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Abstract

Connectomes represent comprehensive descriptions of neural connections in a nervous
system to better understand and model central brain function and peripheral processing of
afferent and efferent neural signals. Connectomes can be considered as a distinctive and
necessary structural component alongside glial, vascular, neurochemical, and metabolic
networks of the nervous systems of higher organisms that are required for the control of
body functions and interaction with the environment. They are carriers of functional phenom-
ena such as planning behavior and cognition, which are based on the processing of highly
dynamic neural signaling patterns. In this study, we examine more detailed connectomes
with edge weighting and orientation properties, in which reciprocal neuronal connections are
also considered. Diffusion processes are a further necessary condition for generating
dynamic bioelectric patterns in connectomes. Based on our precise connectome data, we
investigate different diffusion-reaction models to study the propagation of dynamic concen-
tration patterns in control and lesioned connectomes. Therefore, differential equations for
modeling diffusion were combined with well-known reaction terms to allow the use of con-
nection weights, connectivity orientation and spatial distances.

Three reaction-diffusion systems Gray-Scott, Gierer-Meinhardt and Mimura-Murray were
investigated. For this purpose, implicit solvers were implemented in a numerically stable reac-
tion-diffusion system within the framework of neuroVIISAS. The implemented reaction-diffu-
sion systems were applied to a subconnectome which shapes the mechanosensitive
pathway that is strongly affected in the multiple sclerosis demyelination disease. It was found
that demyelination modeling by connectivity weight modulation changes the oscillations of
the target region, i.e. the primary somatosensory cortex, of the mechanosensitive pathway.

In conclusion, a new application of reaction-diffusion systems to weighted and directed
connectomes has been realized. Because the implementation was realized in the neuroVII-
SAS framework many possibilities for the study of dynamic reaction-diffusion processes in
empirical connectomes as well as specific randomized network models are available now.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022

1/39


https://orcid.org/0000-0002-1610-2103
https://orcid.org/0000-0001-6701-4712
https://orcid.org/0000-0003-2129-8910
https://doi.org/10.1371/journal.pcbi.1010507
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010507&domain=pdf&date_stamp=2022-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010507&domain=pdf&date_stamp=2022-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010507&domain=pdf&date_stamp=2022-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010507&domain=pdf&date_stamp=2022-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010507&domain=pdf&date_stamp=2022-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010507&domain=pdf&date_stamp=2022-11-23
https://doi.org/10.1371/journal.pcbi.1010507
https://doi.org/10.1371/journal.pcbi.1010507
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.21081418.v1
https://doi.org/10.6084/m9.figshare.21081418.v1
https://www.novartis.com/
https://www.novartis.com/

PLOS COMPUTATIONAL BIOLOGY Connectome diffusion

Competing interests: The authors have declared
that no competing interests exist.

Author summary

Reaction-diffusion systems were adapted and analyzed in weighted and directed connec-
tomes. The systems were applied to a multiple sclerosis model by modulating connectivity
weights within the reaction-diffusion process. This leads to changes in the oscillation pat-
terns of a target region of the mechanosensitive pathway.

Introduction

Diffusion is the process by which matter or particles like atoms or molecules naturally move
from regions where they are highly concentrated to regions where they are not as concentrated.
We can think of diffusion of different particles as a dynamic process along a line or one dimen-
sion. The particles move randomly, which is also called a random walk. In view of the numer-
ous realizations of diffusion processes in natural biological systems and compartments, it
appears obvious to apply diffusion in neural networks. Models of reaction-diffusion (RD)
adapted to networks can be used to investigate the spreading of information through networks
or connectomes which may shape dynamic states that can be related to functional processes. It
has been shown that dynamic models of brain communication have begun to create links
between connectional architectures and function. Furthermore, brains have the capacity to
support a great diversity of dynamic patterns which are complex at a broad range of temporal
frames to sustain a large number of competing functional demands. A large amount of differ-
ent dynamic patterns has been considered as a functional repertoire of a network that allows
flexibility across a broad range of cognitive functions [1].

Applications of diffusion

Reaction-diffusion systems produce complex self-organized patterns, such as spreading pulses
and fronts, stationary dissipative shapes, rotating waves and turbulences [2-6]. Some reaction-
diffusion models have been found to work on networks through interacting species occupying
network nodes and diffusively transferred across links [7-11]. Reaction-diffusion models can
also correspond to networks of diffusively coupled biological cells or regions and chemical
reactors [8-11].

Reaction-diffusion processes can be considered and applied on different scales. On the
macro and meso level, the application is suitable for neuronal networks, connectomes and
local circuits. Recently, a paper on 3D reaction-diffusion models of neurons and networks was
published [12]. At the micro level, reaction-diffusion systems are applied to the modeling of
cellular and subcellular processes. Here, NeuroRD (https://github.com/neurord; http://
modeldb.science/modellist?id=139757&all_simu=true) should be mentioned, which is used
for the simulation of neuronal signaling pathways such as that of stochastic simulation on
spiny dendrites [13]. In NeuroRD the Gillespie’s tau-leap reaction algorithm, and the stochas-
tic diffusion algorithm of Blackwell are realized. At the synaptic level [14] and on biological
surfaces [15] diffusion modeling is applied, for example, by MCell (https://mcell.org/). In
detailed synpase models, diffusion processes are also considered [16, 17]. Beyond MCell, diffu-
sion processes are also used in particularly detailed synpase models [16, 17]. Virtual Cell
(VCell) (https://vcell.org/) is a comprehensive platform for modeling cell biological systems
based on a central database and distributed as a web application [18, 19]. This environment is
also used to model cellular diffusion processes [20, 21] and neuronal signaling [22]. A set of
libraries for GENESIS is Chemesis, which allows the simulation of reaction-diffusion systems,
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including calcium release. This approach has been used by [23] to create in a multicompart-
ment-model of phototransduction, calcium dynamics, and ionic currents of a photoreceptor.
We should also mention that there is a wide range of applications for electrodiffusion such as
the calculation of extracellular electric potentials from neuron stimulations [24], the simula-
tion of electrodiffusion and water movements in brain tissue [25], ionic electrodiffusion with
cortical propagation depression [26], and application in electrodiffusive neuron-extracellular-
glia models to study the emergence of slow potentials in the brain [27]. Finally, we must men-
tion here the application of diffusion processes to the modeling of diseases such as strokes [28,
29] and natural developmental processes [30].

In complex networks, the analysis of self-organization is difficult and analysis has been
restricted to non-equilibrium pattern formation as synchronization [31-33] or epidemic
spreading [34-36]. Turing demonstrated [2] that changes of the diffusion constants of activa-
tors and inhibitors produce a destabilization of the uniform state of a system and lead to the
spontaneous emergence of oscillatory patterns (Turing patterns) which emerge in chemical
reactions, biological morphogenesis, and in ecosystems. This kind of complex non-equilib-
rium self-organization and Turing instabilities can occur in networks as well [8]. Such net-
work-instabilities have been explored further in mathematical frameworks [9-11]. However,
their analyses were restricted to regular lattices [8, 9] and small networks [10, 11]. Recent theo-
retical work has elucidated the relationship between network architecture and diversity of
Turing patterns [37].

Diffusion models have been proven useful for delineating functional modules [38, 39] and
predicting statistical dependencies (functional connectivity) among remote neuronal time
courses [40, 41]. Network diffusion or graph diffusion [42] has also been applied successfully to
network modularity analysis [43] as well as to modeling the relation between structural and
functional brain connectivity networks [44].

Meanwhile, several research groups are engaged in the application of diffusion models in
networks of nervous systems [40, 44-46]. In most cases, the above-mentioned particles of dif-
fusion processes are considered as components of information. Diffusion processes can then
be extended as a flow-based communication model between areas of a nervous system [47-
51]. This type of dynamic model is also suitable to describe the phenomenon of multisensory
integration [47] or to model the dynamics of brain diseases [45, 46, 48].

Diffusion in connectomes

Through the use of different reaction terms in the differential equations, reaction-diffusion
models allow a versatile parameterization of the dynamic behavior in coupled systems such as
neuronal connectomes. In the present study, we adopted different models such as predator-
prey and activator-inhibitor for use in connectomes to have more options available for study-
ing the propagation of diffusion processes in networks.

Analyzing reaction-diffusion models on connectome architectures provides insight in the
pattern forming capabilities and, hence, the feasible collective modes, of such architectures.
Here we first illustrate, using simple, generic network architectures, how reaction-diffusion
systems create sets of nodes with common dynamical behaviors, which cannot be trivially
derived from the network architecture alone. We subsequently apply this approach to the spi-
nal cord, brainstem, diencephalic and cortical connectivity of the mechanosensory pathways.
This new approach—probing connectomes with reaction-diffusion models—is fully integrated
in neuroVIISAS [52]. A detailed tutorial is provided as Supporting Information.

For the application of reaction-diffusion models, the weights of neuronal connections of a
connectome are considered as strengths of connections between regions. Weights of
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connections in tract-tracing studies encode the number of nerve fibers that have incorporated
a tract-tracing substance or an estimate of the number of traced nerve fibers. Thus, estimates
of weights of connections do not describe mean thickness of myelin sheaths which are investi-
gated by transmission electron microscopy or other techniques. In most tract-tracing studies
weights or densities of connections are estimates which are described in the three basic catego-
ries weak, moderate and strong. In addition, connections may be described without any cate-
gories at all or in further categories of weights like “weak to moderate” or “very strong”. A
survey of all categories, their interpretation, relations and comparisons are given by Schwanke
etal. [53]. In terms of a relation of weights of connections and their functional mean they can
be interpreted as the strength of a connection which allows transmission of an electrochemical
signal between regions of the nervous system. If the strength of a connection is strong then
more information can be transmitted. With regard to neuropathological changes of nerve
fibers like those in multiple sclerosis where demyelination and axon degeneration occur, the
weights of connection can be related to such pathological processes. In this case the weights of
connection will be reduced. If weights of connections are used in this study, the ordinal scaled
estimates were always logarithmically transformed.

A generalized form of the predator-prey model of Lotka-Volterra was introduced by
Mimura-Murray [6, 54, 55] with some advantages with regard to the original concept. The
Mimura-Murray model (MM) appears to be promising for adaption to network diffusion.

An activator-inhibitor reaction-diffusion model was developed by Gierer and Meinhardt
(GM) [56-58]. It consists of a reaction term with activator and inhibitor parameters that could
be adopted to generate specific oscillation patterns in weighted digraphs. Therefore, the GM
model appears to be an interesting candidate for applying in network diffusion. Finally, the
Gray-Scott model (GS), which is a classical mathematical model for isothermal autocatalytic
reaction with another type of reaction term in the differential equation [59-65], has been
adapted to network diffusion.

The objective of this study was to investigate reaction-diffusion models with regard to
weighted digraphs and distances in the diffusion terms. Here, data of the connectome of the
rat nervous system were used and synthetic randomized directed networks with preserved
edges and nodes. The reaction-diffusion models of Gierer-Meinhardt [56-58], Mimura-Mur-
ray [6, 54, 55] and Gray-Scott [59-65] were adapted to weighted digraphs under consideration
of the estimated or linear Euclidean distances between nodes in order to build more realistic
coupled dynamic models based on empirical data.

A second aim of this investigation was the analysis of pattern forming in such a way that the
reaction-diffusion models generate sets of nodes with common dynamical behavior.

A further objective of this work was to investigate the effects of changes of connection
weights within the reaction-diffusion process because this could be a starting point for model-
ing progression of neurodegenerative diseases [66-71]. The change in connection weights in
parameterized models relates specifically to the class of neurodegenerative diseases found in
neuronal connections rather than gray matter or neuronal perikarya. Multiple sclerosis is one
of such demyelinating diseases [72-81] with a large variety of temporal and topographic pro-
gression patterns. The framework used here allows to define sets of source nodes or regions
and sets of target nodes of interest embedded in a large connectome context to systematically
investigate signal propagation or information diffusion through highly complex connectional
architectures which undergo precisely defined changes of connections weights. Hence, this
simulation environment appears to be a promising starting point to investigate in a consistent
and reproducible way changes of network features as in neurological disorders and their effect
of dynamic pattern modifications.
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Materials and methods

Connectome data and structure

The connectome data were generated in a metastudy of original research publications. Collat-
ing information of neuronal connections between pairs of regions can be performed by man-
ual readout of data in over 7000 original research publications which describe the anterograde
and retrograde transport of tract-tracing substances. This metastudy approach is well estab-
lished and has been successfully performed in ferret, avian, macaque, cat and rat [82-87]. The
connectome, circuit and lattice data used in this investigation can be downloaded from [88]
and the neuroVIISAS framework from https://neuroviisas.med.uni-rostock.de/neuroviisas.
shtml. How to install and start neuroVIISAS is described in the supplement. The test.brain and
MS.brain project files can be directly loaded in neuroVIISAS. The reference.bib file (included
in [88]) provides the links of connections with original research literature and need to be con-
figured in neuroVIISAS [52].

Implementation of reaction-diffusion models

Starting from the broad application of reaction-diffusion systems presented in the introduc-
tion, we would like to investigate the property of pulse propagations in networks. More specifi-
cally, the reaction-diffusion models will be applied to weighted and directed connectomes.
Since all areas are represented in our connectome data that are also affected in multiple sclero-
sis diseases, a differential investigation of the reaction-diffusion models of control connectome
and in multiple sclerosis lesioned connectome will be performed. Since there are no studies on
the propagation of concentrations of the reaction-diffusion models in a directional and
weighted connectome, we have implemented three basic models, namely the Gierer-Mein-
hardt, Mimura-Murray and Gray-Scott models, in the neuroVIISAS framework in such a way
that the models are directly applicable with selectable parameters to connectomes with the
properties listed above.

In the tutorial part 2 the Gierer-Meinhardt model, as well as the other two models, will be
explained in more detail, therefore only the functions of the two substances U(x, y, t) and V(x,
¥, t) at node N(x, y) of two-dimensional regular lattice should be shown in the following:

du(t) U?
o 4 .U+a, +DAU
dt DA o T (1)
=f(U.V)
dav(t
% :TV'UQ—,UV'V+O'V +DVAV (2)
=g(U,V)

The Laplace operator A in the following form

AAY OV OV

A=ge o Y=o oy

allows the diffusion of the two substances to be determined.

