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Dynamical reaction–diffusion processes and metapopulation models are standard modelling approaches for a wide array of
phenomena in which local quantities—such as density, potentials and particles—diffuse and interact according to the physical laws.
Here, we study the behaviour of the basic reaction–diffusion process (given by the reaction steps B → A and B+A → 2B) defined on
networks with heterogeneous topology and no limit on the nodes’ occupation number. We investigate the effect of network topology
on the basic properties of the system’s phase diagram and find that the network heterogeneity sustains the reaction activity even in
the limit of a vanishing density of particles, eventually suppressing the critical point in density-driven phase transitions, whereas
phase transition and critical points independent of the particle density are not altered by topological fluctuations. This work lays out
a theoretical and computational microscopic framework for the study of a wide range of realistic metapopulation and agent-based
models that include the complex features of real-world networks.

Reaction–diffusion (RD) processes are used to model phenomena
as diverse as chemical reactions, population evolution, epidemic
spreading and many other spatially distributed systems in which
local quantities obey physical RD equations1–3. At the microscopic
level, RD processes generally consist of particles (in many cases
accounting for different kinds of ‘agents’, information parcels and
so on) that diffuse in space and are subject to various reaction
processes determined by the nature of the specific problem at
hand. Whereas fermionic RD models assume exclusion principles
that limit the number of particles on each node of the lattice,
bosonic RD processes relax these constraints and allow each node
of the lattice to be occupied by any number of particles. The
classic example is provided by chemical reactions, in which different
molecules or atoms diffuse in space and may react whenever
in close contact. Another important instance for bosonic RD
processes is found in metapopulation epidemic models4–10. In this
case, particles represent people moving between different locations,
such as cities or urban areas. Individuals are divided into classes
denoting their state with respect to the modelled disease—such
as infected, susceptible, immune and so on—and the reaction
processes account for the possibility that individuals in the same
location may get in contact and change their state according to the
infection dynamics.

The above modelling approaches are based on the spatial
structure of the environment, transport infrastructures, movement
patterns, traffic networks and so on. The lack of accurate data on
those features of the systems were usually reflected in the use of
random graphs and regular lattices of different dimensionality as
the substrate of the RD process. This corresponds to an implicit
homogeneous assumption on the structure of the substrate, indeed
used in many instances to solve the basic equations describing

the RD process. In recent years, however, networks that trace the
activities and interactions of individuals, social patterns, transport
fluxes and population movements on a local and global scale11–15

have been analysed and found to exhibit complex features encoded
in large-scale heterogeneity, self-organization and other properties
typical of complex systems16–19. In particular, it has been found
that a wide range of societal and technological networks exhibit a
very heterogeneous topology. The airport network among cities13,14,
the commuting patterns in inter- and intra-urban areas15,20 and
several infostructures19 are indeed characterized by networks whose
nodes, representing the elements of the system, have a wildly
varying degree, that is, number of connections to other elements.
These topological fluctuations are mathematically encoded in a
heavy-tailed degree distribution P(k), defined as the probability
that any given node has degree k. They thus define highly
heterogeneous substrates for the RD processes that cannot be
accounted for in homogeneous or translationally invariant lattices.
Analogously, models aimed at a description of spreading processes
in spatially extended and societal systems are inevitably occurring
in metapopulation networks with connectivity patterns exhibiting
very large fluctuations. As connectivity fluctuations have been
shown to have a large impact on the behaviour of several
percolation and fermionic systems21–23, the investigation of their
role in the case of bosonic RD processes becomes a crucial issue
for the understanding of a wide array of real-world phenomena.

REACTION–DIFFUSION PROCESSES IN COMPLEX NETWORKS

To investigate the effect of network heterogeneities on the
phase diagram of metapopulation models and chemical reaction

276 nature physics VOL 3 APRIL 2007 www.nature.com/naturephysics

Untitled-1   1 21/3/07, 3:18:55 pm



ARTICLES

processes, we consider a basic reaction scheme conserving the
number of particles that has been studied both in physics and
mathematical epidemiology, namely the RD process identified by
the following set of reactions1,24–28:

B → A, (1)

B+A → 2B. (2)

