of cell structural support, metabolism and waste disposal, but

may play a secondary role in physiological neural signaling or in

neuropathology.

A domain is specified through the creation of a Region

object. The dendritic (or axonal) tree in NEURON is divided

up into unbranched sections which end at branches. The single

required parameter for a Reaction constructor is a list of these sec-

tions describing the morphology which contains this Region.

If the Region corresponds to NEURON’s standard cell-inside

or cell-outside, this is specified with the nrn_region key-

word argument. Finally, geometries must be specified. NEURON

ships with several standard geometries including shells, outer

membrane definition, and fractional volumes. Users are free to

implement their own using custom geometry objects within our

interface. Other geometries will come from electron microscopic

tracings.

For example, the following statement defines a border as the

shell between 90 and 100% of the dendritic radius across all

sections:

border = rxd.Region(h.allsec(),

nrn_region= 'i',

geometry=rxd.Shell(0.9, 1.0))

The optional choice of 'i' for nrn_region sets up the region

to correspond to NEURON’s inside, the region, which affects and

is affected by NMODL file compiled reaction and channel dynam-

ics. In a one-dimensional branching model, the exact geometry

of intracellular compartments has no effect on the dynamics as

long as the length, volume, and areas are correct. For example,

if the endoplasmic reticulum (ER) occupies the fraction fe (0 ≤
fe≤ 1) of the cross-sectional area (and hence fe of the volume),

one may model that region as:

er = rxd.Region(h.allsec(),

geometry=FractionalVolume

(volume_fraction=fe))

No nrn_region is specified as the ER concentrations do

not directly affect the activity of ion channels on the plasma

membrane.

The use of Region arguments to specify the geometric shape

and NMODL location of compartments is illustrated in Figure 3.

WHO ARE THE ACTORS?

The actors, or reactants, in a reaction-diffusion module may

either be diffusible rxd.Species, or fixed objects (e.g., chan-

nels and pumps). Fixed objects are generally defined by one or

more rxd.State objects, as in the gating variables (m, h, n)

in the classic Hodgkin–Huxley equations. These states are con-

ceptually distinct from a species that takes on a variety of

phosphorylation ‘states’ discussed above.

The Species constructor has only one mandatory argu-

ment: the Region where it will exist. It also accepts additional

optional attributes, such as: a name, diffusion rate, charge, and

initial distribution of concentration. All of these may be set or

initialized in the constructor. A name argument is necessary only

when a Species will also be acted upon by non-rxd mech-

anisms, e.g., an ion that will be sourced via a membrane ion

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

channel and will play a role in determining a Nernst poten-

tial. The need for both a name and a Python handle is the only

case where the complexities of coordination between the different

components is directly exposed at the user interface.

When a Species has a global NEURON name and

is expressed on a Region where nrn_region='i' or

nrn_region='o', then the concentrations are fully accessi-

ble by HOC, the GUI (e.g., Channel Builder), and by NMODL.

For any such Species that pass through the cell mem-

brane, the charge of an individual ion must be specified, in

order to connect flux to current. In addition, an initial con-

centration distribution is needed. This may be expressed as a

constant or as a function that depends on each rxd.Node

where the Species is expressed. Alternatively, the distribution

may be omitted, in which case it will be taken from its def-

inition within NEURON. If both Python and NMODL/HOC

define different distributions, the Python initialization takes

precedence.

For example, to define the Species ca (Ca2+) with a dif-

fusion rate of 0.3 µm2/ms and a uniform initial concentration of

5 µM = 0.0005 mM on the regions cyt and er, we use:

FIGURE 3 | (A) Four examples of compartment geometry supported by

rxd. In NEURON, the dendritic cross-section is approximated as a circle.

The red colored areas correspond to the portion of the cross-section

described by the given geometry. FractionalVolume is the most general

and is intended for cases where the region occupies a complexly-shaped

subset of the cross-section. (B) These classes (blue) implement the

rxd.geometry.RxDGeometry interface; users may extend rxd with new

geometries by writing new classes that implement the same interface. (C)

Named Species (e.g., ca) living in a Region with nrn_region='i' map

to concentrations in NMODL’s inside region (e.g., cai). Similarly, 'o' maps

to NMODL’s outside region.

ca = rxd.Species([cyt, er], d=0.3,

name= 'ca', charge=2, initial=0.0005)

The first ca is the Python handle for the Species and is used

to adjust properties (e.g., to set the concentration in the er:

ca[er].concentration=0.0009) and for defining reac-

tion schema and rate expressions. We again note the name='ca'

argument, ideally set identically to the Python variable name as

here to prevent future confusion, couples this Species into

mechanisms established in NMODL or HOC.

HOW DO THEY INTERACT?—THE REACTIONS

Within the context of reaction-diffusion the concentrations of

Species change through interactions, generally stoichiomet-

ric, with other Species. We provide two tools for specifying

these primary interactions: rxd.Rate, and rxd.Reaction.

The rxd.MultiCompartmentReaction class manages sit-

uations where reactions are occurring across different regions. All

three tools are subclasses of rxd.GeneralizedReaction.

Utilizing the flexibility of Python and the strength of inher-

itance, a user can readily implement a custom subclass for

additional needs that we have not anticipated. Because the

underlying numerical algorithms interact with tools through the

GeneralizedReaction interface, such a custom reaction

subclass will have access to the full array of NEURON compo-

nents. This hierarchy is illustrated in Figure 4. These mechanisms

localize by default to any and all Regions wherein all of their

FIGURE 4 | Hierarchy of reaction classes. Red denotes abstract methods

or properties, while black text indicates implemented ones. New schemes

for specifying reaction kinetics may be implemented using the generic

reaction interface, GeneralizedReaction, or any of the three reaction classes

provided with rxd (blue).

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

state variables are present. It is possible to override this by setting

optional keyword argument regions.

Each of the three reaction classes accepts reaction rates spec-

ified as arbitrary algebraic combinations of numbers, State,

Species, and Parameter objects. For example, a rate of

2+ca is interpreted as two more than the local ca con-

centration at a given time step. A variety of functions (e.g.,

log, sin, etc.) are also supported; these are provided in

the rxdmath submodule. Support for other functions may

also be added by the user at runtime. The Reaction and

MultiCompartmentReaction constructors accept three or

four positional arguments: reactants, products, forward reaction

rate, and an optional backward reaction rate. The reactants and

products are specified as molecular combinations (stoichiometric

sums of positive integer multiples of a Species).