The reaction-diffusion models applied to the connectome data are based on differential
equation systems which could be stiff and are solved by implicit solvers. Their form, solution
and extension with regard to noise, connection weight modulation and Euclidean distances
are described in detail in the second part of the Supporting Information (Tutorial part 2).
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In tutorial part 2, we describe in detail the motivation for using reaction-diffusion models
in directed and weighted connectomes. In particular, the formal implementation of the reac-
tion-diffusion models is discussed in detail. For this purpose we start from the Laplace opera-
tor to model spatial diffusion. First, the model is not developed for connectomes but for
regular lattices. By means of discretization we obtain a system of ordinary differential equa-
tions (ODE). For the solution of the ODEs different methods have been implemented in neu-
roVIISAS (Euler solver, Runge-Kutta, step-controlled Dormand-Prince).

The three reaction-diffusion models are formally described and the initial values of the
parameters of the models with which the diffusion patterns known from the literature can be
generated. With our implemented models, the same patterns as the patterns known from the
literature have been computed, so that our models provide reproducible results. After the for-
mal introduction of the three models, we describe in the tutorial how they are incorporated in
a directed network and what has to be considered to define the diffusion directions in a
directed network. For this purpose we have provided a selection option that allows to choose
between input diffusion and output diffusion of the adjacency matrix and the adjacency matrix
transposition (for details see turtorial part 2).

Since multiple sclerosis is a dynamic disease of the myelin sheaths, the connection weights
in the connectome also change dynamically. In the tutorial part 2 we explain how the coupling
matrix L was temporally modulated to realize the dynamics of demyelination and remyelina-
tion within a simulation:

i—lj =f(U)+L(t)-U (4)
Following the implementing the basic properties of the connectome diffusion models, two
methods for generating additive noise and stochastic noise (Ornstein-Uhlenbeck process)
were implemented to verify the stability of the reactions-diffusion model with respect to differ-
ent noise levels. To realize this, a coupled Ornstein-Uhlenbeck process § was applied additively
to the directed diffusion. The different steps for implementing this function were also
explained in detail in Tutorial Part 2:

U(t+dt)=U(t)+At-6-L-U(t) (5)

The advantage of our connectome frameworks is that neuronal connectivity is embedded in a
standard stereotaxic coordinate system, so that a centroid can be estimated from each region
and linear Euclidean distances can be estimated between centroids. Of course, real axonal con-
nections run with curvatures as well as partially stronger unsmooth kinks. Therefore we speak
here also only of estimations. We have presented in tutorial part 2 an approach to map Euclid-
ean distances to graph edges by inserting nodes. Here, node E has been inserted to specify the
distance between node A and node B. D is the diffusion constant and © controls the levarge
and delay of the inserted node respectively:

dA
E —D'el‘A (6)
E
% =D-¢,-A—@® D¢, -E (7)
dB
o =0® -D-e -E (8)

We validated the Gray-Scott implementation by applying it to a regular grid with the
parameters published by Buric [89] and were able to generate concentration patterns (Fig P in
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S1 Text) typical of the Gray-Scott model. Furthermore, the Gierer-Meinhardt model was
applied to a regular grid and tested with the parameters published in Koch and Meinhardt [56,
58]. As with the Gray-Scott model, the Turing pattern could be generated (Fig Q in S1 Text),
which is also known from the literature.

In addition, we tested the runtime of the Gierer-Meinhardt model on a i7-6500U CPU (2,5
GHz). Here, a linear relationship between the number of iterations of the diffusion model and
the computation time is found. 10 iterations need about 60 s and 10* iterations about 2 s (the
multiple sclerosis mechanosensitive connectome was used). The number of meaningful itera-
tions depends on the parameters of the model, the step size and the structure of the network
and must be tested accordingly. Copying the concentration states at the time points for further
analysis or graphical representation also takes time, but this was not considered in the values
given above. In addition to the influence of the number of iterations, we studied the effect of
the number of nodes. Here we found a quadratic relationship between the number of nodes
and the computation time for the Gierer-Meinhardt model.

We are pleased to provide the Java source code on request and have also made it available
for download at figshare (see below). A direct download is available for the connectivity data
and for the executable Java version for Linux, Windows and iOs platforms on the neuroVII-
SAS web page.

Results
GM and MM in an embedded pathway of a subconnectome

The central pathways of mechanosensitivity originate from the central processes of pseudounipo-
lar neurons in the dorsal root ganglia outside the spinal cord. The connections of the first cervical
segments of this pathways were filtered from the complete connectome and both sides of the cen-
tral nervous system were selected to compute the weighted, directed and bilateral adjacency
matrix (Fig 1). These segments manifest particularly severe changes in multiple sclerosis [90, 91].
A symmetric graph representation of this matrix is shown in Fig 2. The source of the mechano-
sensitive pathway starts in the peripheral nervous system from the mechanoreceptors of the sub-
epidermal layers of the skin or from internal organs. In multiple sclerosis, the mechanosensitive
projection exhibits particularly pronounced alterations at specific sites in the spinal cord, primar-
ily causing common neurological symptoms [92]. We consider the central projection from the
dorsal root ganglion (first neuron) to the ipsilateral cuneate nucleus (second neuron) then to the
right ventrolateral thalamic nucleus (third neuron) with termination in the right somatosensory
cortex (terminal neuron). This mechanosensitive pathway is embedded in the bilateral network
shown in Fig 2. The first three cervical spinal cord segments were used in the RD modeling.

Change of oscillations following reduction of connection weights. In the following, it
was investigated how a single reduction of a connection weight affects the transmission in a
coupled RD system. The weight reduction was realized by reducing normalized logarithmic
transformed connection weights by 90% and keeping this reduction constant until the end of
the process. To perform weighted network analysis, the ordinal weighted categories x were
transformed to an exponential scale [93]:

flx) = 10 9)

In particular the oscillation of the target region right somatosensory cortex was compared
with the unchanged connections weights. The functions of concentrations of the GM RD
model are displayed for all regions of the left side (Fig 3) and right side (Fig B] in S1 Text) in
distinct diagrams. Both presentations of concentrations are from the same GM RD-simulation.
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Fig 1. The weighted adjacency matrix of a bilateral mechanosensory subconnectome. The weighted adjacency matrix of the spinal cord, brainstem, diencephalic and
cortical connectivity of the mechanosensory pathways. The last character of the area abbreviation indicates the side of the hemisphere: L: left hemisphere, R: right
hemisphere. AGI: Lateral agranular prefrontal cortex, AGm: Medial agranular prefrontal cortex, CERC: Cerebellar cortex, Cu: Cuneate nucleus, DCeN: Cerebellar nuclei,
DRGC1: Dorsal root ganglion of cervical segment 1, DRGC2: Dorsal root ganglion of cervical segment 2, DRGC3: Dorsal root ganglion of cervical segment 3, Gr: Gracile
nucleus principal part, ILN: Intralaminar nuclei, IO: Inferior olive, LTNG: Lateral thalamic nuclear group, mPFC: Medial prefrontal cortex, Pn: Pontine nuclei, PTG:
Posterior group, S1: Primary somatosensory cortex, S2: Secondary somatosensory cortex, VL: Ventrolateral thalamic nucleus, VNT: Ventral thalamus, VPL: Ventral
posterolateral thalamic nucleus.

https://doi.org/10.1371/journal.pchi.1010507.9001

Right hemispheric (contralateral to initial conditions) regions show lower concentration
amplitudes (first amplitudes are < 2.5) than regions on the ipsilateral side of initial condition
for the DRGs.

The functions of concentrations in Fig 3 and Fig B] in S1 Text show variable amplitudes.
The largest amplitude (blue) belongs to the cerebellar cortex which does not have direct effer-
ents to non-cerebellar regions. The concentrations of the GM RD are relatively strong due to
local connectivity in the cerebellum. Largest logarithmic correlations were found between the
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DRGC2 L DRGC2 R

DRGC1 L DRGC3 L DRGC3 R DRGC1 R

Fig 2. The weighted digraph of the bilateral mechanosensory subconnectome. The bilateral weighted digraph of the adjacency matrix shown in Fig 1. The dashed lines
indicate contralateral projections.

https://doi.org/10.1371/journal.pcbi.1010507.9002

DG,
DG,li

ter-coefficient for output connections (CluC,,,) with ¢ = 0.728. The ranks of local parameters
show a relatively low average rank for the cerebral cortex region (Fig 4 bottom).

To apply the models to a connectome composed of regions affected in multiple sclerosis
disease, the definition of the origins of the somatosensory pathway are particularly important,
as this is where the initialization of the models as well as the change in pathway properties is
set. The literature shows that the upper cervical spinal cord segments are particularly affected
by demyelination [90, 91]. The central axons of the pseudounipolar neurons in the cervical spi-

coefficient (convergent-divergent degree coefficient) (¢ = 0.726) (Fig 4 top) and the clus-

nal ganglia (1st neuron) project with a branch in the posterior funiculus to the 2nd neuron in
the cuneate nucleus and a colateral via a switch in the Rexed layers V-VII (nucleus proprius of
spinal cord) via the ventral spinothalamic tract to the ventral posterolateral nucleus of the
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Fig 3. Functions of concentrations for regions of left side. The functions of concentrations of left hemispheric regions are shown for the GM RD-model. Initial
conditions V= 1 and W, = 1 were set for the dorsal root ganglia of the left side. The color coding of the functions in this diagram and all following function
representations in diagram form are based on the color definition in the area hierarchy, which is simplified in the adjacency matrix in Fig 1. Thus, the colors of the
columns and rows of the adjacency matrix represent the color scale of the functions. The x-axis shows the iteration steps of the function. On the y-axis the diffused
concentrations are shown according to the applied models and functions. These axis assignments were also maintained uniformly for all subsequent function diagrams.

https://doi.org/10.1371/journal.pchi.1010507.g003

thalamus. For simplicity, we consider only the projection of the pseudounipolar neurons via
the posterior funiculus and, in particular, the cuneate funiculus to the cuneate nucleus. The
regions of interest (ROI) are the DRG’s of the first three cervical segments of the left side,
which were initialized with V, = 1 and W, = 1. The three concentration functions of the left
DRGs start at 1 and were documented graphically (Fig BK in S1 Text). In this figure, as previ-
ously described, the individual regions were assigned the same colors as in other diagrams
with function curves: The small blue curve indicates the concentration in the cuneate nucleus.
The magenta curve indicates concentration in the contralateral ventrolateral thalamic nucleus.
The brown concentration curve shows the concentration of activators in the contralateral
(right hemispheric) somatosensory cortex. The weights of all three connections from left
DRG’s 1-3 to the left cuneate nucleus were reduced by a factor of 0.3 for the whole simulation
time. It turns out that amplitudes of the ipsilateral cuneate nucleus, contralateral ventrolateral
thalamic nucleus and contralateral somatosensory cortex are larger than without weight reduc-
tion (Fig BL in S1 Text). Moreover, the oscillation pattern appears to be more regular, espe-
cially for the cuneate nucleus. Furthermore, the amplitudes of the contralateral somatosensory
cortex increase obviously stronger than those of the cuneate nucleus or ventrolateral thalamic
nucleus.

Stable coherent oscillations can be observed even for parameter variations. If pairs of
regions have similar courses of concentrations over a range of different parameters of a RD-
model then they might constitute coherent dynamic or functional groups. This has been inves-
tigated by varying RD-parameters of the GM and MM models. Here, the cross-correlations of
all pairs of regions of the mechanosensitive subconnectome as introduced in Fig 1 has been
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assignments to the considered regions of the network, which were introduced in Fig 1 in the form of an adjacency matrix.

https://doi.org/10.1371/journal.pchi.1010507.g004

determined for each variation of parameters. The average cross-correlations over all variations
of parameters for each pair of regions is displayed as an average cross-correlation matrix. For
the GM model the parameters reaction constants for the reaction substances A (rateA) and I
(ratel) as well as the decay rates for the substance A (muA) and I (mul) were investigated over
arange from 0.004 to 0.016 with a step size of 0.004. 256 simulations were performed (Fig 5).
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Fig 5. Average cross-correlation matrix of four parameters of the GM model. The average cross-correlation matrix
of the variation of the four reaction constants is shown. This matrix has been used for further cluster analysis.

https://doi.org/10.1371/journal.pcbi.1010507.g005

The average cross-correlation matrix for the variation of the two reaction constants is shown
in Fig 6. The average cross-correlation matrix for the variation of the four parameters (2 reac-
tion constants and the 2 decay parameters) is shown in Fig 7. Spectral clustering was per-
formed to detect those regions which share similar average cross-correlations. The group of
the 2 parameter reaction constant simulation with 16 simulations consists of left and right
hemispheric primary and secondary somatosensory cortex, primary and secondary motor cor-
tex and ventrolateral thalamic nuclei. Same regions build a cluster when the 4 parameters reac-
tion constant and decay rates were varied.

The 4 reaction parameters A, B, C, D of the MM-model were varied (A: 10 — 15 with step-
size: 1, B: 13 — 18 with step size: 1, C: 8 — 10 with step size: 1, D: 0.2 — 0.6 with step size: 0.1)
over 540 simulations. The average cross-correlation matrix is shown in Fig 8. Spectral cluster-
ing of the average cross-correlation matrix determined the same cluster of coherently activated
regions of the left and right hemisphere: S1, S2, AGl, AGm and VL (Fig 9).

The modularity analysis of the adjacency matrix is shown in Fig 10. The regions are distrib-
uted over three modules. Cortical left and right hemispheric regions are separated in two dif-
ferent modules. These two modules contain again primary and secondary somatosensory
cortex, primary and secondary motor cortex and ventrolateral thalamic nuclei. In addition the
VPL, ILN, PTG and LTNG are assigned to these modules. The spectral cluster analysis of the
connectivity matching matrix for input and output connections display same regions within a
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Fig 6. Average cross-correlation matrix of two reaction constants. The average cross-correlation of the variation of the two reaction constants has been analyzed by
spectral clustering. A coherent group of regions (green rectangle) could be determined.

https://doi.org/10.1371/journal.pchi.1010507.9g006

cluster that has been highlighted in Fig 10. Therefore, the clustering of the connectional struc-
ture of regions matches the dynamics of coherent regions with synchronous co-concentrations
of the reaction-diffusion models. Furthermore, the coherency appears to be stable within the
investigated space of parameters.