From these reaction equations, it is clear that the dynamics
conserves the total number of particles N = NA + NB, where
Ni is the number of particles i = A,B. This process can be
naturally interpreted as a chemical reaction with an absorbing-
state phase transition1,25,26. The same reaction has, however, been
used as a model problem in population dynamics in interaction
with a polluting substance27, and it is analogous to the classic
susceptible–infected–susceptible model for epidemic spreading4,28.
In the process described by equations (1) and (2), the dynamics is
exclusively due to B particles, which we identify as active particles,
because A particles cannot spontaneously generate B particles. We
consider the particles diffusing on a heterogeneous network with V
nodes having a degree distribution P(k) characterized by the first
and second moments 〈k〉 and 〈k2〉, respectively. Reaction processes
take place only inside the network’s nodes, where each node i
stores a number ai of A particles and bi of B particles (see Fig. 1).
The occupation numbers ai and bi can assume any integer value,
including ai = bi = 0, that is, void nodes with no particles. For the
sake of simplicity, we assume that B particles diffuse with a unitary
time rate DB = 1 along one of the links departing from the node
in which they are at a given time. This implies that at each time
step, a particle sitting on a node with degree k will jump into one
of its nearest neighbour with probability 1/k. The results obtained
in the following may be recovered for any diffusion rate DB, at
the expense of a more complicate mathematical treatment that will
be reported elsewhere. In the case of A particles, we consider two
different situations corresponding to a unitary (DA = 1) and a null
(DA = 0) diffusion rate, respectively. Whereas the first case is used
in epidemic models that consider all individuals diffusing with the
same rate, the case DA = 0 is used in self-organized critical systems
and specific absorbing phase transitions coupled with non-diffusive
fields25,26,28. When DA =0, the diffusion of A particles in the network
occurs only through an effective process mediated by the reaction
with B particles. Indeed, any A particle may become a B particle
following the reaction process and diffuse in the network until
the reaction B → A occurs. This process is thus equivalent to an
effective diffusion of A particles in the network.

Before the diffusion process, the A and B particles stored in
the same node react according to equations (1) and (2). In each
node i the spontaneous process B → A simply consists of turning
each B particle into an A particle with rate μ. We consider two
general forms for the B + A → 2B process. In the type-I reaction,
we consider that each A may react with all of the B particles
in the same node, each reaction occurring with rate β. In the
type-II reaction, we consider instead that each particle has a finite
number of contacts with other particles. In this case, the reaction
rate has to be rescaled by the total number of particles present in
the node, that is, β/ρi, where ρi = ai + bi is the total number of
particles in the node. This second process corresponds to what we
usually observe in epidemic processes, where there is a population
dependence of the reaction rate because individuals generally meet
with a definite number of other individuals. In regular lattices
and within the homogeneous mixing (mean-field) hypothesis, both
types of processes exhibit a phase transition from an active phase
(with an everlasting activity of B particles) to an absorbing phase
(devoid of B particles), which in epidemic modelling correspond to
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Particle
diffusion

Node j
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Figure 1 Bosonic RD systems in heterogeneous networks. Schematic
representation of RD processes in heterogeneous complex networks when the
multiple occupancy of nodes is allowed. Particles A and B can diffuse in the network
and, inside each node, undergo the reaction processes described by equations (1)
and (2). Each node i stores ρ i = ai + bi particles, where the occupation numbers ai
and bi can assume any integer value, including zero.

the infected and healthy states, respectively. In the type-I reaction,
the relevant parameter is represented by the average density of
particles ρ = N/V and the transition occurs at the threshold
value ρ = ρc = μ/β (refs 25,26,28). In the type-II processes, the
transition point is found whenever β/μ > 1. This second case is
analogous to the classical epidemic threshold result and determines
the lack or existence of an endemic state with a finite density
of infected individuals (in this representation corresponding to
the B particles)3,4.

To account for the topological fluctuations of the networks, we
have to explicitly consider the presence of nodes with very different
degree k. A convenient representation of the system is therefore
provided by the quantities

ρA,k = 1

vk

∑

i|ki=k

ai, ρB,k = 1

vk

∑

i|ki=k

bi,

where vk is the number of nodes with degree k and the sums run
over all nodes i having degree ki equal to k. These two quantities
express the average number of A and B particles in nodes with
degree k. Analogously, ρk = ρA,k + ρB,k represents the average
number of particles in nodes with degree k. The average density
of A and B particles in the network is given by ρA = ∑

k P(k)ρA,k

and ρB =∑
k P(k)ρB,k, respectively. Finally, by definition, it follows

that ρ = ρA + ρB. These quantities allow us to express the RD
process occurring on a heterogeneous network in terms of a set
of rate equations describing the time evolution of the quantities
ρA,k(t) and ρB,k(t) for each degree class k, as reported in the
Methods section. The equations depend on the reaction kernel Γk

that yields the number of B particles generated per unit time by the
reaction processes taking place in nodes of a given degree class k. In
uncorrelated networks, the resulting equations can be solved in the
stationary limit, thus providing information on the phase diagram
of the processes.