For example, 2 * hydrogen + oxygen ↔ water.

The full reaction with forward rate kf and reverse rate kb would

be expressed as

r = rxd.Reaction(2 * hydrogen + oxygen,

water, kf, kb)

Both Reaction and MultiCompartmentReaction

assume mass-action kinetics by default, mean-

ing that the stoichiometry coefficients are implicit.

Therefore, the rate of change of hydrogen here will be

-2*kf*hydrogen
2
*oxygen+2*kb*water mM/ms. In

a stoichiometric context, a reaction is not an equality so

factoring does not work: 2*hydrogen+oxygen↔water

differs from 4*hydrogen+2*oxygen↔2*water. An

alternative means of expression uses the keyword argument

mass_action=False. In this case, kf and kb will be

interpreted as the full forward and reverse rates. In that case,

the rate of change would be kb-kf mM/ms for oxygen, and

2*(kb-kf) for hydrogen.

MultiCompartmentReaction objects, reactions span-

ning multiple compartments, differ from Reaction objects in

three key ways: (1) Region objects for all the state variables

must be explicitly specified; i.e., instead of writing ca, one must

write ca[cyt], ca[er], etc. This specification allows unam-

biguous interpretation of the reaction scheme and reaction rate.

(2) The mandatory argument membrane= specifies the two-

dimensional region that separates the two compartments; this

often corresponds to a physical membrane such as the cell mem-

brane or the ER membrane, but could also refer to a conceptual

boundary between two adjacent shells. By default, the local rates

are scaled by membrane area; this is important for pumps and

channels lying on the membrane, but can be disabled by setting

the optional keyword argument, scale_by_area=False.

(3) Since the rates are proportional to membrane area and since

the volumes of different compartments may differ, the units for

rates with mass_action=False are in molecules/µm2/ms,

with appropriate corrections for the default mass action case.

Some MultiCompartmentReaction fluxes induce elec-

trical potential changes across the associated membrane. In

some cases a molecule is modeled as if it crosses the bound-

ary in two stages, first binding to a species on one side of

the membrane, and then unbinding on the other side after a

conformational change. In order to avoid double counting of

flux in such a case, the user is required to explicitly say which

MultiCompartmentReaction objects induce current. This

is done by the MultiCompartmentReaction keyword argu-

ment membrane_flux=True, which defines that the move-

ment of the ion across the associated membrane will induce a

change in that membrane’s potential (typically, but not neces-

sarily, the plasma membrane). The total magnitude of potential

change is then calculated from the number of molecules of each

species moving across the membrane and the charge of each

species.

A Rate is the more general scheme. It is therefore the sim-

plest, yet the one that requires the most complete definition by the

modeler. Rate takes two arguments: a variable to change and an

expression of the rate of change. This expression is added directly

to the right-hand-side of the differential equation for the State

or Species. For a unitless State variable the expression are in

units of 1 ms, while for Species, the units are in mM/ms (note

that for consistency with the rest of NEURON we use units of mM

rather than the µM that is more typically used in computational

systems biology).

For example, to describe degradation of ip3 according to

Michaelis-Menten dynamics, we write:

ip3_degradation = rxd.Rate(ip3,

-ip3/(kd + ip3))

where kd is the dissociation constant.

TUTORIAL

Additional usage information and examples are available on the

NEURON reaction-diffusion tutorial at neuron.yale.edu/neuron/

static/docs/rxd/index.html.

IMPLEMENTATION DETAILS

INITIALIZATION AND RUN-TIME

A key consideration in the development of the rxd exten-

sion is that the added functionality should not introduce a

performance penalty on non-reaction-diffusion simulations. To

prevent this, we added hooks for connections in the form of

function pointers to the NEURON core. If these pointers are

unset, then no function is called and the only performance

penalty is a single if statement per hook invocation. With from

neuron import rxd, the extension registers 1. an initial-

izer (h.FinitializeHandler) to catch initialization events;

2. a transfer agent (CVode.extra_scatter_gather) for

transferring concentration data after an advance; 3. an addi-

tional solver (nonvint_block_handler) for the insertion

and solving of the reaction-diffusion state dynamics. These indi-

vidual calls remain light-weight until and unless a particular

model is placed in a region.

The user then defines morphology and Region, Species,

Reaction objects. When instantiated, each of the main

reaction-diffusion classes besides Region registers themselves

with a global list. For Region, there is no significant addi-

tional computation at instantiation. A Species, by contrast,

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 6

neuron.yale.edu/neuron/static/docs/rxd/index.html
neuron.yale.edu/neuron/static/docs/rxd/index.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

at instantiation reads the connectivity information and allocates

memory for each node. Reactions convert the rate formulas

into vectorized expressions at instantiation. At the beginning of

run-time, the model is initialized (h.finitialize() called)

to initialize concentrations and construct the diffusion matrix.

NUMERICAL INTEGRATIONS

Although general diffusion has a fairly complex Jacobian struc-

ture, 1-dimensional diffusion in a dendritic tree gives a matrix

with a special structure, Figure 5. This is an important advantage

for handling diffusion in neurons, on dendritic trees extend-

ing for up to 1 mm, and axons which may extend more than

a meter. This algorithm allows solution of matrix equations in

O(n) time. We factored the treesolver algorithm Hines (1984) out

of NEURON’s longitudinal_diffusion mechanism code

into the C function nrn_tree_solve, allowing us to exploit

our knowledge of the structure instead of resorting to a general

purpose routine.

By default, NEURON uses implicit Euler to integrate the

equations underlying electrophysiology models, an algorithm

that provides certain guarantees about numerical stability.

The challenge with implicit Euler is that it requires solving

an algebraic system of equations which requires inverting a

matrix, which is an O(n3) operation in general. We follow

the prior NEURON conventions of decoupling the reaction

contributions to the Jacobian from the diffusion contributions

FIGURE 5 | A branched geometry (top) and the structure of the

corresponding tree matrix (bottom). Nonzero matrix entries are colored

either green or blue depending on the color of the node corresponding to

the row. The green nodes at the ends of each segment are algebraic

conservation nodes and so the corresponding green rows each sum to 0.