Cluster analyses generate groupings of regions with very similar dynamic properties
even under the condition of parameter variations. To prove the effects of changes of
parameters on the similarity of the oscillating functions of regions, the variation of parameters
are analyzed by spectral [94, 95] and Markov clustering [96]. Spectral clustering techniques are
using the spectrum (eigenvalues) of a similarity matrix and the Markov cluster algorithm
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(MCL) is an unsupervised clustering technique [96]. The following parameters were used
(matrix values are normalized between 0 and 1):

o Maximum value considered zero (> 0) [Default: 1.0e — 7]: Test if matrix values are zero. Val-
ues below this threshold are set to zero (convergence can be faster)

o Maximum difference between values (> 0) [Default: 1.0e — 7]: If the difference of two values
are below the threshold then they are considered as equal (termination of computing)

o Loop gain (> 0) [Default: 0]: Probability for considering a connection on the diagonal. If
values > 0 then connectivity loops or self-connections are used. If 0.5 is set as a loop gain,
then each value on the diagonal is set to 0.5
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Fig 8. Average cross-correlation matrix of four parameters of the MM model. The average cross-correlation of the variation of four reaction
parameters is shown. Large positive correlation values close to 1 indicate a strong similarity of concentrations of a pair of regions.

https://doi.org/10.1371/journal.pcbi.1010507.g008

o Inflation exponent (Default: 2.0): Exponent is iteratively applied to matrix elements

In the first step the similarity matrix of either cross-correlations, co-activation or Kuramoto
indices are calculated for a simulation. The similarity matrix allows the comparison of cross-
correlations, co-activations or the Kuramoto indices between all pairs of regions. Either the
cross-correlations, co-activation or Kuramoto index matrices are used to cluster the regions by
spectral and Markov methods.

The parameters of the GM or MM models are modified, followed by the calculation of the
similarities and the clustering of the regions. To compare the different clusterings the the Jac-
card coefficient is used. For every cluster X in clustering A and every cluster Y of clustering B
the Jaccard coefficient J(X, Y) = |X N Y|/|X U Y] is calculated. The corresponding cluster for X
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is the cluster Y that maximizes J(X, Y). If Y is the corresponding cluster for X, X does not have
to be the corresponding cluster for Y. As a measurement of similarity of the two clusterings A
and B we use the average Jaccard coefficient over all clusters of A and B and their correspond-
ing cluster:

Y xeamaxy pJ(X, Y) + >0, pmaxy, J (Y, X)

AT 1B (10)

Following parameter variations the similarities of the calculated clusters are visualized in a
matrix (Figs 11 and 12).

In the case of the GM model the variation of reaction parameters rateA, ratel, muA and
mul range from 0.004 to 0.016 with a step size of 0.004 leads to 256 combinations of these
parameters. For each of the 256 combinations the similarity of functions between pairs of
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Fig 10. Modularity and spectral cluster analysis. The modularity analysis of connectivity similarity among regions
generates 3 modules. The spectral cluster analysis of the connectivity matching matrix reveal a cluster with similar
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regions has been calculated by the cross-correlation. Referring to this similarity the regions

were clustered and the comparison of these 256 clusterings is visualized in a matrix. This

matrix shows the pairwise similarity of region clusterings that result from the simulation using

a particular selection of reaction parameters.
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Fig 11. Similarities of clusterings referring GM parameter variation. The reaction parameters and decay rates for substances
A and B were varied 256 times. a) RD functions of all regions using default parameters. b) Similarities of the clusterings using
spectral clustering (Light: high similarity, dark low similarity). c) Similarities of the clusterings using Markov clustering (Light:
high similarity, dark low similarity). d) Magnification of upper left corner of the matrix in b). e) Magnification of upper left
corner of the matrix in c).
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Fig 12. Similarities of clusterings referring MM parameter variation. The reaction parameters A-D were varied 375 times. a) RD
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The RD functions of all regions using default parameters are shown in Fig 11a. The similari-
ties of the clusters using the spectral clustering is shown in Fig 11b. The magnification (Fig
11d) shows a pattern in this matrix. For example the group of parameter sets 5-16 lead to very
similar region clusterings. The similarities of the Markov clusterings based on the same param-
eter variation is shown in Fig 11c. Again the magnification displays homogeneous groups of
parameter sets indicating a larger stability of RD functions.

In a comparable way, the similarity, respectively, dissimilarity of clusters of cross-correla-
tions of 375 sets of parameters of the MM model were analyzed. The reaction parameters A, B,
and Crange from 14 to 18 with a step size of 1. Reaction parameter D ranges from 0.2 to 0.6
with a step size of 0.2 (dP = 0.1 and dQ = 0.01). The RD functions of all regions using default
parameters are shown in Fig 12a. The similarities of the clusters using the spectral clustering is
shown in Fig 12b. The magnification (Fig 12d) also shows a pattern. For example the group of
parameter sets 5-17 lead to very similar clusterings. The similarities of the Markov clusterings
based on the same parameter variation is visualized in Fig 12c. The magnification displays
highly homogeneous groups of parameter sets indicating a very large stability of RD functions.

Functionally similar regions can be reconstructed based on their dynamic properties in
both the GM and MM models. By comparing the coherent dynamics between MM and GM
processes, we want to find out to what extent these two models produce similar results in the
same connectome. If similar dynamical behavior of functionally similar regions is obtained in
different models, this indicates the reproducibility of a result by another model and thus a cer-
tain stability of the dynamics independent of a specific model. Furthermore, we can consider
to what extent the similar results of both models can be explained by the specific connectivity
rather than by minor changes in parameter settings of the models. We expect that functionally
intensive or densely interconnected areas of somatosensory and somatomotor cortical areas
will exhibit similar diffusion dynamics and therefore form greater synchronization of concen-
trations outputs of diffusion functions. This can be tested by comparing pairs of regions with
large coherence using a cross-correlation analysis.

The somatosensory regions constitute a set of nodes with common dynamical behavior. A
GM and a MM process was applied to the mechanosensory subconnectome. The cross-corre-
lation matrix of co-activations has been determined and analyzed by spectral clustering to
obtain groups of regions that share similar synchronous behavior. The left and right hemi-
spheric primary and secondary somatosensory regions build such a group of regions in both
RD models (Figs 13 and 14). Moreover, the MM model allows a separation of primary and sec-
ondary motoric regions as well as primary and secondary somatosensory regions (Fig 14).

The bifurcation analysis suggests a stable oscillatory behavior of the GM model. A
comparable approach has been suggested elsewhere in order to predict the morphology of pat-
tern generation in a regular lattice [97]. In order to find the oscillation state and the fix-point
state of the GM model a simplification using default parameters has been performed. We con-
sider a single PDE without coupling and o.

Ou 2

u
— - 11
5 = 001 — bu + a (11)
%:0.0l u? — 0.01lv (12)

Analyzing the fixed points of the GM model by examing the eigenvalues of the Jacobian,
reveals the (a, b) plane is divided into an oscillatory region and a region with stable fixed points
(Fig 15). For pairs of parameters (a, b) on the right side of the curve r is negative, what indi-
cates stability in the fix-point. E.g., the fix-point u = 2 and v = 4 for the parameters a = b = 0.01
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Fig 13. Result of clustering the cross-correlation matrix of a GM process. The somatosensory regions constitute a cluster (green rectangle).

https://doi.org/10.1371/journal.pchi.1010507.9013

and is stable. This is demonstrated for a single, non connected node in neuroVIISAS (Fig 16a
and 16b). The real part r of the first eigenvalue as a function of parameters a and b is displayed
in Fig 17. For parameters (a, b) on the left side of the curve the GM model has oscillatory
behavior (Fig 18a and 18b). The same parameters were applied to a network with coupling of
PDEs. It is demonstrated that the oscillatory behavior is still stable. This becomes apparent
from the figures of the functions u and v (Fig BM and Fig BN in S1 Text).

The Wilson Cowan model, like the GM and MM models, leads to stable oscillations
with coherent patterns. The neural mass model of Wilson and Cowan (WC) [98-100] was
used (“WC-simulation” in neuroVIISAS [101]) to obtain an visual impression of the dynamics
(Fig BO in S1 Text) which results from the same network as used for the GM and MM models
(Figs 1 and 2). We used the parameters for a limit cycle oscillation of a single Wilson-Cowan
oscillator: ag: 1.2, ay: 2.0, cgg: 5.0, ¢ 1.0, cpg: 6.0, cgp: 10.0, 6E: 2.0, OI: 3.5, n: 20.0, P: 0.25, E:
0.1, Iy: 0.1, time steps: 1000, time step: 0.1. After about 100 steps the WC model gives rise to
stable oscillation within the interconnected regions. The similarity of functions is largest
within the peaks of oscillations. The Kuramoto index over all regions displays a regular and
stable course. The DRG regions without input connections show a small initialization peak
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Fig 14. Result of clustering the cross-correlation matrix of a MM process. The somatosensory regions are contained in the same cluster like in the
GM model.
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and after about 100 steps they show, as expected, a flat line. Principally, the WC model gener-
ates strongly regular oscillations which exhibit some differences when comparing with GM
and MM models. The MM model produces much more irregular functions of concentrations
with an obvious lower synchronized behavior as can be seen in the smaller Kuramoto indices.
The GM model generates more regular oscillations with damping of amplitudes.

The GM and MM models produce different dynamics in degree preserving surrogate
networks. The same number of nodes and connections were used by generating Erdos-Rényi
(uniform distributed edges) [102], Watts-Strogatz (small-world) [103], Barabasi-Albert (scale-
free) [104], Ozik-Hunt-Ott (small-world) [105], rewiring [106], Klemm-Eguiluz (growing
scale-free) [107] and multifractal (cluster coefficient) [108] randomized networks to investi-
gate the effects of structural changes of a network to GM and MM models. The GM model is
able to produce regular and stable oscillatory functions within nearly all random networks
with the exception of the rewiring network (Fig BH in S1 Text). The cross-correlation matrices
display large interregional correlations of function similarities. In the case of the rewiring net-
work the Kuramoto index shows strong changes and functions in early stages of the iterations
are damped. Interestingly, the Watts-Strogatz model generates a relatively homogeneous net-
work with regard to edge distribution. However, a chessboard like pattern of large and small
cross-correlations can be seen in the cross-correlation matrix. The MM model generates much
more irregular oscillations in the different random networks. An obvious feature is the slight
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Fig 15. Linear stability analysis of the GM model. The curve shows where the real part of the first eigenvalue of the
Jacobian matrix in the fix-point is zero in dependence of the parameters a (sigmaa) and b (mua).
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Fig 16. Stability of function u and v. a) The GM model was applied to exactly one non-connected node to show that the function
u has a stable progression above a certain number of iterations. The function of u for a = b = 0.01 shows stability at about 100
iterations. b) For the same parameters as given before, the function v is given.
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Fig 17. Real part of first eigenvalue of the GM model. The real parts of the first eigenvalue of the Jacobian matrix in
dependence of the parameters a (sigmaa) and b (mua).
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Fig 18. Oscillations of functions u and v. a) In addition to the stability of the function u in Fig 16 the regularity of the oscillations shall be shown here.
The regularity extends over all performed iterations. b) The regularity of the oscillations of the function v is shown here. As with the function u, the
regularity extends over all iterations performed.
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 24/39


https://doi.org/10.1371/journal.pcbi.1010507.g017
https://doi.org/10.1371/journal.pcbi.1010507.g018
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY Connectome diffusion

0 y x\ \ /, ‘\

AV AV AVAY A A
* d % \\\\,/ \ o ! / \
y d 5, " \ TN
g » "

T

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

Fig 19. Weight modulation function. This weight modulation function (damped cosine function) is applied to the GM RD-system. Initial conditions
Vo =1and W, = 1 were set for the dorsal root ganglia of the left side.

https://doi.org/10.1371/journal.pchi.1010507.9g019

overlapping low pass oscillation which is missing in the rewiring network. The rewiring net-
work appears to generate more regularity of the oscillating functions. The limit cycles int
phase diagram are lying closer together indicating more similarity of waves (Fig Bl in S1 Text).

Dynamic weight changes of the GM model lead to a change in the oscillation of the net-
work nodes of the mechanosensitive pathway. In the following experiment, the weight
modulation has been adapted to a progressive relapsing multiple sclerosis disease progression
(Fig 19).

By comparing the effect of nonlinear weight modulation of the three connections from the
left DRG 1-3 to the left cuneate nucleus with the connectome under normal conditions, the
concentrations of the GM RD-system show some remarkable differences. The initial ampli-
tudes of concentrations in the ventrolateral thalamic nucleus and somatosensory cortex are
similar (Fig BP in S1 Text) when compared with those in Fig BK in S1 Text. The following
amplitudes are slightly more irregular than those in Fig BK in S1 Text with unchanged weights.
Furthermore, some small phase shifts are visible when comparing the concentration functions
of the contralateral ventrolateral nucleus and somatosensory cortex of nonlinear weight modu-
lated simulation in Fig BP in S1 Text with those in Fig BK in S1 Text. When analyzing the aver-
age concentrations by differential connectome analysis [53], strongest differences of the
control connectome and weight-reduced connectome are localized at the cuneate nucleus,
posterior group of the thalamus, gracile nucleus, lateral thalamic nucleus, intralaminar tha-
lamic nuclei and ventral posterolateral thalamic nucleus. Thalamic nuclei appear to be most
affected by a reduction of weights of primary neurons along the mechanosensitive pathway.

To study more specifically the effect of weight reduction within the regions of a pathway
embedded in the network, we determined the input regions with diffusion outputs to the
regions of the mechanosensitive pathway (Fig BD in S1 Text—Fig BG in S1 Text). It turns out
that the ventrolateral thalamus receives slightly changed input following a weight reduction of
the afferents of the cuneate nucleus. It is conceivable that such an effect could also occur in
multiple sclerosis and lead to transmission disturbances of sensory or mechanosensitive signal
patterns with resulting neurological symptoms. These changes are visible after sorting the
input nodes by the average concentrations of activators (Fig BG in S1 Text). The ranking of
the right cuneate nucleus and the right secondary somatosensory cortex changed (Fig BF in S1
Text in comparison with Fig BG in SI Text). Stronger changes of ranks of regions with regard
to the average concentrations are found for afferents of the right primary somatosensory cor-
tex (Fig BF in S1 Text in comparison with Fig BG in S1 Text).