PHASE DIAGRAM AND CRITICAL THRESHOLD

Let us first consider the type-I reaction processes in uncorrelated
networks. In this case, we have Γk = ρA,kρB,k, obtaining in the
stationary state

ρB,k = k

〈k〉 [(1−μ)ρB +βΓ ], (3)
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Figure 2 Phase diagram and stationary densities for type-I processes. a, Phase transitions in type-I processes for diffusing and non-diffusing A particles. If DA = 0, the
transition occurs at the critical value of the density ρc = μ/β = 2, regardless of the topology of the underlying network. Results for uncorrelated scale-free networks having
degree distribution P(k ) ∼ k −γ with γ = 2.5 and γ = 3.0 and different sizes V show the same behaviour, small differences in the value of ρB being due to finite-size
effects. If DA = 1, the critical point is strongly affected by the topological fluctuations of the network. Here, we show results for γ = 2.5 and sizes of the network V= 103,
104 and 105 corresponding to 〈k〉2/〈k2〉 = 0.52, 0.32 and 0.19, respectively. With increasing size, degree fluctuations become larger and the transition is observed at
smaller values of ρc. Dotted lines are guides to the eye. b,c, Stationary densities ρA,k and ρB,k as functions of the degree k. If DA = 0 (b), the average density of A particles
inside nodes of degree k is constant, whereas the behaviour shown by B particles is linear in k. If DA = 1 (c), both densities are linear in k.

where Γ =∑
k P(k)Γk. This equation readily states that the density

of active particles is increasing in nodes with increasing degree k.
This effect is mainly due to the diffusion process, which brings a
large number of particles to well-connected nodes, thus reflecting
the impact of the network topological fluctuations on the particle
density behaviour (see the Supplementary Information). To study
the phase diagram, we have to find the condition for which a
solution ρB �= 0 of the set of equations for ρA,k(t) and ρB,k(t) is
allowed. If DA = 0, that is, for the case of non-diffusing A particles,
the density of A particles is independent of the node degree and
is given by ρA,k = ρA = μ/β. In view of the conservation of the
number of particles, this result readily implies that ρB = ρ− (μ/β)
and therefore the presence of a phase transition from an absorbing
phase to an active state at a critical value of the total density of
particles ρc = μ/β. A very different picture is obtained when A
particles are also allowed to diffuse. In this case, for DA = 1, the
stationary density of A particles is given by

ρA,k = k

〈k〉 (ρA +μρB −βΓ ).

The system of equations can be solved by imposing a self-consistent
condition for the quantity Γ (the details of the calculation are
reported in the Supplementary Information) and the non-trivial

solution ρB > 0 is obtained only if the total density of particles
satisfies the condition ρ > ρc, with

ρc = 〈k〉2

〈k2〉
μ

β
. (4)

This result implies that, if A particles can diffuse, topological
fluctuations affect the critical value of the transition. Networks
characterized by heterogeneous connectivity patterns exhibit large
degree fluctuations so that 〈k2〉 � 〈k〉2. In the infinite size limit
V → ∞, we have 〈k2〉 → ∞ and thus equation (4) yields a critical
value ρc = 0, showing that the topological fluctuations of the
network suppress the phase transition in the thermodynamic limit.
This is an important result that, analogously to those concerning
percolation21,22 and standard epidemic processes23, indicates that
physical and dynamical processes taking place on scale-free and
heavy-tailed networks behave very differently with respect to the
same processes occurring on homogeneous networks.

In Fig. 2, we provide support for this theoretical picture by
reporting the results obtained from Monte Carlo simulations of
RD processes of type I on uncorrelated networks with given
scale-free degree distribution P(k) ∼ k−γ . The simulations use a
single-particle modelling strategy in which each individual particle
is tracked in time. The system evolves following a stochastic
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Figure 3 Phase diagram and stationary densities for type-II processes. a, Phase transitions in type-II processes for diffusing and non-diffusing A particles. Regardless of
topological fluctuations in the underlying network and of the probability of diffusion DA, the transition occurs at the critical point β/μ = 1, depending only on the reaction
rates. Here, we show results for networks of size V= 104 with particle density ρ = 20 and power-law exponents γ = 2.5 and γ = 3.0. Differences in the values of the
stationary density ρB are due to finite-size effects. Dotted lines are guides to the eye. b,c, Stationary densities ρA,k and ρB,k as functions of the degree k. In both cases,
DA = 0 (b) and DA = 1 (c), linear dependencies in k are obtained.