The matrix need not be symmetric; aij is not in general equal to aji because

the entries depend on the volume of compartments i and j, respectively.

by performing separate matrix inversions for each. This results

in an approximation of the solution, which reduces the con-

vergence rate of the simulation, but allows us to use optimized

techniques for each part of the problem. As the Jacobian con-

tributions from the reactions are factored out and localized

to a spatial location, these blocks can be solved in parallel

as well.

Reactions are inherently localized. That is, the reaction matrix

is, up to permutation of rows and columns, a block diago-

nal matrix, where each block corresponds to a specific spatial

location. These matrix equations may be solved using LU decom-

positions in O(m3) operations, where m is the size of an indi-

vidual block. When using the CVODE integrator, we further

optimize this calculation by computing a sparse LU decomposi-

tion with scipy.sparse.linalg.factorized, and only

update the decomposition whenever CVODE requests that the

Jacobian be updated, typically once every ten time steps or so.

The rxd module is the first part of NEURON to take advantage

of this optimization; the rest of NEURON calculates the Jacobian

at every time step.

In the fixed-step algorithm, at each implicit Euler advance,

the currents are read and the reaction rates are computed.

For both the fixed step and variable step methods, the com-

bined effects of diffusion and reaction are approximated by

doing the diffusion first and then the reactions, in analogy with

the NEURON longitudinal_diffusionmechanism. This

fixed-step error introduced by this approximation goes to 0 as dt

goes to 0. The variable step method only requires an approxima-

tion to the Jacobian solution, so to the extent that the error is

non-zero, it only serves to reduce the variable step size, but not to

introduce error.

For fixed step, the Reaction contributions to the Jacobian

are calculated at each iteration. For the variable step method,

we gain performance by only updating the Jacobian when the

CVODE integrator requests that it be updated.

At the end of each time step, the rxd computed states are scat-

tered to the non-rxd parts of NEURON so they can affect ion

channel kinetics and be plotted.

DEVELOPMENT OF THE FORMULA-SPECIFICATION FORMAT

NEURON models were traditionally written in two parts: a

description of channel dynamics written in NMODL, and control

and analysis code written in HOC. This is a powerful approach as

it allows the specification of arbitrary dynamics at machine speed

due to NMODL’s support for embedding C code, but it simulta-

neously introduces a barrier for entry as it required users to learn

at least two programming languages, one of which (NMODL)

requires a separate compilation step.

For this reason, a ChannelBuilder tool was introduced, which

allowed the specification of certain classes of ion channels with-

out NMODL: For each channel, ChannelBuilder is patterned after

the KSChan class from Catacomb2 (Cannon et al., 2003), giving

precompiled, parameterized code for common channel dynam-

ics. In theory, end users can create KSChan instances themselves,

but in practice, manual creation appears unused as none of the 6

models in ModelDB containing the word “KSChan” directly cre-

ate a KSChan instance. Instead, it appears that those who use this

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

tool save the state of the entire tool and use that to create KSChan

instances as needed.

We improved on the ChannelBuilder paradigm when devel-

oping our reaction specifications. With ChannelBuilder, the GUI

constructs KSChan objects. We provide a GUI that constructs

rxd objects. Unlike the KSChan objects, these rxd objects are

(1) more general as they can express arbitrary kinetics, and

(2) explicitly name all parameters that are used. We discuss

our approach for achieving the first improvement below, which

immediately gave us the second benefit as well.

Early in our prototyping of this new tool, we specified each

reaction as a Python def. Although this was the most power-

ful approach, we determined that it was too demanding of the

user. For example, either the code must be called once per each

spatial locations, or the code must be vectorized in some way.

The first approach is impractically slow in Python, while the sec-

ond approach requires the user to know what is automatically

vectorizable and how to manually vectorize the rest.

For our next version, we defined the reactions via strings,

which were then compiled into either HOC byte-code or NumPy-

vectorized Python byte-code. Although these approaches were

faster than looping over Python functions, the use of strings

presented a new problem: referencing state variables. One option

was to mandate defining a name for all state variables, but this

approach was rejected because of the confusion that could result

if the internalized Python name or names did not match the rxd-

defined name. Another approach was to get variable names from

Python or HOC, but this introduced ambiguity due to scoping:

for example, is the object that matters the one assigned to the

variable name at reaction specification or at run-time? To check

at run-time potentially would require checking every time-step,

which would introduce unacceptable overhead.

A successful solution involved the use of Python’s oper-

ator overloading ability. We developed a general class called

Arithmeticed, where all arithmetic operators were over-

loaded. These operators build a structure but do not actually

evaluate any numbers. Arithmetic between Arithmeticed

objects and numbers is done by first converting numbers to the

Arithmeticed class. We then implemented most of the func-

tions from the math library as functions on Arithmeticed

objects. As with the arithmetic operators, these functions build

algebraic structure expressing the function and the object the

function works on, but do not immediately perform any math

calculation.

Each Species, like every other Arithmeticed object,

supports a _semi_compile method which generates a string

representation of the object by supplying the unique part

and recursively calling its children. This method is called by

Arithmeticed._compile which calls _semi_compile

on the entire expression and then evals the string to generate

a Python byte-code-compiled form, typically using NumPy for

vectorized calculations.

The operator overloading strategy has the advantage of allow-

ing Python to handle the parsing, thereby eliminating parsing

as a potential source of error. It also allows the same code to

handle rate equations and reactants/products specification. Valid

reactant specifications also do not contain functions, non-integer

numbers, or operations other than addition and multiplication

by an integer.

NumPy AND VECTOR ARRAY SHARING

Because we use both NEURON and Python libraries for calcu-

lations, we must seamlessly share data between the two environ-

ments. On the Python side, SciPy libraries work well with NumPy

arrays; while on the NEURON side, the calculations use either

C arrays or HOC Vector objects. At the user level, data copy-

ing between HOC vectors and NumPy arrays is accomplished

with to_python and from_python in HOC. However, this

copying is inefficient and must be avoided in any run-time cal-

culations. We therefore extended NEURON’s Vector class with

a method as_numpy which uses numpy.frombuffer to

return a NumPy array that accesses the same memory and hence

has the same values as the Vector. This class is now avail-

able at the user level as well: data storage can be shared using

numpyarray = vec.as_numpy().