Long term changes of the oscillation pattern of the regions of the mechanosensitive pathway
were observed when iterations were extended up to 10000 (2 [timeStep] x 5000 [timeSteps] =
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10000) (Fig BQ in S1 Text). The Kuramoto order parameter r [109, 110] was calculated to esti-
mate the extent of synchronization or desynchronization of the oscillations of concentrations
of the regions of the mechanosensitive pathway. The weight modulation function (Fig 20) has
been applied to the output connections of the first three cervical DRGs to the cuneate nucleus
of the left side. The progression of concentrations of the GM RD-model for the ventrolateral
thalamic nucleus and the primary somatosensory cortex of the right side and the cuneate
nucleus of the left side is shown in Fig BQ in S1 Text. By applying initial values Vo = 1 and W,
=1 to the left DRG 1-3 regions the oscillations of the regions of the mechanosensitive pathway
develop a slow decrease of amplitudes without change of frequencies or phases. Beside cuneate
nucleus, ventrolateral thalamus and primary somatosensory cortex the DRG 2 is plotted in Fig
BQ in S1 Text, too. DRG 2 shown an obvious decrease of amplitude size due to its lack of
inputs. Following the application of the weight modulation function shown in Fig 20 the
amplitudes of concentrations of all these regions of the mechanosensitive pathway decrease
until iteration 4700 and then they increase. The Kuramoto order parameter indicates a slight
decrease of synchronization of the oscillations of concentrations of the three mechanosensitive
regions (Fig BR in S1 Text).

Dynamic weight changes of the MM model lead to a change in the oscillation of the net-
work nodes of the mechanosensitive pathway. The MM RD system works on another time
scale than the GM RD. Here, 400 time steps with a step size of 0.1 allows a sufficient survey of
the progression of the functions of the concentration of ROIs. To allow comparison of GM
and MM the same DRGs of the cervical segments 1-3 of the left side were related to constant
non-zero initial conditions with Py = 6 and Q, = 12 (Fig BS in S1 Text). Initial amplitudes of
the ipsilateral cuneate nucleus, contralateral ventrolateral thalamic nucleus and somatosensory
region are slightly delayed or shifted to the right on the x-axis in Fig BT in S1 Text. The ampli-
tudes of concentrations of the cuneate nucleus (blue curve) are better visible in Fig BT in S1
Text because the overlap is not as strong as in Fig BS in S1 Text. The amplitudes of the concen-
tration in the weight-reduced (step function) model of the contralateral somatosensory cortex
appear to be smaller than in the control connectome without weight reduction.

A comparable (Fig 19) damped cosine function as a weight modulation function (Fig 21)
was applied to the MM RD simulation with the same initial conditions like those 19 in S1 Text.
The concentration curves appear to have a lower coherency than in the case of a constant
weight reduction (Fig BU in S1 Text). This can be seen particularly well for the function course
of the cuneate nucleus, which was assigned the color cyan. Before the reduction of the edge
weights, the amplitudes of the cuneate nucleus are hidden by a grouping of amplitudes of most
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Fig 20. Weight modulation function. The weight modulation function (damped cosine function) is applied to the GM RD-system. Initial conditions
Vo =1and W, = 1 were set for the dorsal root ganglia of the left side. The number of iterations is 10000. The amplitudes were fixed to 10 and the lower
value of the weight reduction was set to 0.1.

https://doi.org/10.1371/journal.pchi.1010507.9020
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Fig 21. The weight modulation function. This weight modulation function (damped cosine function) is applied to the MM RD-system. It has the same
scale of time like the MM RD simulation.

https://doi.org/10.1371/journal.pcbi.1010507.9021

other regions in smaller areas or smaller sections on the x-axis. In other words, most of the
amplitudes are co-located and co-occur. If the weights are now reduced, the amplitudes of the
cyan coded cuneate nucleus move out of the amplitude group, so that the coherence or syn-
chronization of the amplitudes has slightly decreased.

The introduction of distance information creates a damping of the oscillations in the
GM model. The Euclidean distance of the major mechanosensitive pathway from the first
dorsal root ganglion and cervical spinal cord segment through the ipsilateral cuneate nucleus,
contralateral ventrolateral thalamic nucleus and ventroposterolateral thalamic nucleus to the
primary somatosensory cortex (Figs 22 and 23) were used in a GM RD model. When ignoring
the distance parameter the oscillation of concentrations is shown in Fig BV in S1 Text. By
applying Euclidean distance (d) and log-transformed weights through the following transform

Fixd+ F/w+S(F,=0.01,F,=0.01,w = 10(7%'(’“74)2), S =1) to the GM RD process a damp-
ing of oscillations was found (Fig BW in S1 Text).

Discussion

Three different RD models were applied to directed and weighted networks and connectomes.
It turns out that the GS model does not generate prolonged oscillations which are necessary to

Fig 22. Adjacency matrix. Adjacency matrix of mechanosensitive subnetwork.

https://doi.org/10.1371/journal.pcbi.1010507.9022
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Fig 23. Network representation of the adjacency matrix. The network of the adjacency matrix of Fig 22 is visualized.

https://doi.org/10.1371/journal.pchi.1010507.9023

investigate the propagation of dynamic signals or the spreading of information through a con-
nectome. The GM and MM RD models are able to generate oscillation patterns in directed
and weighted networks. The implemented GM model generates in a regular lattice Turing-like
patterns (white eye Turing pattern) [111-113]. The oscillations of the concentrations in the
studied networks and circuits are basically similar to the oscillations of RD systems docu-
mented in the literature [56, 114]. However, it cannot be said with absolute certainty that there
is a perfect match between the oscillation behavior of the procedures we implemented and the
same procedures documented in the literature. One reason for this is that different solvers can
be used to solve the differential equations and initial conditions can vary. The GM and MM
models are stable with regard to additive noise and stochastic noise of the Ornstein-Uhlenbeck
process (Fig Y in S1 Text). In addition to these candidate models, there are other promising
diffusion models (Barkley, Brusselator, Keller-Segel) that can be applied to networks in the
sense of network diffusion [115-120]. However, in the context of this work, we focused on RD
models that seemed promising in terms of accounting for weights, distances, and diffusion
directions. Therefore, the above-mentioned models were applied to the mechanosensitive
pathway embedded in a partial connectome consisting of bilateral regions of the brainstem,
diencephalon and cerebral cortex. This subnetwork is of particular interest due to the multiple
sclerosis demyelination disease. The mechanosensitive pathway is of special interest because
most patients are suffering because of the main symptoms of pain, hypoesthesia and paresthe-
sia [121, 122]. Other complexes of main symptoms (urinary, bowel, musculoskeletal, throat,
speech, vision, central symptoms) and their associated pathways are not considered here. A
control connectome without changes was compared with a connectome reflecting the demye-
lination disease progression of the dorsal fascicle of the spinal cord which contains mechano-
sensitive fibers from dorsal root ganglia to the cuneate nucleus for cervical segments.

Using linear stability analysis [123-131] and bifurcation analysis [131-135] we computed
the oscillation state and fix-point state of the GM model. Now it is possible to generate directly
oscillatory states of the GM model and study the its dynamic behavior in connectomes. The
effect of parameter variations such as rateA, ratel, muA and mul on the coherence of functions
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between all pairs of regions provides information of the stability of the RD models. We
observed similar clustering of coherent dynamics of regions when changing parameters. This
stability was found for the GM as well for the MM model. When comparing the Wilson-
Cowan neural mass model with the MM and GM models it turned out that the Wilson-Cowan
model produces similar oscillations like the GM model. If the WC, GM and MM models are
applied to the same network, they produce distinct spectra of amplitudes and frequencies. Fur-
thermore, we detected oscillatory stability if the connectivity changes from the empirical bio-
logical connectome to a scale-free or small-world null model. Interestingly, the oscillatory
behavior changes strongly when using a rewiring null model.

By varying reaction parameters of the GM and MM models it was found that the same
regions give rise to dynamically related groups. The primary and secondary somatosensory
and motoric cortical regions as well as the ventrolateral thalamic nucleus of both hemispheres
were assigned by spectral clustering to the same cluster. This group constitutes a functional
cluster for controlling somatomotor (AGl, AGm) behavior in dependence of sensory input
(S1, S2) from the ventrolateral thalamic nucleus.

In the case of a weight reduction by a step function obvious changes of oscillations in the
target region of the mechanosensory pathway which is the contralateral primary somatosen-
sory cortex were found. Moreover, it is possible to change the connections weights in analogy
to a progressive remitted disease progression of the disease (it is one of the four forms of multi-
ple sclerosis summarized as follows: Clinically isolated syndrome (CIS), Relapsing-remitting
MS (RRMS), Primary progressive MS (PPMS), Secondary progressive MS (SPMS)) with dis-
tinct changes of oscillations in the contralateral somatosensory cortex [66, 67, 136]. In the
meantime, there are models to simulate the clinical course of the aforementioned CIS relatively
accurately [71, 137, 138]. In the present study, however, we have restricted ourselves to simply
describable functions of weight modulation in order not to consider too many different influ-
encing factors. After applying such a periodic weight reduction (Fig AH in S1 Text), increased
amplitudes of the contralateral target region (somatosensory cortex) and slight phase shifts
were found. The effect can be carefully interpreted as a dynamic change caused by a structural
change in the organization of the network’s connection weights. Moreover, the change of
dynamics or oscillation of regions within the mechanosensory pathway may shape the demye-
linations effects resulting in paresthesias in the contralateral somatosensory cortex. By investi-
gating local effects of activator concentration of afferents of the mechanosensitive pathway, a
change of ranks of regions projecting to the ventrolateral thalamic nucleus and the somatosen-
sory cortex was found. This could indicate a change of input priority of afferent regions or a
disruption of temporal signal patterns processed by these thalamic and somatosensory regions.
Further, models of weight modulation should be considered as the one suggested by [139]. So
far, there exist no computational models that shape the effects of demyelination at the level of
networks and connectomes. Most modeling research of multiple sclerosis is performed at the
cellular level [71, 137, 138, 140-144], statistically [145] or in MRI studies [146, 147]. We have
mentioned above the comparison and application of changes in connection weights with the
courses of neurological deficits of CIS of multiple sclerosis. A disadvantage of using RD models
is the comparability of time scales to the clinical courses of multiple sclerosis. The clinical
courses of multiple sclerosis are over years to decades with oscillatory phases that can last for
several months. The RD models are represented by the iterations and iteration step sizes of the
functions. The relationship between these fundamentally different scales of neurological pro-
gression and function iteration of RD models remains to be worked out.

Further options for extending more parameters to RD models are the consideration of delay
differential equations [148-150] to better take note of Euclidean distances in combination with
weights of a connectome. A number of works have already investigated the introduction of
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delays in reaction diffusion systems [133-135, 151], which is also applicable to the future exten-
sion of the RD models studied here. Moreover, the consideration of region volume estimates
could introduce an important parameter for preferred pathways of the transmission of concen-
trations of RD through a connectome with many alternative pathways [86, 152].

The implementation of GM and MM RD in the neuroVIISAS framework offers the possibil-
ity to either use directional and/or weight information of connectivity. Thus, a RD modeling
tool has been made available which enables investigators to apply it to non-directed binary
adjacency matrices, complex weighted and directed connectivity data. A further development
of these RD approaches studied here is to consider distance-dependent delays in diffusion
solved by using delay differential equations which allow the control of a time parameter within
a simulation.

Those sets of parameters in the GM and MM models which generate oscillations in empiri-
cal weighted and directed networks like the mechanosensitive pathway network give rise to
oscillations in other empirical networks with similar global network features. However, it
needs to be analyzed how the amount of reciprocal connections, modularity and homogeneity
(variability of degrees) may influence RD parameters with regard to the stability of oscillations.

By investigating specific pathways of an empirical network which undergo neuropathologi-
cal changes like pain pathways, mechanosensory pathways and the visual pathway new tech-
niques are required to judge specific contributions of connections in such pathway-subgraphs.
This could support the comprehension how embedded pathways in networks may transmit
signals through multiple reciprocal connections as well as alternative routes through connec-
tomes [86]. How signals are transmitted in networks has traditionally been analyzed in gene
and protein networks by network propagation and network spreading analysis [153-157]. Sig-
nal propagation, signal transmission and signal routing analysis is used to investigate the travel-
ing of signals in generalized and neuronal networks. It has been shown that propagation
patterns can be measured in humans and that these patterns are remarkably stable [158].
Therefore, it appears promising to further investigate signal propagation through pathways in
partial connectomes shaping certain functions which are disrupted in multiple sclerosis. An
important area of work arises from the structured analysis of stimulus response patterns dur-
ing network diffusion. For this purpose it would be useful to implement FFT [159, 160] and
wavelet analyses [161, 162] of the oscillations of nodes of the networks. Several methods exist
which demonstrate how analysis of signal transmission may work in neuronal networks [163-
166]. Transmission of propagating signals can be analyzed in terms of spreading pattern exhib-
iting cross networks communications as well as a straight forward transmission with minimal
interaction through a certain route of a connectome. At least network flow analysis [167] has
been applied successfully for the Caenorhabditis elegans connectome. It should be mentioned
that a more basic theory exists of how to model signal propagation in networks using linear
response theory [168]. These propagation approaches may be applied to better understand the
propagation of signals in non-lesioned control connectomes and connectomes with modula-
tion of connections weights shaping demyelination processes in multiple sclerosis as well as
loss of neuron populations in neurodegenerative diseases including Parkinson’s, Alzheimer’s,
Huntington’s, Batten disease and amyotrophic lateral sclerosis.

Conclusion

The three reaction diffusion models of Gierer-Meinhardt, Mimura-Murray, and Gray-Scott
can be adapted in directed and edge weighted networks or connectomes of the nervous system.
Consideration of Euclidean distances between nodes of the treated network in the diffusion
processes was also realized. It was shown that the reaction diffusion systems retain their
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stability against noise. The comparison of the results of the reaction diffusion systems devel-
oped here with previously published studies, showed a qualitative agreement. The compound
weights can be modulated during a diffusion process. Thus, it is possible to apply demyelin-
ation and remyelination processes as they occur in certain forms of multiple sclerosis in a reac-
tion diffusion simulation. It was shown what effects periodic modulations of connection
weights have on the oscillation of concentrations in network nodes during diffusion processes.
The described implementation was done in neuroVIISAS and is directly executable on differ-
ent operating systems. In summary, it can be stated that the three reaction diffusion models
mimic the effects of demyelination through weight changes within the diffusion process and
could be a promising tool to predict changes of connectivity of those regions which do not
show obvious function changes.

Supporting information

S1 Text. Supporting information file containing tutorials and supplemental Figs A-BW.
The Supporting Information is divided into several sections and is intended to make the use of
the discussed RD models in neuroVIISAS comprehensible. For this purpose, a short introduc-
tion to neuroVIISAS is given in the first part of a tutorial. In the second part of the tutorial
more detailed background information about the RD models is given. In the third part of the
tutorial, complementary experiments to the main findings described in the article are pre-
sented. In the last section of the Supporting Information, graphical representations are shown
to which references are given in the main body of this paper. They are used for comparison to
the described experiments and for the consolidation of individual findings. The exemplar con-
nectivity data (MS.brain) that can be loaded directly into neuroVIIAS and the source code
(Reaction-diffusion.zip) are available on figshare (https://doi.org/10.6084/m9.figshare.
21081418.v1).

