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A REACTION-DIFFUSION SYSTEM WITH

TIME-DELAY MODELING VIRUS PLAQUE

FORMATION

HAL L. SMITH AND HORST R. THIEME

1 Introduction Based on the work of [16], we introduce a model
of virus spread on its bacterial host. The model couples a delayed dif-
fusion equation for viruses (phages) with a differential-delay equation
for infected bacteria and an ordinary differential equation for suscepti-
ble bacteria, but can be reduced to a single delayed partial differential
equation. After infection of susceptible bacteria, viruses incubate in in-
fected bacterial cells for a fixed length of time before the cells burst and
the released viruses spread by diffusion. This creates a stage structure
for viruses with an immobile and a mobile stage, which links our model
to stage structured dispersal models as they have been considered by
Herb Freedman and coauthors [6, 7, 15].

In a previous article [8], it was shown that virus infection spreads at
a constant speed and that traveling wave solutions representing a wave
of viral infection. Consequently, it was natural to consider the model
on an infinite spatial domain, the entire two-dimensional plane. In this
paper, we analyze the model in its natural setting of a bounded domain
which in the applications is the surface of a Petri dish, a disk.

2 Model and main result We assume that host bacteria in agar
do not grow or diffuse. The virus latent period is assumed to have
duration exactly τ units of time: a host cell infected at time t lyses
at time t + τ . We assume that on average β > 0 virus are released
when an infected host cell lyses; β is called the “burst size” or “yield.”
Viruses diffuse and adsorb to host bacteria creating infected cells. Virus

The work of the first author was supported by NSF Grant DMS-0918440. The
work of the second author was supported by NSF Grant DMS-0715451.

Keywords: Virus plaque, virus spread, incubation delay.
Copyright c©Applied Mathematics Institute, University of Alberta.

385



386 H. L. SMITH AND H. R. THIEME

density is denoted by V , bacteria density is denoted by B, and infected
bacteria density is denoted by I. Our model is essentially captured by
the schematic reactions:

B + V
k
−→ I → βV, V

α
−→ ∅

where a cell remains in the infected I-compartment exactly τ units of
time. Here, α ≥ 0 denotes virus decay rate and k denotes virus adsorp-
tion rate.

It is assumed that at t = 0 the initial density of infected cells is
I0(s, x), where s ∈ [0, τ ] denotes age-of-infection. Roughly, I0(s, x)
denotes the number of cells at position x at time t = 0 that were infected
s units of time in the past. More precisely,

∫

[a,b]

∫

A

I0(s, x) dx ds

gives the number of cells located at position x ∈ A and having infection-
age s ∈ [a, b].

Then, over the first latent period, new virus can only be produced by
the lysing of the initial cohort I0 of infected cells:

(2.1)

Vt = d∆V − kV B + βI0(τ − t, x)− αV,

Bt = −kBV, x ∈ Ω, 0 ≤ t ≤ τ,

It = kBV − I0(τ − t, x).

An infected cell from the initial cohort must have infection-age τ − t at
time t = 0 in order to be of infection-age τ , and hence, lyse, at time t.

After the first latent period, the initial cohort of infected cells have
all lysed so new virus are produced by infections created after t = 0:

(2.2)

Vt = d∆V − kV B + βkB(t− τ, x)V (t− τ, x)− αV,

Bt = −kBV, x ∈ Ω, t > τ,

It = kBV − kB(t− τ, x)V (t− τ, x).

Here, k is the adsorption constant and d is the effective diffusion con-
stant for phage. Note that virus adsorption to already infected cells
is neglected. Ω denotes the domain, typically in applications, a disk
in the plane R

2. The Laplacian is ∆V =
∑

i Vxixi
. Here, and above,
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a subscripted variable denotes partial derivative with respect to that
variable.

V must satisfy Neumann boundary conditions

(2.3)
∂V

∂n
(x) = 0, x ∈ ∂Ω,

where n = n(x), x ∈ ∂Ω, denotes the outward pointing normal vector
field.