For the reverse operation of getting a HOC reference to

a NumPy array, we added the function neuron.numpy_

element_ref(numpy_array, index). These HOC ref-

erences may then be passed to NMODL as double* or used with

NEURON tools for recording or plotting variables.

NEURON’s INTERNAL SCATTER/GATHER

The NEURON simulator’s fundamental conceptual unit is the

section, an unbranched cable ending in a bifurcation. These sec-

tions are divided into segments, each a localized region of a

neuron that is electrically represented by the standard parallel-

conductance model, and is conductance-linked to neighboring

segments on the same or neighboring sections. Each segment has

many properties: diameter, membrane potential, chemical con-

centrations, resistivity, etc. The internal representation reflects

this conceptualization, with all the properties for a given seg-

ment stored in one data structure. Unfortunately, this memory

structure does not work well with general purpose solvers which

typically expect a contiguous state vector. NEURON gets around

this problem with gather operations that collect the states into

a contiguous vector and scatter operations that distribute the

results to the segment-based memory structures at each time step.

We replicated this paradigm for reaction-diffusion integration

for those species and regions that correspond to states needed

by the rest of NEURON. We could have transferred the data by

using dot notation (ı.e. seg.state), but this would require

looking up the memory address for each state of each segment

at each time step, inefficient since these memory addresses rarely

change. In C, we would store these addresses in an array of point-

ers, but Python does not have a concept of pointer. NEURON

provides a class to Python that encapsulates pointers to state vari-

ables. We initially looped through a Python vector of NEURON

pointer objects and a NumPy array of states to transfer the data,

but we found that was still too slow. We thus implemented a new

NEURON class, PtrVector. Instances of this class store lists of

NEURON pointers and are able to scatter/gather data to/from the

pointer locations and an arbitrary NEURON vector.

The pointers were thus set to point to the segment-based

memory locations. To scatter states, we use an intermediate

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

NEURON vector. We interpret this vector as a NumPy array

using the techniques described above, and use NumPy’s index-

ing to copy data from the full state vector into this array. We then

invoke the PtrVector’s scatter method. The much rarer gather

operation, needed only when a state value is changed in a way

inconsistent with the differential equations, is performed in the

reverse order.

The use of the intermediate vector incurs a small perfor-

mance penalty, however it provides a natural place to com-

bine state values in the general case where reaction-diffusion

nodes do not correspond directly to segment, such as in the

3D simulations which we are now beginning to implement. If

the memory addresses have changed, then the internal vari-

able structure_change_count will be changed. Therefore,

before each advance we check this variable and update the point-

ers if necessary.

INCREASING MODULARITY AND EXTENSIBILITY

In its over three decades of development, NEURON has acquired

a great deal of functionality to support both numerics and anal-

ysis. In the process, it has also acquired great complexity. As

we developed and continue to develop the reaction-diffusion

extension, we located a number of places where the new code had

to connect with the existing core. Instead of solving this prob-

lem once for rxd and having to resolve it for future NEURON

enhancements, we have implemented general interfaces that we

anticipate will facilitate future development.

Integration

NEURON supports a variety of integration strategies, as differ-

ent methods are appropriate for different situations (Lytton and

Hines, 2005). The two broad categories are fixed step methods

and variable step methods. The fixed step solver can be set to

run with first-, or second-order convergence depending on the

relative importance of error convergence and stability. The most

general single threaded variable step solver uses IDA from the

SUNDIALS: suite of non-linear differential/algebraic equation

solvers (Hindmarsh et al., 2005) to solve differential-algebraic

equations such as arise from neurons that are coupled together by

electrical circuits. When there are no algebraic equations present,

the variable step variable order solver CVODE is a better choice as

it is generally faster than IDA, due to its support for the treesolver

method discussed above.

Additional complexity arises from the fact that these methods

may be executed in a single thread or in multiple threads. The

fixed step and variable step methods are fundamentally different

in that the fixed step algorithm requires voltage states to be calcu-

lated half a time step away from the non-voltage states while the

variable step methods treat all the states as belonging to one vec-

tor. Some of these integrators also have cache-efficient variants,

which increase performance at the cost of decreased robustness

and transient increases in memory usage. To deal with this diver-

sity of cases, NEURON contains conceptual repetitions of many

aspects of the integrators spread throughout the code base, but

there was previously no central interface which could allow a

single extension to work with these multiple cases.

In producing the rxd extension, we realized that both this

and subsequent extensions would benefit from such an interface,

which we called nonvint_block_supervisor (“nonvint”

standing for non-voltage-integration). The handler for this is a

Python module, so it is trivially able to connect to other Python

modules, like the rxd extension. On the NEURON side, it had to

connect in a way that did not introduce any Python dependencies,

and had to allow the rapid sharing of data between the NEURON

core and Python extensions.

This was accomplished by introducing a function call-

back in the NEURON code which is filled on import of the

nonvint_block_supervisor via ctypes. Along with array

pointers and array size, the callback arguments include a com-

mand type which specifies which of the 11 locations in the

internal NEURON fixed and variable step methods need equation

processing mediated by the nonvint_block_supervisor.

On the C side, we defined different macros for each of the

11 types of functions that the supervisor needed to be able

to do: setup, initialize, current, conductance, fixed_step_solve,

ode_count, ode_reinit, ode_fun, ode_solve, ode_jacobian, and

ode_abs_tolerance. The use of macros improves readability

because it hides the magic numbers used to indicate command

type and because it hides dummy values used for parameters that

are not needed by a specific command.

To permit rapid sharing of data between the NEURON core

and Python extensions, we turned to a solution similar to that

used for sharing of data between HOC Vector objects and

NumPy arrays, turning a ctypes pointer into a NumPy array.

Whichever function created the array does not regain control

until after the handler completes. In this way, there is no risk of the

memory being prematurely freed, so that the handler can safely

manipulate this temporary array.

Analysis tools

The Model View tool, which provides a text and graphical

summary of an instantiated model (Hines et al., 2007), was

NEURON’s first pre-existing analysis tool to be augmented with

special support for reaction-diffusion. Like the other graphics and

analysis tools, Model View already had access to concepts that

overlapped with traditional NEURON, such as the presence or

absence of calcium in a section.