(PDF)

Acknowledgments

We greatly appreciate the assistance by Markus Kipp of the University of Rostock who sub-
stantially supports this project and contributed many discussions regarding the disease pro-
gression of multiple sclerosis.

Author Contributions

Conceptualization: Oliver Schmitt, Marc-Thorsten Hiitt, Claus C. Hilgetag.
Data curation: Oliver Schmitt.

Formal analysis: Oliver Schmitt.

Investigation: Oliver Schmitt.

Methodology: Christian Nitzsche, Marc-Thorsten Hiitt.

Resources: Oliver Schmitt.

Software: Christian Nitzsche, Peter Eipert, Vishnu Prathapan.

Supervision: Oliver Schmitt.

Validation: Christian Nitzsche, Peter Eipert, Vishnu Prathapan.

Visualization: Oliver Schmitt.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 31/39


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010507.s001
https://doi.org/10.6084/m9.figshare.21081418.v1
https://doi.org/10.6084/m9.figshare.21081418.v1
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY Connectome diffusion

Writing - original draft: Oliver Schmitt, Vishnu Prathapan, Marc-Thorsten Hiitt,
Claus C. Hilgetag.

Writing - review & editing: Oliver Schmitt.

References

1. Deco G, Jirsa VK, McIntosh AR. Resting brains never rest: computational insights into potential cogni-
tive architectures. Trends Neurosci. 2013; 36: 268-274. https://doi.org/10.1016/j.tins.2013.03.001
PMID: 23561718

2. Turing AM. The chemical basis of morphogenesis. Phil Trans R Soc Lond B. 1952; 237: 37-72.
https://doi.org/10.1098/rstb.1952.0012

3. Prigogine |, Lefever R. Symmetry breaking instabilities in dissipative systems. J Chem Phys. 1968;
48: 1695-1700. https://doi.org/10.1063/1.1668896

4. CastetsV, Dulos E, Boissonade J, De Kepper P. Experimental evidence of a sustained standing
Turing-type nonequilibrium chemical pattern. Phys Rev Lett. 1990; 64: 2953-2956. https://doi.org/10.
1103/PhysRevLett.64.2953 PMID: 10041855

5. Ouyang Q, Swinney HL. Transition from an uniform state to hexagonal and striped Turing patterns.
Nature 1991; 352: 610-612. https://doi.org/10.1038/352610a0

6. Murray JD. Mathematical Biology, |. An Introduction, third edition. Interdiscip Appl Math. 2002; Vol.
17, Springer-Verlag, New York.

7. Barrat A, Barthélemy M, Vespignani A. Dynamical processes on complex networks. Cambridge Univ.
Press, 2008.

8. Othmer HG, Scriven LE. Instability and dynamic pattern in cellular networks. J Theor Biol. 1971; 32:
507-537. https://doi.org/10.1016/0022-5193(71)90154-8 PMID: 5571122

9. Othmer HG, Scriven LE. Nonlinear aspects of dynamic pattern in cellular networks. J Theor Biol. 1974;
43: 83—112. https://doi.org/10.1016/S0022-5193(74)80047-0 PMID: 4813541

10. Horsthemke W, Lam K, Moore PK Network topology and Turing instability in small arrays of diffusively
coupled reactors. Phys Lett A. 2004; 328: 444—-451. https://doi.org/10.1016/j.physleta.2004.06.044

11.  Moore PK, Horsthemke W. Localized patterns in homogeneous networks of diffusively coupled reac-
tors. Physica D. 2005; 206: 121—144. https://doi.org/10.1016/j.physd.2005.05.002

12. McDougal RA, Conte C, Eggleston L, Newton AJH, Galijasevic H. Efficient simulation of 3D reaction-
diffusion in models of neurons and networks. Front Neuroinform. 2022; 16: 847108. https://doi.org/10.
3389/fninf.2022.847108 PMID: 35655652

13. Oliveira RF, Kim M, Blackwell KT. Subcellular location of PKA controls striatal plasticity: stochastic
simulations in spiny dendrites. PLoS Comput Biol. 2012 8(2): €1002383. https://doi.org/10.1371/
journal.pcbi.1002383 PMID: 22346744

14. Stiles JR, and Bartol TM. Monte Carlo methods for simulating realistic synaptic microphysiology using
MCell. In: Computational Neuroscience: Realistic modeling for experimentalists, 2001, ed. De Schutter
E. CRC Press, Boca Raton, 87-127.

15. Kerr R, Bartol TM, Kaminsky B, Dittrich M, Chang JCJ, Baden S et al. Fast Monte Carlo simulation
methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J. Sci. Comput.
2008, 30: 3126-3149. https://doi.org/10.1137/070692017 PMID: 20151023

16. Wagner M, Bartol TM, Sejnowski TJ, Cauwenberghs G. Markov chain abstractions of electrochemical
reaction-diffusion in synaptic transmission for neuromorphic computing. Front Neurosci. 2021; 15:
698635. https://doi.org/10.3389/fnins.2021.698635 PMID: 34912188

17. LiY, Kahraman O, Haselwandter CA. Stochastic lattice model of synaptic membrane protein domains.
Phys Rev E. 2017; 95: 052406. https://doi.org/10.1103/PhysRevE.95.052406 PMID: 28618626

18. Blinov ML, Schaff JC, Vasilescu D, Moraru Il, Bloom JE, Loew LM. Compartmental and spatial rule-
based modeling with Virtual Cell. Biophys J. 2017; 113: 1365-1372. https://doi.org/10.1016/j.bpj.
2017.08.022 PMID: 28978431

19. Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM. A general computational framework for model-
ing cellular structure and function. Biophys J. 1997; 73: 1135-1146. https://doi.org/10.1016/S0006-
3495(97)78146-3 PMID: 9284281

20. NovaklIL, GaoF, ChoiYS, Resasco D, Schaff JC, Slepchenko BM. Diffusion on a curved surface cou-
pled to diffusion in the volume: application to cell biology. J Comput Phys. 2007; 226: 1271-1290.
https://doi.org/10.1016/j.jcp.2007.05.025 PMID: 18836520

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 32/39


https://doi.org/10.1016/j.tins.2013.03.001
http://www.ncbi.nlm.nih.gov/pubmed/23561718
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1063/1.1668896
https://doi.org/10.1103/PhysRevLett.64.2953
https://doi.org/10.1103/PhysRevLett.64.2953
http://www.ncbi.nlm.nih.gov/pubmed/10041855
https://doi.org/10.1038/352610a0
https://doi.org/10.1016/0022-5193(71)90154-8
http://www.ncbi.nlm.nih.gov/pubmed/5571122
https://doi.org/10.1016/S0022-5193(74)80047-0
http://www.ncbi.nlm.nih.gov/pubmed/4813541
https://doi.org/10.1016/j.physleta.2004.06.044
https://doi.org/10.1016/j.physd.2005.05.002
https://doi.org/10.3389/fninf.2022.847108
https://doi.org/10.3389/fninf.2022.847108
http://www.ncbi.nlm.nih.gov/pubmed/35655652
https://doi.org/10.1371/journal.pcbi.1002383
https://doi.org/10.1371/journal.pcbi.1002383
http://www.ncbi.nlm.nih.gov/pubmed/22346744
https://doi.org/10.1137/070692017
http://www.ncbi.nlm.nih.gov/pubmed/20151023
https://doi.org/10.3389/fnins.2021.698635
http://www.ncbi.nlm.nih.gov/pubmed/34912188
https://doi.org/10.1103/PhysRevE.95.052406
http://www.ncbi.nlm.nih.gov/pubmed/28618626
https://doi.org/10.1016/j.bpj.2017.08.022
https://doi.org/10.1016/j.bpj.2017.08.022
http://www.ncbi.nlm.nih.gov/pubmed/28978431
https://doi.org/10.1016/S0006-3495(97)78146-3
https://doi.org/10.1016/S0006-3495(97)78146-3
http://www.ncbi.nlm.nih.gov/pubmed/9284281
https://doi.org/10.1016/j.jcp.2007.05.025
http://www.ncbi.nlm.nih.gov/pubmed/18836520
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY

Connectome diffusion

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Blasius TL, Reed N, Slepchenko BM, Verhey KJ. Recycling of kinesin-1 motors by diffusion after trans-
port. PLoS One. 2013; 8: €76081. https://doi.org/10.1371/journal.pone.0076081 PMID: 24098765

Brown S-A, Holmes RM, Loew LM. Spatial organization and diffusion in neuronal signaling. In: Compu-
tational Systems Neurobiology 2012, Springer Netherlands, 133—-161.

Blackwell KT. Paired turbulence and light do not produce a supralinear calcium increase in Hermis-
senda. J Comput Neurosci. 2004; 17: 81-99. https://doi.org/10.1023/B:JCNS.0000023866.88225.03
PMID: 15218355

Ness TV, Halnes G, Naess S, Pettersen KH, Einevoll GT. Computing extracellular electric potentials
from neuronal simulations. Adv Exp Med Biol. 2022; 1359: 179-199. https://doi.org/10.1007/978-3-
030-89439-9_8 PMID: 35471540

Ellingsrud AJ, Boullé N, Farrell PE, Rognes ME. Accurate numerical simulation of electrodiffusion and
water movement in brain tissue. Math Med Biol. 2021; 38: 516-551. https://doi.org/10.1093/imammb/
dgab016 PMID: 34791309

Ellingsrud AJ, Dukefoss DB, Enger R, Halnes G, Pettersen K, Rognes ME. Validating a computational
framework for ionic electrodiffusion with cortical spreading depression as a case study. eNeuro. 2022;
9: ENEURO.0408-21.2022. https://doi.org/10.1523/ENEURO.0408-21.2022 PMID: 35365505

Seetra MJ, Einevoll GT, Halnes G. An electrodiffusive neuron-extracellular-glia model for exploring the
genesis of slow potentials in the brain. PLoS Comput Biol. 2021; 17: €1008143. https://doi.org/10.
1371/journal.pcbi.1008143 PMID: 34270543

Spees WM, Sukstanskii AL, Bretthorst GL, Neil JJ, Ackerman JJH. Rat brain global ischemia-induced
diffusion changes revisited: biophysical modeling of the water and NAA MR “Diffusion Signal”. Magn
Reson Med. 2022. https://doi.org/10.1002/mrm.29262 PMID: 35452137

Juzekaeva E, Gainutdinov A, Mukhtarov M, Khazipov R. Dynamics of the hypoxia-induced tissue
edema in the rat barrel cortex in vitro. Front Cell Neurosci. 2018; 12: 502. https://doi.org/10.3389/
fncel.2018.00502 PMID: 30618644

Vorisek |, Sykova E. Ischemia-induced changes in the extracellular space diffusion parameters, K+,
and pH in the developing rat cortex and corpus callosum. J Cereb Blood Flow Metab. 1997; 17: 191-
203. https://doi.org/10.1097/00004647-199702000-00009 PMID: 9040499

Ichinomiya T. Frequency synchronization in a random oscillator network. Phys Rev E, 2004; 70,
026116. https://doi.org/10.1103/PhysRevE.70.026116

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U. Complex networks: Structure and dynamics.
Phys Rep. 2006; 424: 175-308. https://doi.org/10.1016/j.physrep.2005.10.009

Arenas A, Diaz-Guilera A, Kurths J, Moreno Y, Zhou C. Synchronization in complex networks. Phys
Rep. 2008; 469: 93—153. https://doi.org/10.1016/j.physrep.2008.09.002

Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Phys Rev Lett. 2001;
86: 3200—3203. https://doi.org/10.1103/PhysRevLett.86.3200 PMID: 11290142

Colizza V, Pastor-Satorras R, Vespignani A. Reaction-diffusion processes and metapopulation models
in heterogeneous networks. Nature Phys. 2007; 3: 276-282. https://doi.org/10.1038/nphys560

Colizza V, Vespignani A. Epidemic modeling in metapopulation systems with heterogeneous coupling
pattern: Theory and simulations. J Theor Biol. 2008; 251: 450—-467. https://doi.org/10.1016/.jtbi.2007.
11.028 PMID: 18222487

Hutt MT, Armbruster D, Lesne A. Predictable topological sensitivity of Turing patterns on graphs. Phys
Rev E. 2022; 105: 014304. https://doi.org/10.1103/PhysRevE.105.014304 PMID: 35193278

Betzel RF, Griffa A, Avena-Koenigsberger A, Gofi J, Thiran J-P, Hagmann P et al. Multi-scale commu-
nity organization of the human structural connectome and its relationship with resting-state functional
connectivity. Netw Sci. 2013; 1: 353-373. https://doi.org/10.1017/nws.2013.19

Delvenne J-C, Yaliraki SN, Barahona M. Stability of graph communities across time scales. Proc Natl
Acad Sci USA. 2010; 107: 12755—-12760. https://doi.org/10.1073/pnas.0903215107 PMID: 20615936

Goii J, Avena-Koenigsberger A, Velez de Mendizabal N, van den Heuvel MP, Betzel RF, Sporns O.
Exploring the morphospace of communication efficiency in complex networks. PLoS One. 2013; 8:
e58070. https://doi.org/10.1371/journal.pone.0058070 PMID: 23505455

Misi¢ B, Betzel RF, Nematzadeh A, Gofii J, Griffa A, Hagmann P et al. Cooperative and competitive
spreading dynamics on the human connectome. Neuron. 2015; 86: 1518—1529. https://doi.org/10.
1016/j.neuron.2015.05.035 PMID: 26087168

Abdelnour F, Dayan M, Devinsky O, Thesen T, Raj A. Functional brain connectivity is predictable from
anatomic network’s Laplacian eigen-structure. Neuroimage. 2018; 172: 728—739. https://doi.org/10.
1016/j.neuroimage.2018.02.016 PMID: 29454104