The infected cells can be obtained directly by an integration; they do
not affect the dynamics of the virus and un-infected cells:

(2.4)

I(t, x) =

∫ t

0

kB(ν, x)V (ν, x) dν +

∫ τ−t

0

I0(s, x) ds

= B(0, x)−B(t, x) +

∫ τ−t

0

I0(s, x) ds, 0 < t ≤ τ,

I(t, x) =

∫ t

t−τ

kB(ν, x)V (ν, x) dν

= B(t− τ, x)−B(t, x), t > τ.

Nonnegative initial data for V and B at t = 0 must be prescribed:

(2.5) B(0, x) = B0(x), V (0, x) = V0(x).

Solutions of our system exist, are unique, and nonnegative, globally
in time.

Theorem 2.1. Let B0 and V0 be nonnegative and continuous on Ω.
Assume that I0 is continuous on [0, τ ] × Ω and is continuously differ-

entiable with respect to t and twice continuously differentiable in x in

[0, τ ]×Ω. Then there exists a unique nonnegative solution (V,B) satis-
fying (2.1) on (0, τ ]×Ω, (2.2) on (τ,∞)×Ω, and (2.3) and (2.5). (V,B)
is bounded on [0, T ]× Ω for each T > 0.

Theorem 2.1 is proved by the method of steps. See Theorem 2.1 of
[8]. Our main result follows. We consider separately the case with virus
decay (α > 0) and without virus decay (α = 0). It is convenient to
introduce

(2.6) V̂0(τ, x) = V0(x) + β

∫ τ

0

I0(s, x) ds,
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the sum of the viruses that are initially present and of the cumulative
amount of viruses that have been released by the initial cohort of infected
bacterial cells.

Theorem 2.2. Let the assumptions of Theorem 2.1 be satisfied and let

(V,B) be the corresponding solution of (2.1)–(2.2). Assume that β > 1

and V̂0(τ, ·) is not equal to zero almost everywhere.

If α = 0 and

inf
x∈Ω

(
V̂0(τ, x) +B0(x)

)
> 0,

then

B(t, x) ց 0, V (t, x) → V∞, t → ∞, uniformly in x ∈ Ω,

where

(2.7) V∞ =
1

|Ω|

(∫

Ω

V̂0(τ, x) dx+ (β − 1)

∫

Ω

B0(x) dx

)

and |Ω| is Lebesgue measure of Ω.
If α > 0, then

B(t, x) ց B0(x)e
−ku∞(x), V (t, x) → 0, t → ∞, uniformly in x ∈ Ω,

where u = u∞(x) is the unique nonnegative solution of the boundary

value problem

(2.8) 0 = d△u+ V̂0(τ, x) +B0(x)(β − 1)(1− e−ku)− αu

satisfying Neumann boundary condition (2.3); in fact, u∞(x) > 0, x ∈
Ω.

In case α = 0, the model ignores virus decay, and the only loss of
virus is due to adsorption to bacteria. Ultimately, all bacteria are lysed
and converted into virus. The factor β − 1 in front of the integral of
B0(x) reflects that one virus is lost due to adsorption to each uninfected
bacteria while β progeny virus are released when the infected cell lyses;
the larger factor β in the last term reflects that these bacteria were
infected by virus before t = 0.

In case α > 0, the virus will ultimately vanish, leaving behind a
quantity of uninfected bacteria.
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3 Reduction to a single diffusion equation We proceed as in
Diekmann [3, 4] and Thieme [13] for epidemic models in the late 1970s
to reduce the system (2.1)–(2.2) to a single scalar equation (see also [5,
Ch. 8.5], [12], and [14, Ch. 20]). Define

(3.1) u(t, x) =

∫ t

0

V (s, x) ds =
lnB0(x)− lnB(t, x)

k
.

The last equality follows from the differential equation for B in (2.2).
Now, solve for B to get

(3.2) B(t, x) = B0(x)e
−ku(t,x).

In view of (3.2), u(t, x) can be viewed as the accumulated exposure to
virus of a bacterium located at position x.