microscopic dynamics and at each time step it is possible to
record average quantities, such as, for example, the density of
active particles ρB(t). In addition, given the stochastic nature
of the dynamics, the experiment can be repeated with different
realizations of the noise, different underlying graphs and different
initial conditions. This approach is equivalent to the real evolution
of the RD process in the generated networks and can be used to
validate the theoretical results obtained in the analytical approach.
Figure 2a shows the phase transitions observed in the two cases,
whether A particles diffuse or not. If DA = 0, the process undergoes
a phase transition at ρc = μ/β = 2, regardless of the difference in
the level of heterogeneity as provided by different values of the
power-law exponent γ of the degree distribution P(k) at fixed
network size (here V = 104, γ = 3 and γ = 2.5) or by different sizes
V at fixed γ (γ = 2.5, V = 104 and V = 105). In the case where
A particles diffuse, instead, the transition occurs at critical values
ρc < μ/β, with ρc → 0 for decreasing ratios 〈k〉2/〈k2〉 as observed
for increasing sizes V at fixed γ (curves for γ =2.5 with V from 103

to 105 nodes are shown), in agreement with the analytical result of
equation (4). Figure 2b,c shows the difference in the behaviour of
ρA,k as a function of the degree k: a flat spectrum is obtained when
DA = 0 and a linear dependence in k is obtained when DA = 1.

A different scenario emerges when considering type-II
processes. In this case, the reaction kernel is Γk = ρA,kρB,k/ρk; that
is, in each node, A particles will participate in a reaction event with

a rate proportional to the relative density of B particles. Whereas
the set of equations for ρB,k has the same form as equation (3),
the stationary condition for ρA,k yields solutions that depend on
k for both diffusive and non-diffusive A particles. In particular, in
both cases we have ρB > 0 if the condition β/μ > 1 is satisfied
(see the Supplementary Information). This result recovers the usual
threshold condition that depends only on the reaction rates and
is not affected by changes in the total density of particles ρ. In
addition, for type-II processes we carried out extensive Monte
Carlo simulations considering uncorrelated scale-free networks
with a heavy-tailed degree distribution. Figure 3 shows the results
obtained in the two cases DA = 0 and DA = 1, with different
underlying network topologies. Changes in the number of nodes
and in the exponent γ assumed for the degree distribution do not
affect the phase transition. The critical value depends exclusively on
the process rates, despite the observed linear behaviour of ρA,k, and
ρB,k bears memory of the heterogeneity of the underlying network.

DISCUSSION AND COMPARISON WITH REALISTIC MODELS

The different phase diagrams obtained in the type-I and type-II
processes can be understood qualitatively in terms of the following
argument. In type-I processes, whatever the parameters β and μ,
there exists a value of the local density large enough to keep the
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Figure 4 Reaction activity in type-I and type-II processes: microscopic model and real-world examples. a–d, The microscopic RD model, as described in the text.
e–h, Analysis of the spread of an airline-carried disease in the United States with a data-driven metapopulation model. Both models consider the actual topology of the United
States air transport network as obtained by considering the 500 airports with the largest amount of traffic (see http://www.iata.org/); nodes population is obtained from
census data (see http://www.census.gov/). In addition, the realistic metapopulation model (e–h) also considers the actual traffic of passengers on each connection between
airports. The networks are mapped on a globe for the sake of visualization. Each node is represented with a size linearly dependent on its population and a colour illustrating
the level of reaction activity inside the node, ranging from 0 to a maximum value. Whereas type-I processes experience a level of activity proportional to nodes
population—corresponding to red colour in largely populated nodes and yellow in small population nodes—the reaction activity is homogeneously distributed among the
nodes of the network when type-II processes are considered.
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system in an active state by sustaining the creation of B particles
in the right amount. Large topological fluctuations imply the
existence of high-degree nodes with a high density of particles
and therefore a high number of generated B particles. This implies
that in the thermodynamic limit there is always a node (with a
virtually infinite degree) with enough particles to keep the process
alive even for a vanishing average density of particles, leading to
the suppression of the phase transition. The crucial ingredient of
this mechanism is given by the diffusion process that allows high-
degree nodes to have a number of particles that is proportional
to their degree. This is confirmed by the case in which A particles
do not diffuse. In this case, high-degree nodes do not accumulate
enough particles and the usual threshold effect is recovered. In
type-II processes, on the other hand, the reaction activity in each
node is rescaled by the local density ρi and it is therefore the same
in all nodes, regardless of the local population. In this case, the
generation of B particles is homogeneous across nodes of different
degrees and therefore the presence of an active state depends only
on the balance between the reaction rates β and μ.