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 33/39


https://doi.org/10.1371/journal.pone.0076081
http://www.ncbi.nlm.nih.gov/pubmed/24098765
https://doi.org/10.1023/B:JCNS.0000023866.88225.03
http://www.ncbi.nlm.nih.gov/pubmed/15218355
https://doi.org/10.1007/978-3-030-89439-9_8
https://doi.org/10.1007/978-3-030-89439-9_8
http://www.ncbi.nlm.nih.gov/pubmed/35471540
https://doi.org/10.1093/imammb/dqab016
https://doi.org/10.1093/imammb/dqab016
http://www.ncbi.nlm.nih.gov/pubmed/34791309
https://doi.org/10.1523/ENEURO.0408-21.2022
http://www.ncbi.nlm.nih.gov/pubmed/35365505
https://doi.org/10.1371/journal.pcbi.1008143
https://doi.org/10.1371/journal.pcbi.1008143
http://www.ncbi.nlm.nih.gov/pubmed/34270543
https://doi.org/10.1002/mrm.29262
http://www.ncbi.nlm.nih.gov/pubmed/35452137
https://doi.org/10.3389/fncel.2018.00502
https://doi.org/10.3389/fncel.2018.00502
http://www.ncbi.nlm.nih.gov/pubmed/30618644
https://doi.org/10.1097/00004647-199702000-00009
http://www.ncbi.nlm.nih.gov/pubmed/9040499
https://doi.org/10.1103/PhysRevE.70.026116
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1103/PhysRevLett.86.3200
http://www.ncbi.nlm.nih.gov/pubmed/11290142
https://doi.org/10.1038/nphys560
https://doi.org/10.1016/j.jtbi.2007.11.028
https://doi.org/10.1016/j.jtbi.2007.11.028
http://www.ncbi.nlm.nih.gov/pubmed/18222487
https://doi.org/10.1103/PhysRevE.105.014304
http://www.ncbi.nlm.nih.gov/pubmed/35193278
https://doi.org/10.1017/nws.2013.19
https://doi.org/10.1073/pnas.0903215107
http://www.ncbi.nlm.nih.gov/pubmed/20615936
https://doi.org/10.1371/journal.pone.0058070
http://www.ncbi.nlm.nih.gov/pubmed/23505455
https://doi.org/10.1016/j.neuron.2015.05.035
https://doi.org/10.1016/j.neuron.2015.05.035
http://www.ncbi.nlm.nih.gov/pubmed/26087168
https://doi.org/10.1016/j.neuroimage.2018.02.016
https://doi.org/10.1016/j.neuroimage.2018.02.016
http://www.ncbi.nlm.nih.gov/pubmed/29454104
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY

Connectome diffusion

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Nematzadeh A, Ferrara E, Flammini A, Ahn Y-Y. Optimal network modularity for information diffusion.
Phys Rev Lett. 2014; 113: 088701. https://doi.org/10.1103/PhysRevLett.113.259901 PMID:
25192129

Abdelnour F, Voss HU, Raj A. Network diffusion accurately models the relationship between structural
and functional brain connectivity networks. Neuroimage. 2014; 90: 335-347. https://doi.org/10.1016/j.
neuroimage.2013.12.039 PMID: 24384152

Poudel GR, Dominguez DJF, Verhelst H, Vander Linden C, Deblaere K, Jones DK et al. Network diffu-
sion modeling predicts neurodegeneration in traumatic brain injury. Ann Clin Transl Neurol. 2020; 7:
270-279. https://doi.org/10.1002/acn3.50984 PMID: 32105414

Raj A, Kuceyeski A, Weiner M. A network diffusion model of disease progression in dementia. Neuron
2012; 73:1204-1215. https://doi.org/10.1016/j.neuron.2011.12.040 PMID: 22445347

Shadi K, Dyer E, Dovrolis C. Multisensory integration in the mouse cortical connectome using a net-
work diffusion model. Netw Neurosci. 2020; 4: 1030—1054. https://doi.org/10.1162/netn_a_00164
PMID: 33195947

Raj A, Powell F. Models of network spread and network degeneration in brain disorders. Biol Psychia-
try Cogn Neurosci Neuroimaging. 2018; 3: 788-797. https://doi.org/10.1016/j.bpsc.2018.07.012
PMID: 30170711

Park BY, Vos de Wael R, Paquola C, Lariviére S, Benkarim O, Royer J et al. Signal diffusion along con-
nectome gradients and inter-hub routing differentially contribute to dynamic human brain function.
Neuroimage. 2021; 224: 117429. https://doi.org/10.1016/j.neuroimage.2020.117429 PMID:
33038538

Avena-Koenigsberger A, Yan X, Kolchinsky A, van den Heuvel MP, Hagmann P, Sporns O. A spec-
trum of routing strategies for brain networks. PLoS Comput Biol. 2019; 15: €1006833. https://doi.org/
10.1371/journal.pcbi.1006833 PMID: 30849087

Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat
Rev Neurosci. 2017; 19: 17-33. https://doi.org/10.1038/nrn.2017.149 PMID: 29238085

Schmitt O, Eipert P. neuroVIISAS: approaching multiscale simulation of the rat connectome. Neuroin-
formatics 2012; 10: 243-267. https://doi.org/10.1007/s12021-012-9141-6 PMID: 22350719

Schwanke S, Jenssen J, Eipert P, Schmitt O. Towards differential connectomics with NeuroVIISAS.
Neuroinformatics. 2019; 17: 163—179. https://doi.org/10.1007/s12021-018-9389-6 PMID: 30014279

Mimura M, Murray JD. On a diffusive prey-predator model which exhibits patchiness. J Theor Biol.
1978; 75: 249-262. https://doi.org/10.1016/0022-5193(78)90332-6 PMID: 745441

Nakao H, Mikhailov AS. Turing patterns in network-organized activator-inhibitor systems. Nat Phys.
2010; 6: 544-550. https://doi.org/10.1038/nphys1651

Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972; 12: 30-39. https:/
doi.org/10.1007/BF00289234 PMID: 4663624

Gierer A. Generation of biological patterns and form: Some physical, mathematical, and logical
aspects. Progr Biophys Molec Biol. 1981; 37: 1—47. https://doi.org/10.1016/0079-6107(82)90019-0
PMID: 7244249

Koch AJ, Meinhardt H. Biological pattern formation: from basic mechanisms to complex strucutres.
Rev Mod Phys. 1994; 66: 1481-1507. https://doi.org/10.1103/RevModPhys.66.1481

Pearson JE. Complex patterns in a simple system. Science. 1993; 261: 189—192. https://doi.org/10.
1126/science.261.5118.189 PMID: 17829274

Lee KJ, McCormick WD, Ouyang Q, Swinney HL. Pattern formation by interacting chemical fronts. Sci-
ence. 1993; 261: 192—194. https://doi.org/10.1126/science.261.5118.192 PMID: 17829275

Gray P, Scott SK. Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and
other forms of multistability. Chem Eng Sci. 1983; 38: 29-43. https://doi.org/10.1016/0009-2509(83)
80132-8

Gray P, Scott SK. Autocatalytic reactions in the isothermal continuous stirred tank reactor: oscillations
and instabilities in the system a + 2b — 3b, b — c. Chem Eng Sci. 1984; 39: 1087—-1097. https://doi.
org/10.1016/0009-2509(84)87017-7

Gray P, Scott SK. Sustained oscillations and other exotic patterns of behaviour in isothermal reactions.
J Phys Chem 1985; 89: 22-32. https://doi.org/10.1021/j100247a009

Gray P, Scott SK. Chemical oscillations and instabilities. Non-linear chemical kinetics. Clarendon
Press, Oxford, 1994.

Hausenblas E, Randrianasolo TA, Thalhammer M. Theoretical study and numerical simulation of pat-
tern formation in the deterministic and stochastic Gray-Scott equations. J Comp Appl Math 2019; 364:
112335. https://doi.org/10.1016/j.cam.2019.06.051

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 34/39


https://doi.org/10.1103/PhysRevLett.113.259901
http://www.ncbi.nlm.nih.gov/pubmed/25192129
https://doi.org/10.1016/j.neuroimage.2013.12.039
https://doi.org/10.1016/j.neuroimage.2013.12.039
http://www.ncbi.nlm.nih.gov/pubmed/24384152
https://doi.org/10.1002/acn3.50984
http://www.ncbi.nlm.nih.gov/pubmed/32105414
https://doi.org/10.1016/j.neuron.2011.12.040
http://www.ncbi.nlm.nih.gov/pubmed/22445347
https://doi.org/10.1162/netn_a_00164
http://www.ncbi.nlm.nih.gov/pubmed/33195947
https://doi.org/10.1016/j.bpsc.2018.07.012
http://www.ncbi.nlm.nih.gov/pubmed/30170711
https://doi.org/10.1016/j.neuroimage.2020.117429
http://www.ncbi.nlm.nih.gov/pubmed/33038538
https://doi.org/10.1371/journal.pcbi.1006833
https://doi.org/10.1371/journal.pcbi.1006833
http://www.ncbi.nlm.nih.gov/pubmed/30849087
https://doi.org/10.1038/nrn.2017.149
http://www.ncbi.nlm.nih.gov/pubmed/29238085
https://doi.org/10.1007/s12021-012-9141-6
http://www.ncbi.nlm.nih.gov/pubmed/22350719
https://doi.org/10.1007/s12021-018-9389-6
http://www.ncbi.nlm.nih.gov/pubmed/30014279
https://doi.org/10.1016/0022-5193(78)90332-6
http://www.ncbi.nlm.nih.gov/pubmed/745441
https://doi.org/10.1038/nphys1651
https://doi.org/10.1007/BF00289234
https://doi.org/10.1007/BF00289234
http://www.ncbi.nlm.nih.gov/pubmed/4663624
https://doi.org/10.1016/0079-6107(82)90019-0
http://www.ncbi.nlm.nih.gov/pubmed/7244249
https://doi.org/10.1103/RevModPhys.66.1481
https://doi.org/10.1126/science.261.5118.189
https://doi.org/10.1126/science.261.5118.189
http://www.ncbi.nlm.nih.gov/pubmed/17829274
https://doi.org/10.1126/science.261.5118.192
http://www.ncbi.nlm.nih.gov/pubmed/17829275
https://doi.org/10.1016/0009-2509(83)80132-8
https://doi.org/10.1016/0009-2509(83)80132-8
https://doi.org/10.1016/0009-2509(84)87017-7
https://doi.org/10.1016/0009-2509(84)87017-7
https://doi.org/10.1021/j100247a009
https://doi.org/10.1016/j.cam.2019.06.051
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY

Connectome diffusion

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Zhou F, Zhuang Y, Gong H, Wang B, Wang X, Chen Q et al. Altered inter-subregion connectivity of the
default mode network in relapsing remitting multiple sclerosis: a functional and structural connectivity
study. PLoS One. 2014; 9: e101198. https://doi.org/10.1371/journal.pone.0101198 PMID: 24999807

Sbardella E, Tona F, Petsas N, Upadhyay N, Piattella MC, Filippini N et al. Functional connectivity
changes and their relationship with clinical disability and white matter integrity in patients with relaps-
ing-remitting multiple sclerosis. Mult Scler. 2015; 21: 1681-1692. https://doi.org/10.1177/
1352458514568826 PMID: 26041799

Ropero Pelaez FJ, Taniguchi S. The gate theory of pain revisited: modeling different pain conditions
with a parsimonious neurocomputational model. Neural Plast. 2016; 2016: 4131395. https://doi.org/
10.1155/2016/4131395 PMID: 27088014

Tommasin S, De Giglio L, Ruggieri S, Petsas N, Gianni C, Pozzilli C et al. Relation between functional
connectivity and disability in Multiple sclerosis: a non-linear model. J Neurol. 2018; 265: 2881-2892.
https://doi.org/10.1007/s00415-018-9075-5 PMID: 30276520

Fleischer V, Radetz A, Ciolac D, Muthuraman M, Gonzalez-Escamilla G, Zipp F et al. Graph theoreti-
cal framework of brain networks in Multiple sclerosis: A review of concepts. Neuroscience. 2019; 403:
35-53. https://doi.org/10.1016/j.neuroscience.2017.10.033 PMID: 29101079

Kotelnikova E, Kiani NA, Abad E, Martinez-Lapiscina EH, Andorra M, Zubizarreta | et al. Dynamics
and heterogeneity of brain damage in multiple sclerosis. PLoS Comput Biol 2017; 13: e1005757.
https://doi.org/10.1371/journal.pcbi.1005757 PMID: 29073203

He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K et al. Impaired small-world efficiency in
structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain. 2009;
132: 3366—-3379. https://doi.org/10.1093/brain/awp089 PMID: 19439423

Guye M, Bettus G, Bartolomei F, Cozzone PJ. Graph theoretical analysis of structural and functional
connectivity MRI in normal and pathological brain networks. MAGMA. 2010; 23: 409—421. https://doi.
org/10.1007/s10334-010-0205-z PMID: 20349109

Muthuraman M, Fleischer V, Kolber P, Luessi F, Zipp F, Groppa S. Structural Brain Network Charac-
teristics Can Differentiate CIS from Early RRMS. Front Neurosci. 2016; 10: 14. https://doi.org/10.
3389/fnins.2016.00014 PMID: 26869873

Tewarie P, Steenwijk MD, Tijms BM, Daams M, Balk LJ, Stam CJ et al. Disruption of structural and
functional networks in long-standing multiple sclerosis. Hum Brain Mapp. 2014; 35: 5946-5961.
https://doi.org/10.1002/hbm.22596 PMID: 25053254

Gamboa OL, Tagliazucchi E, von Wegner F, Jurcoane A, Wahl M, Laufs H et al. Working memory per-
formance of early MS patients correlates inversely with modularity increases in resting state functional
connectivity networks. Neuroimage. 2014; 94: 385-395. https://doi.org/10.1016/j.neuroimage.2013.
12.008 PMID: 24361662

Bando Y, Takakusaki K, Ito S, Terayama R, Kashiwayanagi M, Yoshida S. Differential changes in axo-
nal conduction following CNS demyelination in two mouse models. Eur J Neurosci. 2008; 28: 1731—
1742. https://doi.org/10.1111/j.1460-9568.2008.06474.x PMID: 18973589

Wu GF, Alvarez E. The immunopathophysiology of multiple sclerosis. Neurol Clin. 2011; 29: 257-278.
https://doi.org/10.1016/j.ncl.2010.12.009 PMID: 21439440

Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C et al. Analysis of
immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;
45:1353-1360. https://doi.org/10.1038/ng.2770 PMID: 24076602

Bréandle SM, Obermeier B, Senel M, Bruder J, Mentele R, Khademi M et al. Distinct oligoclonal band
antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc Natl Acad Sci U S A. 2016;
113: 7864—-7869. https://doi.org/10.1073/pnas.1522730113 PMID: 27325759

Brennan KM, Galban-Horcajo F, Rinaldi S, O’Leary CP, Goodyear CS, Kalna G et al. Lipid arrays iden-
tify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in
multiple sclerosis. J Neuroimmunol. 2011; 238: 87-95. https://doi.org/10.1016/j.jneuroim.2011.08.002
PMID: 21872346

Sukhinin DI, Engel AK, Manger P, Hilgetag CC. Building the Ferretome. Front Neuroinform. 2014; 10:
16.