We substitute the differential equation for B into the first two equa-
tions in (2.1)–(2.2),

Vt = d∆V +Bt − βBt(t− τ, x)− αV, t > τ,

Vt = d∆V +Bt + βI0(τ − t, x)− αV, 0 < t < τ.

Now, integrate from τ to t ≥ τ and from 0 to t ≤ τ , respectively,

V (t, x)− V (τ, x) = d∆(u(t, x)− u(τ, x)) +B(t, x)−B(τ, x)

+ β[B0(x)−B(t− τ, x)]

− α[u(t, x)− u(τ, x)], t > τ,

V (t, x)− V (0, x) = d∆u(t, x) +B(t, x)−B0(x)

+ β

∫ t

0

I0(τ − s, x) ds− αu(t, x), 0 ≤ t ≤ τ.

Add the second equation, with t = τ , to the first and use V = ut and
(3.2) to obtain

(3.3)

ut(t, x) = d∆u(t, x) + V̂0(t, x)− µ(x)f(u(t, x))

+ ν(x)f(u(t− τ, x))− αu(t, x), t > 0,

u(t, x) = 0, t ≤ 0,

with

(3.4) µ(x) = B0(x)k, ν(x) = βµ(x),
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and

(3.5) V̂0(t, x) = V0(x) + β

∫ min{τ,t}

0

I0(τ − s, x) ds,

and

(3.6) f(u) =
1− e−ku

k
.

Notice that the delay term in (3.3) is absent during the initial latent
period 0 < t < τ because u = 0 for t < 0.

Also note that

(3.7) f(0) = 0, f ′(0) = 1.

Notice that, via (3.2), all results for u, the cumulative phage density,
can be rephrased in terms of the density of susceptible bacteria.

Lemma 3.1. Let M = ‖V̂0‖∞ + β‖B0‖∞. If α = 0, then u(t, x) ≤
Mt, t ≥ 0, x ∈ Ω; if α > 0, then u(t, x) ≤ M

α
(1− e−αt), t ≥ 0, x ∈ Ω.

Proof. By Theorem 2.1, u ≥ 0 is a classical solution of (3.3) for t > 0.
It satisfies ut ≤ d△u+M −αu and u(0, x) = 0. The result follows by a
standard comparison principle argument.

Notice that V̂0 defined in (3.5) is a constant function of t ≥ τ and

that V̂0(τ, x) is given by (2.6).

Theorem 3.2. Let β ≥ 1 and V̂0(τ, ·) not equal to zero almost every-

where on Ω.

If α = 0, then u(t, x) → ∞ as t → ∞ uniformly in x ∈ Ω̄ and

B(t, x) → 0 as t → ∞, uniformly in x ∈ Ω̄.

If α > 0, then u(t, x) → u∞(x) as t → ∞ uniformly in x ∈ Ω̄ and

B(t, x) → exp(−ku∞(x)) as t → ∞, uniformly in x ∈ Ω̄, where u∞ is

the unique positive solution of (2.8) and (2.3).

Proof. Assume that α = 0. Choose c ≥ µ(x) for all x ∈ Ω and

(3.8) gc(x, u) = cu− µ(x)f(u).



PHAGE SPREAD 391

Then gc(x, u) is increasing in u ≥ 0. Let now Γ(t, x, y), t > 0, x ∈ Ω̄,
y ∈ Ω, be the Green’s function associated with the differential operator
∂t − d∆x and Neumann boundary conditions [9, VI.2.2]. By (3.3),

u(t, x) = vc(t, x) +

∫ t

0

∫

Ω

e−csΓ(s, x, y)gc(u(t− s, y)) dy ds

+

∫ t

0

∫

Ω

e−csΓ(s, x, y)ν(y)f(u(t− s− τ, y)) dy ds

(3.9)

with

(3.10) vc(x, t) =

∫ t

0

∫

Ω

e−csΓ(s, x, y)V̂0(t− s, y) dy ds.