These results let a basic framework for the microscopic
(mechanistic in the epidemic terminology) description of
metapopulation epidemic models emerge. The type-I and
type-II processes correspond to the two limits of transmissibility
independent or inversely proportional to the population size,
respectively. In addition, realistic metapopulation models have
heterogeneous diffusion probabilities due to the travelling pattern
and fixed population sizes according to the data. Despite these
extra complications, the basic RD framework studied here provides
a simple qualitative picture of the realistic models. In Fig. 4,
we show the two types of processes studied here and compare
them with the results from a realistic compartmental susceptible–
infected–susceptible metapopulation model considering 500 urban
areas in the Unites States and including the actual data of the air
travelling flows among those urban areas (see http://www.iata.org/
and http://www.census.gov/). The network is defined by nodes
representing each urban area together with its population and
edges representing air travel fluxes along which individuals
diffuse, coupling the epidemic spreading in different urban areas
(see refs 29–31 for a detailed definition of the model). The
type-I process is compared with a model whose transmissibility
is independent of the population size, and the type-II process is
compared with the usual epidemic spreading with transmissibility
scaling proportionally to the population size (see ref. 5). Figure 4
shows, in the four cases, the reaction activity occurring on each
network node, that is, the creation of B particles in the RD
process and newly infected individuals in the realistic epidemic
model normalized to the local population. Increasing values of the
reaction activity correspond to colours ranging from yellow (low
activity) to red (high activity). In type-I processes, the reaction
activity is linearly increasing with the population of the nodes, thus
showing high activity (red) concentrated in largely populated nodes
(represented with a larger size). The homogeneity in the generation
of B particles in type-II processes is evident: all nodes have the same
colour and thus experience the same level of activity, regardless of
the local density. Strikingly, despite the various complications and
elements of realism introduced in the data-driven metapopulation
model, its qualitative behaviour is in very good agreement with
the results obtained for the microscopic RD processes in both
transmissibility limits.

In summary, the microscopic RD framework introduced
here is able to provide a general theoretical understanding
of the behaviour of more realistic metapopulation epidemic
models. Furthermore, the presented approach can be extended
to include the various sources of heterogeneity—such as degree
correlations32,33, heterogeneous diffusion probabilities and their

nonlinear relations with the connectivity pattern—needed to
provide a detailed analysis of realistic processes.

METHODS

REACTION–DIFFUSION EQUATION
To fully account for degree fluctuations in an analytical description of the RD
processes, we have to relax the homogeneity assumption and allow for degree
fluctuations by introducing the relative densities ρB,k(t), ρA,k(t) and ρk(t).
The dynamical reaction rate equations for B particles in any given degree class
can thus be written as

∂t ρB,k = −ρB,k + k
∑

k′
P(k′|k)

1

k′
[
(1−μ)ρB,k′ +βΓk′

]
,

where P(k′|k) represents the conditional probability that a vertex of degree k is
connected to a vertex of degree k′ (ref. 32). The various terms of the equations
are obtained by considering that at each time step, the particles present on a
node of degree k first react and then diffuse away from the node with a unitary
diffusion rate accounted for by the term −ρB,k . The positive contribution for
the particle density is obtained by summing the contribution of all particles
diffusing in nodes of degree k from their neighbours of any degree k′, including
the new particles generated by the reaction term Γk . In the case of uncorrelated
networks, the conditional probability P(k′|k) that any given edge points to a
vertex with k′ edges is independent of k and equal to k′P(k′)/〈k〉 (refs 18,32),
so that the reaction rate equations read as

∂t ρB,k = −ρB,k + k

〈k〉 [(1−μ)ρB +βΓ ],

where ρB = ∑
k P(k)ρB,k and Γ = ∑

k P(k)Γk . In the case for ρA,k(t), we have
to distinguish whether A particles diffuse or not. If DA = 1, we obtain a set of
equations analogous to those for ρB,k that read as

∂t ρA,k = −ρA,k + k

〈k〉 (ρA +μρB −βΓ ),

where ρA = ∑
k P(k)ρA,k . In the case of non-diffusive A particles (DA = 0), the

equations reduce to

∂t ρA,k = μρB,k −βΓk .