Shanahan M, Bingman VP, Shimizu T, Wild M, Guntirkin O. Large-scale network organization in the
avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci. 2013; 7: 89.
https://doi.org/10.3389/fncom.2013.00089 PMID: 23847525

Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kétter R. Advanced database methodology
for the collation of connectivity data on the macaque brain (CoCoMac). Philos Trans R Soc Lond B Biol
Sci. 2001; 356: 1159-1186. https://doi.org/10.1098/rstb.2001.0908 PMID: 11545697

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 35/39


https://doi.org/10.1371/journal.pone.0101198
http://www.ncbi.nlm.nih.gov/pubmed/24999807
https://doi.org/10.1177/1352458514568826
https://doi.org/10.1177/1352458514568826
http://www.ncbi.nlm.nih.gov/pubmed/26041799
https://doi.org/10.1155/2016/4131395
https://doi.org/10.1155/2016/4131395
http://www.ncbi.nlm.nih.gov/pubmed/27088014
https://doi.org/10.1007/s00415-018-9075-5
http://www.ncbi.nlm.nih.gov/pubmed/30276520
https://doi.org/10.1016/j.neuroscience.2017.10.033
http://www.ncbi.nlm.nih.gov/pubmed/29101079
https://doi.org/10.1371/journal.pcbi.1005757
http://www.ncbi.nlm.nih.gov/pubmed/29073203
https://doi.org/10.1093/brain/awp089
http://www.ncbi.nlm.nih.gov/pubmed/19439423
https://doi.org/10.1007/s10334-010-0205-z
https://doi.org/10.1007/s10334-010-0205-z
http://www.ncbi.nlm.nih.gov/pubmed/20349109
https://doi.org/10.3389/fnins.2016.00014
https://doi.org/10.3389/fnins.2016.00014
http://www.ncbi.nlm.nih.gov/pubmed/26869873
https://doi.org/10.1002/hbm.22596
http://www.ncbi.nlm.nih.gov/pubmed/25053254
https://doi.org/10.1016/j.neuroimage.2013.12.008
https://doi.org/10.1016/j.neuroimage.2013.12.008
http://www.ncbi.nlm.nih.gov/pubmed/24361662
https://doi.org/10.1111/j.1460-9568.2008.06474.x
http://www.ncbi.nlm.nih.gov/pubmed/18973589
https://doi.org/10.1016/j.ncl.2010.12.009
http://www.ncbi.nlm.nih.gov/pubmed/21439440
https://doi.org/10.1038/ng.2770
http://www.ncbi.nlm.nih.gov/pubmed/24076602
https://doi.org/10.1073/pnas.1522730113
http://www.ncbi.nlm.nih.gov/pubmed/27325759
https://doi.org/10.1016/j.jneuroim.2011.08.002
http://www.ncbi.nlm.nih.gov/pubmed/21872346
https://doi.org/10.3389/fncom.2013.00089
http://www.ncbi.nlm.nih.gov/pubmed/23847525
https://doi.org/10.1098/rstb.2001.0908
http://www.ncbi.nlm.nih.gov/pubmed/11545697
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY

Connectome diffusion

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.
103.

104.

105.

106.

107.

108.

109.

110.

Scannell JW, Blakemore C, Young MP. Analysis of connectivity in the cat cerebral cortex. J Neurosci.
1995; 15: 1463-1483. https://doi.org/10.1523/JNEUROSCI.15-02-01463.1995 PMID: 7869111

Schmitt O, Eipert P, Kettlitz R, Lessmann F, Wree A. The connectome of the basal ganglia. Brain
Struct Funct. 2016; 221: 753-814. https://doi.org/10.1007/s00429-014-0936-0 PMID: 25432770

Burns G. Neural connectivity of the rat: Theory, methods and applications. PhD thesis, University of
Oxford, 1997.

Download link of the data used in this investigation: https://neuroviisas.med.uni-rostock.de/data.tar.gz

Buric F. Pattern formation and chemical evolution in extended Gray-Scott models. Master of Science
thesis in Complex Adaptive Systems, Division of Physical Resource Theory, Department of Energy
and Environment, Chalmers University of Technology, Gothenburg, Sweden, 2014.

Bussas M, Husseini M, Harabacz L, Pineker V, Grahl S, Pongratz V et al. Multiple sclerosis lesions
and atrophy in the spinal cord: Distribution across vertebral levels and correlation with disability. Neu-
roimage Clin. 2022; 34:103006. https://doi.org/10.1016/j.nicl.2022.103006 PMID: 35468568

Andelova M, Uher T, Krasensky J, Sobisek L, Kusova E, Srpova B et al. Additive effect of spinal cord
volume, diffuse and focal cord pathology on disability in multiple sclerosis. Front Neurol. 2019; 10:820.
https://doi.org/10.3389/fneur.2019.00820 PMID: 31447759

Smith KJ, McDonald WI. The pathophysiology of multiple sclerosis: the mechanisms underlying the
production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci.
1999; 354(1390): 1649-1673. https://doi.org/10.1098/rstb.1999.0510 PMID: 10603618

Bota M, Sporns O, Swanson LW. Architecture of the cerebral cortical association connectome underly-
ing cognition. Proc Natl Acad Sci U S A. 2015; 112: E2093—E2101. https://doi.org/10.1073/pnas.
1504394112 PMID: 25848037

von Luxburg U. A tutorial on spectral clustering. Stat Comp. 2007; 17: 1573-1375. https://doi.org/10.
1007/s11222-007-9033-z

Ng A, Jordan M, Weiss Y. On spectral clustering: analysis and an algorithm Dietterich T, Becker S,
Ghahramani Z (eds.); Advances in Neural Information Processing Systems. 2002; 14: 849-856. MIT
Press, Cambridge.

Van Dongen S. Graph clustering by flow simulation. PhD Thesis. 2000; University of Utrecht.

Gonpot P, Collet J, Sookia NUH Gierer-Meinhardt model: bifurcation analysis and pattern formation.
Trends Appl Sci Res. 2008; 3: 115—128. https://doi.org/10.3923/tasr.2008.115.128

Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons.
Biophys J. 1972; 12: 1-24. https://doi.org/10.1016/S0006-3495(72)86068-5 PMID: 4332108

Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic ner-
vous tissue. Kybernetik. 1973; 13: 55-80. https://doi.org/10.1007/BF00288786 PMID: 4767470

Byrne A, O’'Dea RD, Forrester M, Ross J, Coombes S. Next-generation neural mass and field model-
ing. J Neurophysiol. 2020; 123: 726—742. https://doi.org/10.1152/jn.00406.2019 PMID: 31774370

Daffertshofer A, van Wijk BC. On the influence of amplitude on the connectivity between phases. Front
Neuroinform. 2011; 5:6. https://doi.org/10.3389/fninf.2011.00006 PMID: 21811452

Erdds P, Rényi A. On random graphs. Publicationes Mathematica. 1959; 6: 290-297.

Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998; 393: 440-442.
https://doi.org/10.1038/30918 PMID: 9623998

Barabasi A-L, Albert R. Emergence of scaling in random networks. Science. 1999; 286: 509-512.
https://doi.org/10.1126/science.286.5439.509 PMID: 10521342

Ozik J, Hunt BR, Ott E. Growing networks with geographical attachment preference: Emergence of
small worlds. Phys Rev E. 2004; 69: 026108. https://doi.org/10.1103/PhysRevE.69.026108 PMID:
14995521

Maier BF. Generalization of the small-world effect on a model approaching the Erdés-Rényi random
graph. Sci Rep. 2019; 9: 9268. https://doi.org/10.1038/s41598-019-45576-3 PMID: 31239466

Klemm K, Eguilez VM. Growing scale-free networks with small-world behavior. Phys Rev E. 2002; 65,
57102. https://doi.org/10.1103/PhysRevE.65.057102 PMID: 12059755

Palla G, Lovasz L, Vicsek T. Multifractal network generator. Proc Natl Acad Sci U S A. 2010; 107:
7640-7645. https://doi.org/10.1073/pnas.0912983107 PMID: 20385847

Schréder M, Timme M, Witthaut D. A universal order parameter for synchrony in networks of limit
cycle oscillators. Chaos. 2017; 27: 073119. https://doi.org/10.1063/1.4995963 PMID: 28764398

Odor G, Kelling J. Critical synchronization dynamics of the Kuramoto model on connectome and small
world graphs. Sci Rep. 2019; 9: 19621. https://doi.org/10.1038/s41598-019-54769-9 PMID:
31873076

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 36/39


https://doi.org/10.1523/JNEUROSCI.15-02-01463.1995
http://www.ncbi.nlm.nih.gov/pubmed/7869111
https://doi.org/10.1007/s00429-014-0936-0
http://www.ncbi.nlm.nih.gov/pubmed/25432770
https://neuroviisas.med.uni-rostock.de/data.tar.gz
https://doi.org/10.1016/j.nicl.2022.103006
http://www.ncbi.nlm.nih.gov/pubmed/35468568
https://doi.org/10.3389/fneur.2019.00820
http://www.ncbi.nlm.nih.gov/pubmed/31447759
https://doi.org/10.1098/rstb.1999.0510
http://www.ncbi.nlm.nih.gov/pubmed/10603618
https://doi.org/10.1073/pnas.1504394112
https://doi.org/10.1073/pnas.1504394112
http://www.ncbi.nlm.nih.gov/pubmed/25848037
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.3923/tasr.2008.115.128
https://doi.org/10.1016/S0006-3495(72)86068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1007/BF00288786
http://www.ncbi.nlm.nih.gov/pubmed/4767470
https://doi.org/10.1152/jn.00406.2019
http://www.ncbi.nlm.nih.gov/pubmed/31774370
https://doi.org/10.3389/fninf.2011.00006
http://www.ncbi.nlm.nih.gov/pubmed/21811452
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
https://doi.org/10.1103/PhysRevE.69.026108
http://www.ncbi.nlm.nih.gov/pubmed/14995521
https://doi.org/10.1038/s41598-019-45576-3
http://www.ncbi.nlm.nih.gov/pubmed/31239466
https://doi.org/10.1103/PhysRevE.65.057102
http://www.ncbi.nlm.nih.gov/pubmed/12059755
https://doi.org/10.1073/pnas.0912983107
http://www.ncbi.nlm.nih.gov/pubmed/20385847
https://doi.org/10.1063/1.4995963
http://www.ncbi.nlm.nih.gov/pubmed/28764398
https://doi.org/10.1038/s41598-019-54769-9
http://www.ncbi.nlm.nih.gov/pubmed/31873076
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY

Connectome diffusion

111.

112,

113.

114.

115.

116.

117.

118.

119.

120.

121.
122,

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Yan-Ning W, Ping-Jian W, Chun-Ju H, Chang-Song L, Zhen-Gang Z. Turing Patterns in a Reaction-
Diffusion System, Comm Theo Phys. 2006; 45: 761-764.

Landge AN, Jordan BM, Diego X, Mller P. Pattern formation mechanisms of self-organizing reaction-
diffusion systems. Developmental Biology. 2020; 460: 2—11. https://doi.org/10.1016/j.ydbio.2019.10.
031 PMID: 32008805

Hu J, Zhu L. Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay
in both network and non-network environments. Chaos, Sol Frac. 2021; 153: 111542. https://doi.org/
10.1016/j.chaos.2021.111542

Marcon L, Diego X, Sharpe J, Mdller P. High-throughput mathematical analysis identifies Turing net-
works for patterning with equally diffusing signals. eLife. 2016; 5: e14022 https://doi.org/10.7554/
elife.14022 PMID: 27058171

Barkley D Barkley model. http://www.scholarpedia.org/article/Barkley_model, Scholarpedia, 2008.

Barkley D. A model for fast computer simulation of waves in excitable media. Physica D: Nonlinear
Phenomena 1991; 49: 61-70. https://doi.org/10.1016/0167-2789(91)90194-E

Barkley D. Euclidean symmetry and the dynamics of rotating spiral waves. Phys Rev Lett. 1994 Jan 3;
72(1):164—167. https://doi.org/10.1103/PhysRevLett.72.164 PMID: 10055592

Dowle M, Mantel RM, Barkley D. Fast simulations of waves in three-dimensional excitable media. Int J
Bif Chaos 1997; 7: 2529-2545 https://doi.org/10.1142/S0218127497001692

Nicolis G, Prigogine |. Self-organization in non-equilibrium systems: From dissipative structures to
order through fluctuations. 1977 Wiley, New York.

Keller EF, Segel LA. Model for chemotaxis. J. Theor. Biol. 1971; 30: 225-234. https://doi.org/10.1016/
0022-5193(71)90050-6 PMID: 4926701

Minagar A. Multiple sclerosis. A mechanistic view. Academic Press, Amsterdam, 2016.

Compston A, Confavreux C, Lassmann H, McDonald I, Miller D, Noseworthy J et al. McAlpine’s Multi-
ple sclerosis. Churchill Livingstone, 2006.

Holmes WR. An efficient, non-linear stability analysis for detecting pattern formation in reaction diffu-
sion systems. Bull Math Biol. 2014; 76: 157-183. https://doi.org/10.1007/s11538-013-9914-6 PMID:
24158538

Getz MC, Nirody JA, Rangamani P. Stability analysis in spatial modeling of cell signaling. WIREs Syst
Biol Med. 2018; 10: e1395. https://doi.org/10.1002/wsbm.1395 PMID: 28787545

Lakshmikantham V, Leela S, Martynyuk AA. Stability Analysis of Nonlinear Systems. Systems & Con-
tral: Foundations & Application, Birkhauser, 2015.

Madzvamuse A, Ndakwo H, Barreira R. Stability analysis of reaction-diffusion models on evolving
domains: The effects of cross-diffusion. Discrete & Cont Dyn Sys—A. 2016; 36: 2133.

Sayama H. Introduction to the modeling and analysis of complex systems. Open SUNY Textbooks,
2015.

Nikravesh SKY. Nonlinear systems stability analysis: Lyapunov-based approach. CRC Press, Boca
Raton, London, New York, 2013.

Nirody J, Rangamani P. An introduction to linear stability analysis for deciphering spatial patterns in
signaling networks. arXiv, 1501.06640, 2015.