We wrote code to add information about rxd models (e.g.,

Region, States, and Reaction) to the Model View GUI,

but instead of integrating this code with the existing GUI

code base, we left it in the rxd module. We then instan-

tiate a _ModelViewExtension HOC template which we

fill with pointers to the Model View updating code. The

GUI now uses NEURON’s List class to iterate over all

_ModelViewExtension objects to have them add their data

to the display. The immediate advantage of this architecture is that

it removes the need for Model View to check if Python is available

or if the rxd module has been imported. The long-term advan-

tage is that it will allow future enhancements to add themselves to

Model View with little or no changes to the existing code.

VALIDATION

ANALYTIC

The wave dynamics of example 1 have been proven to admit a

traveling wave solution with velocity c =
√

2
(

1
2 − α

)

on the infi-

nite real line [see, for example, (Fife, 1979)]. We estimated the

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

numerical wave speed as the average rate of speed of the wave

measured from the threshold value α between t = 200 and t =
600. We then examined the error in the numerical wave speed for

49 different values of α evenly spaced in the interval [0, 0.49] for

four different values of spatial discretization dx using NEURON’s

variable step solver with an absolute error tolerance of 10−13.

We found that the numerical wave speed converged to the ana-

lytic wave speed approximately quadratically in dx, as shown in

Figure 6. For example, for α = 0.25, with dx = 4, 2, 1, 0.5, we

found numerical errors of about 0.07904, 0.01705, 0.004218, and

0.001136, respectively. The error behavior became more erratic as

dx was reduced, especially near the extreme values of α.

NUMERICAL

Example 2 offers a more complex test for the reaction-diffusion

extension, as electrical properties are now involved. In this case,

there is no known analytic solution, so we compare to another

numerical simulation. Fortunately, we can compare with the

source for this example, (Fleidervish et al., 2010) which used

NMODL to specify the same dynamics. Fleidervish et al. exam-

ined the sodium concentration over time at four locations in the

neuron: the center of the soma, 40% of the way into the axon

initial segment (AIS), 80% into the AIS, and 20% into the sec-

tion they called myelin[0]. We compared the concentrations

between the two versions of example 2 at t = 1500 ms simulated

with NEURON’s variable step solver with a relative tolerance of

10−4 and found the discrepancy between the two simulations was

within 0.006% at all measured points.

DISCUSSION

Computational neuroscience has long been focused almost

entirely on electrical phenomenology, mapping the neuron onto a

resistor-capacitor circuit, and simulating using the electrical engi-

neering approach pioneered by the SPICE simulator, followed by

more specialized simulators such as GENESIS and NEURON. The

coming of massive new datasets based on genome and proteome

FIGURE 6 | The relationship between α and spatial discretization dx

with the error in the computed wave speed in the model of example 1.

The error reduces by a factor of about 4 each time dx is halved over most of

the range of α values.

data focused more attention on the enormous complexity of

molecular phenomenology, leading to the rise of computational

systems biology to deal with these data in the various cell types

of the body. Somewhat belatedly, this led to the realization that

neurons are cells too, and that systems biology needed to be

folded into computational neuroscience (De Schutter, 2008). In

fact, neuronal molecular processing will likely feature greater

complexity than seen in other cells, insofar as this molecular

machinery must, among others, mediate the connection between

the two major information stores in the brain: synapses and the

genome/transcriptome. Synaptic plasticity, thought to underlie

memory and learning, depends on local synaptic activations that

signal changes in transcription to make molecular modification

back at the synapse.

In many simulation domains, one can utilize a single approach,

typically finite element or finite volume, to solve the entire prob-

lem. In the neuron, as in other cells, we find that many different

problems coexist and must be solved simultaneously—the sit-

uation of multimodel or multiphysics. The level of detail for

molecular simulation ranges from the high detail provided by

simulators that track individual molecules, through stochastic

simulators that use compartmentalization, up to deterministic

diffusion simulators. In addition to different domains in the neu-

ron requiring different solutions, different phases of information

processing (e.g., during spiking or during synaptic activation)

also require different solutions. This requirement has several

implications. First we must define and deploy different solvers

and different types of solutions depending on the context of part

of the problem. Second, we must link across these different meth-

ods, methods which represent chemical entities in different ways.

Finally, we must be able to define models at a sufficient level of

abstraction so as to allow any of these different approaches to be

swapped in and out as needed. This latter requirement largely dic-

tated the approach to model definition described here, allowing

the tool to define key model aspects, while remaining agnostic as

to what type of simulation would be used to provide the solution.

Future extensibility and flexibility were key design goals. In

this respect, use of Python offered several distinct advantages

(Cornelis et al., 2012). The flexible syntax allowed us to spec-

ify the various aspects of the reaction-diffusion system read-

ily in one language. This contrasted with NEURON’s previous

paradigm which used an interpreted language (HOC) to con-

trol and instrument the compiled code in NMODL. Python also

allows our extension to directly utilize functions from the col-

lection of scientific libraries, notably NumPy (numpy.org) and

SciPy [scipy.org; Jones et al. (2001)], as well as external libraries

accessible via Python. We use these libraries instead of writing

custom code whenever possible because these libraries are likely

to be low in bugs, and speed and space optimized. In addition,

Python simplified development by automatically handling mem-

ory management, thereby reducing the risk of memory leaks and

segmentation faults.

We extensively used Python’s support for objects to allow for

future extensibility by both users and developers. In our specifi-

cation for reaction kinetics, rates are described as functions of the

state variables. Operator overloading allows us to use the Python

parser instead of a custom parser to process the rate formulas into

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 10

http://numpy.org
http://scipy.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

an internal data structure that rxd later transparently converts

into vectorized byte code. Any function that accepts and returns

the same type of data structure may also be used in rate expres-

sions. The rxd.math module contains analogs of the functions

from math, and users may freely create and distribute more

such functions. Likewise, for reaction specification, we maintain

a list of instantiated objects that implement the necessary internal

interface. If our reaction scheme proves inappropriate for some

part of some model, the user may write those dynamics in a new

class of their own construction without changing any of the rest

of the system.