The phase diagram for the various cases and the conditions for ρB > 0 are
obtained by imposing the stationary state defined by ∂t ρA,k = 0 and ∂t ρB,k = 0,
with the additional constraint that ρ = ρA +ρB, that is, the number of particles
is conserved. We are therefore led to a simple set of algebraic equations whose
explicit solution is reported in the Supplementary Information.

MONTE CARLO SIMULATIONS
The uncorrelated networks considered have been generated with the
uncorrelated configuration model34, on the basis of the Molloy–Reed35

algorithm with an additional constraint on the possible maximum value of the
degree to avoid inherent structural correlations. The algorithm is defined as
follows. Each node i is assigned a degree ki obtained from a given degree
distribution P(k) (in our case P(k) ∼ k−γ with γ = 3 and γ = 2.5) subject to
the restriction ki < V 1/2. Links are then drawn to randomly connect pairs of
nodes, respecting their degree and avoiding self-loops and multiple edges. Sizes
of V = 103, V = 104 and V = 105 nodes have been considered. Initial
conditions are generated by randomly placing VρA(0) particles A and VρB(0)

particles B, corresponding to a particle density ρ = ρA(0)+ρB(0). The results
are independent of the particular initial ratio ρA(0)/ρB(0), apart from very
early time transients. The dynamics proceeds in parallel and considers discrete
time steps representing the unitary time scale τ of the process. The reaction and
diffusion rates are therefore converted into probabilities and at each time step,
the system is updated according to the following rules. (1) Reaction processes:
(i) on each lattice site, each B particle is turned into an A particle with
probability μτ; (ii) at the same time, each A particle becomes a B particle with
probability determined by the type of reaction process. (2) After all nodes have
been updated for the reaction, we carry out the diffusion: on each lattice site,
each B particle moves into a randomly chosen nearest neighbour site; the same
process occurs for A particles if DA = 1. The simulation details of the reaction
process represented by equation (2) depend on the kernel considered. In type-I
processes, each A particle in a given node i becomes a B particle with
probability 1− (1−βτ)bi , where bi is the total number of B particles in that
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node. This corresponds to the average probability of an A particle being
involved in reaction (2) with any of the B particles present on the same site. In
type-II processes, the reaction process is simulated by turning each A particle
into a B particle with probability 1− (1− (β/ρi)τ)bi , where ρi is the total
number of particles in the node i. This term accounts for the average
probability that an A particle will get in contact with a B particle present in the
node, given that the possible number of contacts is rescaled by the population
ρi of the node. The term β/ρi therefore represents the normalized
transmission rate of the process.

Received 4 September 2006; accepted 23 January 2007; published 4 March 2007.

References
1. Marro, J. & Dickman, R. Nonequilibrium Phase Transitions in Lattice Models (Cambridge Univ. Press,

Cambridge, 1999).
2. van Kampen, N. G. Stochastic Processes in Chemistry and Physics (North Holland, Amsterdam, 1981).
3. Murray, J. D. Mathematical Biology 3rd edn (Springer, Berlin, 2005).
4. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ.

Press, Oxford, 1992).
5. Anderson, R. M. & May, R. M. Spatial heterogeneity and the design of immunization programs.

Math. Biosci. 72, 83–111 (1984).
6. Bolker, B. M. & Grenfell, B. T. Space persistence and dynamics of measles epidemics. Phil. Trans. R.

Soc. Lond. B 348, 309–320 (1995).
7. Lloyd, A. L. & May, R. M. Spatial heterogeneity in epidemic models. J. Theor. Biol. 179, 1–11 (1996).
8. Grenfell, B. T. & Bolker, B. M. Cities and villages: Infection hierarchies in a measles meta-population.

Ecol. Lett. 1, 63–70 (1998).
9. Keeling, M. J. & Rohani, P. Estimating spatial coupling in epidemiological systems: A mechanistic

approach. Ecol. Lett. 5, 20–29 (1995).
10. Ferguson, N. M. et al. Planning for smallpox outbreaks. Nature 425, 681–685 (2003).
11. Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E. & Åberg, Y. The web of human sexual

contacts. Nature 411, 907–908 (2001).
12. Schneeberger, A. et al. Scale-free networks and sexually transmitted diseases: A description of

observed patterns of sexual contacts in Britain and Zimbabwe. Sex. Transm. Dis. 31, 380–387 (2004).
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