Recall/notice that u(t, x) and vc(t, x) are increasing functions of t ≥ 0
and so have limits u(∞, x) and v0(∞, x) in [0,∞]. By Beppo Levi’s
theorem of monotone convergence,

u(∞, x) = v0(∞, x) +

∫ ∞

0

∫

Ω

e−csΓ(s, x, y) dsgc(u(∞, y)) ds dy

+

∫ ∞

0

∫

Ω

e−csΓ(s, x, y)ν(y)f(u(∞, y)) ds dy

with

v0(∞, x) =

∫ ∞

0

(∫

Ω

e−csΓ(s, x, y)ds

)
V̂0(τ, y) dy,

V̂0(τ, y) = V0(y) + β

∫ τ

0

I0(s, y) ds.

See (3.5). By (3.8) and ν(x) = βµ(x),

u(∞, x) = v0(∞, x) +

∫ ∞

0

∫

Ω

e−csΓ(s, x, y)cu(∞, y) ds dy

+

∫ ∞

0

∫

Ω

e−csΓ(s, x, y)(β − 1)µ(y)f(u(∞, y)) ds dy.

Assume that V̂0(τ, ·) is not 0 almost everywhere on Ω. Suppose that
u(∞, x) < ∞ for some x ∈ Ω. Then u = infΩ̄ u(∞, ·) ∈ [0,∞), v0 =
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infΩ̄ v0(∞, ·) ∈ (0,∞) and

u ≥ v0 +

∫ ∞

0

∫

Ω

e−csΓ(s, x, y)cu ds dy

+

∫ ∞

0

∫

Ω

e−csΓ(s, x, y)(β − 1)µ(y)f(u) ds dy.

Since
∫
Ω
Γ(s, x, y)dy = 1, if β ≥ 1

u ≥ v0 + u > u.

This contradiction implies u(t, x) → ∞ as t → ∞, x ∈ Ω̄. So e−ku(t,x) ց
0 as t → ∞, x ∈ Ω̄. By Dini’s lemma, this convergence is uniform for
x ∈ Ω̄. In turn, u(t, x) → ∞ as t → ∞, uniformly in x ∈ Ω̄.

Assume that α > 0. Now, u is increasing and bounded above by
Lemma 3.1. The forward orbit is then pre-compact in C(Ω) and, there-
fore, converges uniformly to equilibrium. The only equilibrium is the
unique positive solution of (2.8) and (2.3). Existence and uniqueness
of u∞ follows on writing the differential equation (2.8) as a fixed point

problem. Let u0 = (−d△ + αI)−1V̂0 and set u∞ = u0 + w. Then
w ∈ C(Ω)+ satisfies

w = (β − 1)k(−d△+ αI)−1[B0f(u0 + w)]

Using that f is increasing, bounded and concave, β > 1, and that
(−d△ + αI)−1 is compact on C(Ω), the result follows from Theorem
24.2 in [1]. Indeed, the fixed point w is the limit wn ր w, where w0 = 0
and wn+1 = (β − 1)k(−d△+ αI)−1[B0f(u0 + wn)].

Proposition 3.3. Assume that α = 0, β > 1 and infΩ(V̂0(τ, ·) +
B0(·)) > 0. Then there exists t0 > 0 and ǫ > 0, κ > 0 such that

(3.11) u(t, x) ≥ ǫ(t− t0) and B(t, x) ≤ B0(x)e
−κ(t−t0), t > t0, x ∈ Ω.

Proof. Notice that f(u(t, x)) → 1 as t → ∞, uniformly in x ∈ Ω by
the previous Theorem. Hence there exists some t0 > τ and δ > 0 such
that

(3.12) ut ≥ d∆u+ V̂0(τ, x) + δB0(x), t ≥ t0.

By assumption there exists some ǫ > 0 such that

(3.13) ut ≥ d∆u+ ǫ, t ≥ t0.

A comparison argument shows that u(t, x) ≥ ǫ(t− t0).
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Lemma 3.4. Let the hypotheses of Proposition 3.3 hold. Then there

exists C > 0, depending on initial conditions B0 and V0, such that

V (t, x) ≤ C, t ≥ 0, x ∈ Ω̄.