MODULARITY

The approach taken here was meant to provide modularity not

only for the internal architecture, but also for the choice of

what reactions to represent at particular locations. Modularity

increases extensibility by making it easier to mix-and-match

pieces from different sources. At the level of diffusion model-

ing, the concept of a Region definition immediately provides

the modularity required to allow one area to be simulated by

one of a variety of stochastic simulators, such as Gillespie diffu-

sion (Gillespie, 1976), Gillespie tau-leap (Gillespie, 2001), MCell

(Stiles and Bartol, 2001), etc. Future enhancements will also

involve dynamical adjustments to diffusive solutions such as

adaptive grids. A more difficult enhancement would provide

for dynamic reassignment of a region, as to whether requiring

stochastic simulation or being adequately served by the more

rapid deterministic solution.

We have tried to provide a generalized concept of Reaction.

We necessarily provide a reaction-specification language for

the direct entry of reaction schemes taken from the litera-

ture. However, it is expected that most reaction schemes will

be taken from other modeling sources. This type of borrow-

ing, encouraged throughout systems biology and computational

neuroscience, is particularly useful for reaction schemes, which

may have enormous complexity, involving hundreds of chemical

species. In some scenarios, such as when the number of molecules

of one or more species is low in one or more compartments,

stochastic simulation may be more appropriate than determinis-

tic simulation. Although, NEURON 7.3 does not support stochas-

tic integration, we designed the Reaction specification to be

independent of the integration type, so that in the future we can

add support for stochastic integration without requiring changes

to the model specification.

Alternatively, we might have used SBML (Hucka et al., 2003)

as the native format for reaction specification. Indeed, SBML has

established itself as the de facto standard for the exchange of mod-

els between systems biology simulators, and we are working on

adding support for importing SBML into rxd. Nonetheless, we

rejected SBML as a native format for rxd because the model

domains are different: in NEURON, reaction-diffusion kinetics

must interact with existing built-in and user-created ion chan-

nels and pumps distributed across spatially extended neurons

and networks of neurons. SBML, however, does not have a con-

cept of spatially extended models and any mapping to existing

NEURON state variables must be done manually. NEURON

models can introduce new dynamics mid-simulation; SBML

generally describes a fixed set of dynamics. In principle, SBML

Level 3’s support for packages allows it to be infinitely extendable

to address these and other short-comings, however models with

dependencies on non-required extensions to the SBML core lose

much of the portability that SBML aims to provide. Furthermore,

SBML is verbose and difficult for humans to write. Finally, we

note that since we used a plug-in based architecture for reac-

tion specification, future tools for importing SBML, NeuroML

(Gleeson et al., 2010), or VCML may internally express reactions

in a completely different way, without requiring any changes to

the existing rxd code.

An additional complexity for reactions in biological tissue is

the distinction between a reaction within a compartment versus

those that involve an intervening membrane. In the context of a

neuron, this intervening membrane may or may not be excitable.

If excitable, this requires additional coupling to active elements

in the membrane which not only alter membrane voltage but

also source or sink chemical species that are involved in reaction

schemes. In order to best handle these coupling complexities, we

exposed a number of previously internal NEURON functionali-

ties as a new new nonvint_block_supervisor, providing

a centralized place to add any new set of equations that can inter-

act with other aspects of simulation and other solvers. Although

currently only being used for rxd, this will allow other classes of

dynamics to be simulated simultaneously with multiple solvers in

a unified way.

IMPLEMENTATION CHOICES

Any implementation which both involves user programming and

substantial numerics much strike the proper balance between

interpreted (here Python) and compiled components. The inter-

preted language is too slow for the numerics, while the compiled

language is too difficult for the user. This difficulty was here

partially addressed by using the NumPy library. NumPy accepts

vectorized specifications, and then performs the numerics using

an underlying optimized C library. We could then reuse existing C

code from NEURON, such as the treesolver algorithm, by passing

in these NumPy vectors.

We anticipate that additional speed bottlenecks will arise in

the future which may not be so readily solved by this expedient.

We therefore have also begun to incorporate Cython, a variant of

Python that translates Python code to C and then compiles it, into

our development version, NEURON 7.4. With Cython, we can

specify data types for key variables to eliminate the performance

overhead which results from Python’s loose typing methods. For

classes, we can specify the full set of instance states in advance, to

remove the overhead of hash table lookups. Cython lets us acceler-

ate NumPy array lookups by skipping the call to __getitem__

and doing direct indexing. It also provides an additional way

to integrate C code. To gain these performance benefits, some

code modification is required. However, with few exceptions, such

as issues with object properties, valid Python is valid Cython,

allowing piece-by-piece transitioning without major rewrites.

ALTERNATIVE APPROACHES

Multiple simulators in the computational neuroscience domain

are adopting Python as a lingua franca so as to permit and

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

encourage these programs to be used together. These connec-

tors can then be used for a variety of purposes: data entry,

data analysis, visualization, and co-simulation. Co-simulation is

an alternative strategy for providing reaction-diffusion capabil-

ity for NEURON, through coupling with an established simulator

such as Vcell, MCell, NeuroRD, MOOSE, or STEPS. NEURON

supports MUSIC, a framework for connecting simulators that

has been used for both electrophysiology (Brocke and Djurfeldt,

2011) and reaction-diffusion models (Brandi et al., 2011).

While coupling of programs for data analysis or visualization

can be reliably implemented, coupling for simulation is non-

trivial for both conceptual and numerical reasons. Conceptually,

the temporal or spatial discretizations may not be directly

compatible. For example, NEURON traditionally uses arbitrarily-

sized, arbitrarily-branching 1D sections in a tree morphol-

ogy, while reaction-diffusion simulators use a grid—some using

a cubic Cartesian grid while others use a tetrahedral grid.

Technically, numerical artifacts and convergence failure can arise

from weak coupling and from discrepancies across separate

coupled simulators (Wils and De Schutter, 2009). In placing

the reaction-diffusion simulator directly into NEURON, we still

had to face the same issues but had the ability to change sim-

ulation technology on both sides as needed to make the fits

work.

Having done this, we can now use NEURON with rxd as a

reference tool with known numerical precision tolerance that will

allow us to study coupling issues in the future (Cannon et al.,

2007). The single-simulator and multi-simulator approaches

offer important complementarity in terms of cross-verification.

The single simulator approach used here allows the combina-

tion of all the disparate parts of the simulation into a single

integrator, thereby directly confronting problems of stiffness and

numerical stability that may be difficult to ferret out when dealing

with different integrators exchanging data at fixed times. There

are multiple other points of comparison, advantages and disad-

vantages to co-simulation using multiple small, single-purpose

neural simulators versus larger all-in-one neural simulators,

which can be explored further in the future (Ray and Bhalla,

2008).