Sarfaraz W, Madzvamuse A. Classification of parameter spaces for a reaction-diffusion model on sta-
tionary domains. Chaos, Solitons & Fractals. 2017; 103: 33-35. https://doi.org/10.1016/j.chaos.2017.
05.032

Theodoropoulos C, Qian Y-H, Kevrekidis IG. Coarse stability and bifurcation analysis using time-step-
pers: A reaction-diffusion example. Proc Natl Acad Sci. 2000; 97: 9840-9843. https://doi.org/10.1073/
pnas.97.18.9840 PMID: 10963656

Zhao H, Yuan J, Zhang X. Stability and bifurcation analysis of reaction-diffusion neural networks with
delays. Neurocomputing. 2015; 147: 280—290. https://doi.org/10.1016/j.neucom.2015.01.005

Dong T, Xia L. Stability and Hopf bifurcation of a reaction-diffusion neutral neuron system with time
delay. Int J Bifurc Chaos. 2017; 27: 1750214. https://doi.org/10.1142/S0218127417502145

Tian X, Xu R. Hopf bifurcation analysis of a reaction-diffusion neural network with time delay in leakage
terms and distributed delays. Neural Proc Lett. 2016; 43: 173—-193. https://doi.org/10.1007/s11063-
015-9410-0

Lv T, Gan Q, Zhu Q. Stability and bifurcation analysis for a class of generalized reaction-diffusion neu-
ral networks with time delay. Discrete Dyn Nat Soc. 2016; 2016: 4321358. https://doi.org/10.1155/
2016/4321358

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 37/39


https://doi.org/10.1016/j.ydbio.2019.10.031
https://doi.org/10.1016/j.ydbio.2019.10.031
http://www.ncbi.nlm.nih.gov/pubmed/32008805
https://doi.org/10.1016/j.chaos.2021.111542
https://doi.org/10.1016/j.chaos.2021.111542
https://doi.org/10.7554/eLife.14022
https://doi.org/10.7554/eLife.14022
http://www.ncbi.nlm.nih.gov/pubmed/27058171
http://www.scholarpedia.org/article/Barkley_model
https://doi.org/10.1016/0167-2789(91)90194-E
https://doi.org/10.1103/PhysRevLett.72.164
http://www.ncbi.nlm.nih.gov/pubmed/10055592
https://doi.org/10.1142/S0218127497001692
https://doi.org/10.1016/0022-5193(71)90050-6
https://doi.org/10.1016/0022-5193(71)90050-6
http://www.ncbi.nlm.nih.gov/pubmed/4926701
https://doi.org/10.1007/s11538-013-9914-6
http://www.ncbi.nlm.nih.gov/pubmed/24158538
https://doi.org/10.1002/wsbm.1395
http://www.ncbi.nlm.nih.gov/pubmed/28787545
https://doi.org/10.1016/j.chaos.2017.05.032
https://doi.org/10.1016/j.chaos.2017.05.032
https://doi.org/10.1073/pnas.97.18.9840
https://doi.org/10.1073/pnas.97.18.9840
http://www.ncbi.nlm.nih.gov/pubmed/10963656
https://doi.org/10.1016/j.neucom.2015.01.005
https://doi.org/10.1142/S0218127417502145
https://doi.org/10.1007/s11063-015-9410-0
https://doi.org/10.1007/s11063-015-9410-0
https://doi.org/10.1155/2016/4321358
https://doi.org/10.1155/2016/4321358
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY

Connectome diffusion

136.

137.

138.

139.

140.

141.

142,

143.

144.

145.

146.

147.

148.

149.

150.

151.

152,

153.

154.

155.

156.

157.

158.

Ghanbari Z, Gharibzadeh S. Synchrony analysis: application in early diagnosis, staging and prognosis
of multiple sclerosis. Front Comput Neurosci. 2014; 8: 73. https://doi.org/10.3389/fncom.2014.00073
PMID: 25100985

Kannan V, Kiani NA, Piehl F, Tegner J. A minimal unified model of disease trajectories captures hall-
marks of multiple sclerosis. Math Biosci. 2017; 289: 1-8. https://doi.org/10.1016/j.mbs.2017.03.006
PMID: 28365299

Elettreby MF, Ahmed E. A simple mathematical model for relapsing-remitting multiple sclerosis
(RRMS). Med Hypotheses. 2019; 135: 109478. https://doi.org/10.1016/j.mehy.2019.109478 PMID:
31733531

Pappalardo F, Rajput AM, Motta S Computational modeling of brain pathologies: the case of multiple
sclerosis. Brief Bioinform. 2018; 19: 318-324. PMID: 28011755

Coggan JS, Bittner S, Stiefel KM, Meuth SG, Prescott SA. Physiological dynamics in demyelinating
diseases: unraveling complex relationships through computer modeling. Int J Mol Sci. 2015; 16:
21215-21236. https://doi.org/10.3390/ijms160921215 PMID: 26370960

Pennisi M, Rajput AM, Toldo L, Pappalardo F. Agent based modeling of Treg-Teff cross regulation in
relapsing-remitting multiple sclerosis. BMC Bioinformatics. 2013; 14 Suppl 16: S9. https://doi.org/10.
1186/1471-2105-14-S16-S9 PMID: 24564794

Mohan TRK, Sen S, Ramanathan M. A computational model for lesion dynamics in multiple sclerosis
of the brain. Int J Mod Phys E. 2008; 17: 930-939. https://doi.org/10.1142/S0218301308010271

Zhang W, Wahl LM, Yu P. Modeling and analysis of recurrent autoimmune disease. SIAM J Appl
Math. 2014; 74: 1998-2025. https://doi.org/10.1137/140955823

Chaubey S, Goodwin SJ. A unified frequency domain model to study the effect of demyelination on
axonal conduction. Biomed Eng Comput Biol. 2016; 7: 19—24. https://doi.org/10.4137/BECB.S38554
PMID: 27103847

Pellegrini F, Copetti M, Sormani MP, Bovis F, de Moor C, Debray TP et al. Predicting disability progres-
sion in multiple sclerosis: Insights from advanced statistical modeling. Mult Scler. 2019; 5:
1352458519887343. PMID: 31686590

Pagani E, Rocca MA, De Meo E, Horsfield MA, Colombo B, Rodegher M et al. Structural connectivity
in Multiple sclerosis and modeling of disconnection. Mult Scler. 2019: 1352458518820759. PMID:
30625050

Tahedl M, Levine SM, Greenlee MW, Weissert R, Schwarzbach JV. Functional connectivity in multiple
sclerosis: recent findings and future directions. Front Neurol. 2018; 9: 828. https://doi.org/10.3389/
fneur.2018.00828 PMID: 30364281

Otto A, Just W, Radons G. Nonlinear dynamics of delay systems: an overview. Philos Trans A Math
Phys Eng Sci. 2019; 377:20180389. PMID: 31329061

Bellen A, Zennaro M. Numerical methods for delay differential equations, numerical mathematics and
scientific computation. The Clarendon Press, Oxford University Press, New York, 2003.

Kuang Y. Delay differential equations with applications in population dynamics. Academic Press, Bos-
ton, 1993.

Rombouts J, Gelens L, Erneux T. Travelling fronts in time-delayed reaction-diffusion systems. Philos
Trans A Math Phys Eng Sci. 2019; 377:20180127. https://doi.org/10.1098/rsta.2018.0127 PMID:
31329070

Girard B, Lienard J, Gutierrez CE, Delord B, Doya K. A biologically constrained spiking neural network
model of the primate basal ganglia with overlapping pathways exhibits action selection. Eur J Neurosci.
2020. https://doi.org/10.1111/ejn.14869 PMID: 32564449

Biran H, Kupiec M, Sharan R. Comparative analysis of normalization methods for network propaga-
tion. Front Genet. 2019; 10: 4. https://doi.org/10.3389/fgene.2019.00004 PMID: 30723490

Biran H, Almozlino T, Kupiec M, Sharan R. WebPropagate: A web server for network propagation. J
Mol Biol. 2018; 430: 2231-2236. https://doi.org/10.1016/j.jmb.2018.02.025 PMID: 29524510

Kalaev M, Smoot M, Ideker T, Sharan R. NetworkBLAST: comparative analysis of protein networks.
Bioinformatics. 2008; 24: 594-596. https://doi.org/10.1093/bioinformatics/btm630 PMID: 18174180

Przulj N, Corneil DG, Jurisica |. Modeling interactome: scale-free or geometric? Bioinformatics. 2004;
20: 3508-3515. https://doi.org/10.1093/bioinformatics/bth436 PMID: 15284103

Memisevic V, Milenkovic T, Przulj N. An integrative approach to modeling biological networks. J Integr
Bioinform. 2010; 7: 120. https://doi.org/10.1515/jib-2010-120 PMID: 20375453

Mitra A, Raichle ME. How networks communicate: propagation patterns in spontaneous brain activity.
Philos Trans R Soc Lond B Biol Sci. 2016; 371: 20150546. https://doi.org/10.1098/rstb.2015.0546
PMID: 27574315

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 38/39


https://doi.org/10.3389/fncom.2014.00073
http://www.ncbi.nlm.nih.gov/pubmed/25100985
https://doi.org/10.1016/j.mbs.2017.03.006
http://www.ncbi.nlm.nih.gov/pubmed/28365299
https://doi.org/10.1016/j.mehy.2019.109478
http://www.ncbi.nlm.nih.gov/pubmed/31733531
http://www.ncbi.nlm.nih.gov/pubmed/28011755
https://doi.org/10.3390/ijms160921215
http://www.ncbi.nlm.nih.gov/pubmed/26370960
https://doi.org/10.1186/1471-2105-14-S16-S9
https://doi.org/10.1186/1471-2105-14-S16-S9
http://www.ncbi.nlm.nih.gov/pubmed/24564794
https://doi.org/10.1142/S0218301308010271
https://doi.org/10.1137/140955823
https://doi.org/10.4137/BECB.S38554
http://www.ncbi.nlm.nih.gov/pubmed/27103847
http://www.ncbi.nlm.nih.gov/pubmed/31686590
http://www.ncbi.nlm.nih.gov/pubmed/30625050
https://doi.org/10.3389/fneur.2018.00828
https://doi.org/10.3389/fneur.2018.00828
http://www.ncbi.nlm.nih.gov/pubmed/30364281
http://www.ncbi.nlm.nih.gov/pubmed/31329061
https://doi.org/10.1098/rsta.2018.0127
http://www.ncbi.nlm.nih.gov/pubmed/31329070
https://doi.org/10.1111/ejn.14869
http://www.ncbi.nlm.nih.gov/pubmed/32564449
https://doi.org/10.3389/fgene.2019.00004
http://www.ncbi.nlm.nih.gov/pubmed/30723490
https://doi.org/10.1016/j.jmb.2018.02.025
http://www.ncbi.nlm.nih.gov/pubmed/29524510
https://doi.org/10.1093/bioinformatics/btm630
http://www.ncbi.nlm.nih.gov/pubmed/18174180
https://doi.org/10.1093/bioinformatics/bth436
http://www.ncbi.nlm.nih.gov/pubmed/15284103
https://doi.org/10.1515/jib-2010-120
http://www.ncbi.nlm.nih.gov/pubmed/20375453
https://doi.org/10.1098/rstb.2015.0546
http://www.ncbi.nlm.nih.gov/pubmed/27574315
https://doi.org/10.1371/journal.pcbi.1010507

PLOS COMPUTATIONAL BIOLOGY

Connectome diffusion

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

Emery BA, Hu X, Khanzada S, Kempermann G, Amin H. Rich experience boosts functional connec-
tome and high-dimensional coding in hippocampal network. bioRxiv 2022.

Kosciessa JQ, Lindenberger U, Garrett DD. Thalamocortical excitability modulation guides human per-
ception under uncertainty. Nat Commun 2021; 12: 2430. https://doi.org/10.1038/s41467-021-22511-7
PMID: 33893294

Percival DB, Walden AT. Wavelet Methods for Time Series Analysis. Cambridge Univ. Press, Cam-
bridge, UK, 2000

Brown E, Kass R, Mitra P. Multiple neural spike train data analysis: state-of-the-art and future chal-
lenges. Nat Neurosci 2004; 7: 456—461. https://doi.org/10.1038/nn1228 PMID: 15114358

Zhao J, Qin Y-M, Che Y-Q. Effects of topologies on signal propagation in feedforward networks.
Chaos. 2018; 28: 013117. https://doi.org/10.1063/1.4999996 PMID: 29390642

Hong D, Man S. Signal propagation in small-world biological networks with weak noise. J Theor Biol.
2010; 262: 370-380. https://doi.org/10.1016/}.jtbi.2009.10.019 PMID: 19836404

Cessac B, Sepulchre JA. Stable resonances and signal propagation in a chaotic network of coupled
units. Phys Rev E Stat Nonlin Soft Matter Phys. 2004; 5: 056111. https://doi.org/10.1103/PhysRevE.
70.056111

St-Onge G, Young JG, Hébert-Dufresne L, Dubé LJ. Efficient sampling of spreading processes on
complex networks using a composition and rejection algorithm. Comput Phys Commun. 2019; 240:
30-37. https://doi.org/10.1016/j.cpc.2019.02.008 PMID: 31708586

Bacik KA, Schaub MT, Beguerisse-Diaz M, Billeh YN, Barahona M. Flow-Based network analysis of
the Caenorhabditis elegans connectome. PLoS Comput Biol. 2016; 12: e1005055. https://doi.org/10.
1371/journal.pcbi.1005055 PMID: 27494178

Rulle D. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J Stat
Phys. 1999; 95: 393-468. https://doi.org/10.1023/A:1004593915069

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010507  October 28, 2022 39/39


https://doi.org/10.1038/s41467-021-22511-7
http://www.ncbi.nlm.nih.gov/pubmed/33893294
https://doi.org/10.1038/nn1228
http://www.ncbi.nlm.nih.gov/pubmed/15114358
https://doi.org/10.1063/1.4999996
http://www.ncbi.nlm.nih.gov/pubmed/29390642
https://doi.org/10.1016/j.jtbi.2009.10.019
http://www.ncbi.nlm.nih.gov/pubmed/19836404
https://doi.org/10.1103/PhysRevE.70.056111
https://doi.org/10.1103/PhysRevE.70.056111
https://doi.org/10.1016/j.cpc.2019.02.008
http://www.ncbi.nlm.nih.gov/pubmed/31708586
https://doi.org/10.1371/journal.pcbi.1005055
https://doi.org/10.1371/journal.pcbi.1005055
http://www.ncbi.nlm.nih.gov/pubmed/27494178
https://doi.org/10.1023/A:1004593915069
https://doi.org/10.1371/journal.pcbi.1010507