Parallel with the technical discussion of coupling multiple

simulators, multiscale modeling presents a series of conceptual

choices between direct embedding and emergence embedding.

In direct embedding, which has been discussed here, a lower-scale

model is fully instantiated within the context of the higher-scale

model. This contrasts with emergence embedding, where the

emergent properties (the results) of the lower-scale model are

captured and then included in a lumped fashion in the higher-

scale model. These approaches are not mutually exclusive. Various

degrees of simplification of the lower-scale model are frequently

used to provide a lumped model that is believed to capture

key emergent properties to a greater or lesser extent: for exam-

ple the use of an integrate-and-fire model as proxy for a full

Hodgkin–Huxley model, or the use of a mean-field approxi-

mation as a stand-in for a neuronal network. Both approaches

are important, and our objective is to allow both strategies

(Lytton and Hines, 2004; Lytton and Stewart, 2006; Kerr et al.,

2013).

ACKNOWLEDGMENTS

Supported by NIH R01MH086638, NIH 2T15LM007056, NIH

R01NS11613, and NIH R01DC009977. Some of this work was

performed at Marine Biological Laboratory, Woods Hole, MA

02543.

REFERENCES
Andrews, S. S., Addy, N. J., Brent, R., and Arkin, A. P. (2010). Detailed simula-

tions of cell biology with Smoldyn 2.1. PLoS Comput. Biol. 6:e1000705. doi:

10.1371/journal.pcbi.1000705

Blackwell, K. (2005). A new era in computational neuroscience. Neuroinformatics

3, 163–166. doi: 10.1385/NI:3:2:163

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS: Exploring Realistic

Neural Models with the GEneral NEural SImulation System. Telos Santa Clara,

CA: Springer-Verlag.

Brandi, M., Brocke, E., Talukdar, H., Hanke, M., Bhalla, U., Kotaleski, J., et al.

(2011). Connecting moose and neurord through music: towards a communi-

cation framework for multi-scale modeling. BMC Neurosci. 12(Suppl. 1), P77.

doi: 10.1186/1471-2202-12-S1-P77

Brocke, E., and Djurfeldt, M. (2011). Efficient spike communication in the

music multi-simulation framework. BMC Neurosci. 12(Suppl. 1), P79. doi:

10.1186/1471-2202-12-S1-P79

Brown, S., Moraru, I., Schaff, J., and Loew, L. (2011). Virtual neuron: a strategy for

merged biochemical and electrophysiological modeling. J. Comput. Neurosci. 31,

385–400. doi: 10.1007/s10827-011-0317-0

Cannon, R., Gewaltig, M., Gleeson, P., Bhalla, U., Cornelis, H., Hines, M., et al.

(2007). Interoperability of neuroscience modeling software: current status and

future directions. Neuroinformatics 5, 127–138. doi: 10.1007/s12021-007-0004-5

Cannon, R., Hasselmo, M., and Koene, R. (2003). From biophysics to behavior: cat-

acomb2 and the design of biologically-plausible models for spatial navigation.

Neuroinformatics 1, 3–42. doi: 10.1385/NI:1:1:003

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge, MA:

Cambridge University Press. doi: 10.1017/CBO9780511541612.

Coombes, S., Hinch, R., and Timofeeva, Y. (2004). Receptors, sparks and waves in

a fire-diffuse-fire framework for calcium release. Prog. Biophys. Mol. Biol. 85,

197–216. doi: 10.1016/j.pbiomolbio.2004.01.015

Cornelis, H., Rodriguez, A., Coop, A., and Bower, J. (2012). Python as a federation

tool for GENESIS 3.0. PLoS ONE 7:e29018. doi: 10.1371/journal.pone.0029018

Davison, A., Hines, M., and Muller, E. (2009). Trends in programming

languages for neuroscience simulations. Front. Neurosci. 3, 374–380. doi:

10.3389/neuro.01.036.2009

De Schutter, E. (2008). Why are computational neuroscience and systems biology

so separate. PLoS Comput. Biol. 4:e1000078. doi: 10.1371/journal.pcbi.1000078

Faeder, J. R., Blinov, M. L., and Hlavacek, W. S. (2009). “Rule-based model-

ing of biochemical systems with bionetgen” in Methods in molecular biology,

Systems Biology. ed, I. V. Maly (Humana Press), 113–167. doi: 10.1007/978-

1-59745-525-15. Available online at: http://link.springer.com/book/10.1007

%2F978-1-59745-525-1

Ferrante, M., Blackwell, K., Migliore, M., and Ascoli, G. (2008). Computational

models of neuronal biophysics and the characterization of potential

neuropharmacological targets. Curr. Med. Chem. 15, 2456–2471. doi:

10.2174/092986708785909094

Fife, P. (1979). “Mathematical aspects of reacting and diffusing systems,” in Lecture

notes in biomathematics, Vol. 28. Berlin: Springer Verlag. doi: 10.1007/978-

3-642-93111-6. Available online at: http://www.springer.com/mathematics/

analysis/book/978-3-540-09117-2

Fleidervish, I. A., Lasser-Ross, N., Gutnick, M. J., and Ross, W. N. (2010). Na+

imaging reveals little difference in action potential-evoked na+ influx between

axon and soma. Nat. Neurosci. 13, 852–860. doi: 10.1038/nn.2574

Gardner, D., Toga, A., Ascoli, G., Beatty, J., Brinkley, J., et al. (2003). Towards

effective and rewarding data sharing. Neuroinformatics 1, 289–295. doi:

10.1385/NI:1:3:289

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434. doi:

10.1016/0021-9991(76)90041-3

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically

reacting systems. J. Chem. Phys. 115, 1716. doi: 10.1063/1.1378322

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 12

http://link.springer.com/book/10.1007%2F978-1-59745-525-1
http://link.springer.com/book/10.1007%2F978-1-59745-525-1
http://www.springer.com/mathematics/analysis/book/978-3-540-09117-2
http://www.springer.com/mathematics/analysis/book/978-3-540-09117-2
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

McDougal et al. Reaction-diffusion in NEURON

Gleeson, P., Crook, S., Cannon, R., Hines, M., Billings, G., Farinella, M., et al.

(2010). NeuroML: a language for describing data driven models of neurons and

networks with a high degree of biological detail. PLoS Comput. Biol. 6:e1000815.

doi: 10.1371/journal.pcbi.1000815

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker,

D. E., et al. (2005). SUNDIALS: suite of nonlinear and differential/algebraic

equation solvers. ACM Trans. Math. Soft. 31, 363–396. doi: 10.1145/1089014.

1089020

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.

Biomed. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)90008-4

Hines, M., and Carnevale, N. (2000). Expanding NEURON’s repertoire

of mechanisms with NMODL. Neural Comput. 12, 995–1007. doi:

10.1162/089976600300015475

Hines, M., Davison, A., and Muller, E. (2009). NEURON and Python. Front.

Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hines, M., Morse, T., and Carnevale, N. (2007). Model structure analysis in neu-

ron : toward interoperability among neural simulators. Methods Mol. Biol. 401,

91–102. doi: 10.1007/978-1-59745-520-6_6

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al.

(2003). The systems biology markup language (SBML): a medium for rep-

resentation and exchange of biochemical network models. Bioinformatics 19,

524–531. doi: 10.1093/bioinformatics/btg015

Jones, E., Oliphant, T., Peterson, P., and others (2001). SciPy: Open Source Scientific

Tools for Python.

Keller, D., Franks, K., Bartol, T. Jr, S., and Sejnowski, T. J. (2008). Calmodulin acti-

vation by calcium transients in the postsynaptic density of dendritic spines.

PLoS ONE 3:e2045. doi: 10.1371/journal.pone.0002045

Kelly, M., Crary, J., and Sacktor, T. (2007). Regulation of protein kinase mzeta syn-

thesis by multiple kinases in long-term potentiation. J. Neurosci. 27, 3439–3444.

doi: 10.1523/JNEUROSCI.5612-06.2007

Kernighan, B., and Pike, R. (1984). “Appendix 2: Hoc manual,” in The

Unix Programming Environment. Prentice-Hall software series (Prentice-Hall),

329–333.

Kerr, C. C., Van Albada, S. J., Neymotin, S. A., Chadderdon, G. L., Robinson,

P., and Lytton, W. W. (2013). Cortical information flow in parkinson’s dis-

ease: a composite network/field model. Front. Comput. Neurosci. 7:39. doi:

10.3389/fncom.2013.00039

Lisman, J., Yasuda, R., and Raghavachari, S. (2012). Mechanisms of CAMKII

action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182. doi:

10.1038/nrn3192

Loew, L. M., and Schaff, J. C. (2001). The virtual cell: a software environ-

ment for computational cell biology. TRENDS Biotechnol. 19, 401–406. doi:

10.1016/S0167-7799(01)01740-1

Lytton, W. (1997). “Brain organization: from molecules to parallel processing,”

in Contemporary Behavioral Neurology, eds M. Trimble and J. Cummings, J.

Chapter 1, Newton, MA: Butterworth–Heinemann, 5–28.

Lytton, W., and Hines, M. (2004). Hybrid neural networks - combining abstract

and realistic neural units. IEEE Eng. Med. Biol. Soc. Proc. 6, 3996–3998. doi:

10.1109/IEMBS.2004.1404116

Lytton, W., and Hines, M. (2005). Independent variable timestep integration of

individual neurons for network simulations. Neural Comput. 17, 903–921. doi:

10.1162/0899766053429453

Lytton, W., and Stewart, M. (2006). Rule-based firing for network simulations.

Neurocomputing 69, 1160–1164. doi: 10.1016/j.neucom.2005.12.066

Peercy, B. E. (2008). Initiation and propagation of a neuronal intracellular calcium

wave. J. Comput. Neurosci. 25, 334–348. doi: 10.1007/s10827-008-0082-x

Pepke, S., Kinzer-Ursem, T., Mihalas, S., and Kennedy, M. (2010). A dynamic model

of interactions of ca2+, calmodulin, and catalytic subunits of ca2+/calmodulin-

dependent protein kinase ii. PLoS Comput. Biol. 6:e1000675. doi: 10.1371/jour-

nal.pcbi.1000675

Ray, S., and Bhalla, U. (2008). PyMOOSE: interoperable scripting in Python for

MOOSE. Front. Neuroinform. 2:6. doi: 10.3389/neuro.11.006.2008

Stiles, J. R., and Bartol, T. M. (2001). “Monte carlo methods for simulating real-

istic synaptic microphysiology using MCell,” in Computational Neuroscience:

Realistic Modeling for Experimentalists, ed E. De Schutter (Boca Raton, FL: CRC

Press), 87–127.

Wils, S., and De Schutter, E. (2009). STEPS: modeling and simulating com-

plex reaction-diffusion systems with python. Front. Neuroinform. 3:15. doi:

10.3389/neuro.11.015.2009

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Received: 12 July 2013; accepted: 25 October 2013; published online: 15 November

2013.

Citation: McDougal RA, Hines ML and Lytton WW (2013) Reaction-diffusion in the

NEURON simulator. Front. Neuroinform. 7:28. doi: 10.3389/fninf.2013.00028

This article was submitted to the journal Frontiers in Neuroinformatics.

Copyright © 2013 McDougal, Hines and Lytton. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this jour-

nal is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org November 2013 | Volume 7 | Article 28 | 13

http://dx.doi.org/10.3389/fninf.2013.00028
http://dx.doi.org/10.3389/fninf.2013.00028
http://dx.doi.org/10.3389/fninf.2013.00028
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Reaction-diffusion in the NEURON simulator
	Introduction
	Examples
	Wave Propagation
	Accumulation and Diffusion: NMODL vs rxd

	Organizing Reaction-Diffusion Simulations
	Where do the Dynamics Occur?—the Domains
	Who are the Actors?
	How do they Interact?—the Reactions
	Tutorial

	Implementation Details
	Initialization and Run-Time
	Numerical Integrations
	Development of the Formula-Specification Format
	NumPy and Vector Array Sharing
	NEURON's Internal Scatter/Gather
	Increasing Modularity and Extensibility
	Integration
	Analysis tools

	Validation
	Analytic
	Numerical

	Discussion
	Modularity
	Implementation Choices
	Alternative Approaches

	Acknowledgments
	References