Proof. Let bn = supx∈Ω B(nτ, x) and vn = sup{V (s, x) : (n − 1)τ ≤
s ≤ nτ, x ∈ Ω}. Then, for n ≥ 1, we have

Vt ≤ d△V + βkbn−1vn, nτ ≤ t ≤ (n+ 1)τ, x ∈ Ω.

By the comparison principle, it follows that

V (t, x) ≤ vn + βkbn−1vn(t− nτ), nτ ≤ t ≤ (n+ 1)τ, x ∈ Ω.

Hence, vn+1 ≤ (1 + βkbn−1τ)vn, n ≥ 1, and therefore,

vn ≤ v1

n−2∏

j=0

(1 + βkbjτ).

In view of (3.11), there exists b∗ such that bj ≤ b∗e−jκτ , so

vn ≤ v1

n−2∏

j=0

(1 + βkτb∗e−jκτ ).

It follows that V is bounded if we show that the series
∑

j ln(1 +

βkτb∗e−jκτ ) converges. But this follows from the ratio test because

lim
j→∞

ln(1 + βkτb0e
−(j+1)κτ )

ln(1 + βkτb∗e−jκτ )
= e−κτ < 1.

4 Proof of main result Let

v(t) =

∫

Ω

V (t, x) dx, b(t) =

∫

Ω

B(t, x) dx.

Integrating the equation for V for the initial latent period, (2.1), over
Ω, replacing the term kBV by −Bt, and using the boundary conditions
and the divergence theorem, we find that

v′(t)− b′(t) = −αv(t) + β

∫

Ω

I0(τ − t, x) dx ≡ βi0(τ − t);
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the equation may be integrated yielding

v(τ)− b(τ) = −α

∫ τ

0

v(s)ds+ v(0)− b(0) + β

∫ τ

0

i0(τ − s) ds.

A similar integration of the equation for V following the first latent
period, (2.2), results in

(v(t)− b(t) + βb(t− τ))′ = −αv.

Integrating and using the formula above results in

v(t)− b(t) + βb(t− τ) = v(τ)− b(τ) + βb(0) + α

∫ t

τ

v(s) ds

= −α

∫ t

0

v(s) ds+ v(0) + (β − 1)b(0)

+ β

∫ τ

0

i0(τ − s) ds, t > τ.

Integrating over Ω the equation for B results in b′(t) ≤ 0 so b(t) ց b(∞)
as t → ∞. This implies that the limit v(t) → v(∞) exists and

(4.1) v(∞)+α

∫ ∞

0

v(s) ds = v(0)+(β−1)(b(0)−b(∞))+β

∫ τ

0

i0(s) ds.

If α = 0, β ≥ 1 and V̂0(τ, ·) not equal to zero, then b(∞) = 0 by
Theorem 3.2 and therefore

(4.2) v(t) → v(∞) = v(0) + (β − 1)b(0) + β

∫ τ

0

∫

Ω

I0(r, x) dx dr.

If α > 0 and β ≥ 1, then b(∞) =
∫
Ω
B0(x)e

−ku∞(x) dx ≥ 0 by
Theorem 3.2 and by (4.1) we have v(∞) = 0 and

α

∫ ∞

0

∫

Ω

V (t, x) dx dt = v(0) + (β − 1)(b(0)− b(∞))

+ β

∫ τ

0

∫

Ω

I0(r, x) dx dr.
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Theorem 4.1. Suppose α = 0. Let V̂0(t, x) be not identically zero in

Ω and β ≥ 1. If (V,B) is the corresponding solution of (2.1)–(2.2), then

B(t, x) ց 0, V (t, x) → V∞, t → ∞, uniformly in x ∈ Ω,

where V∞ is given by (2.7).

Proof. We first show V (t, ·) ∈ L2(Ω), t > 0 and V (t, ·) ⇀ V∞ (weak
convergence in L2(Ω)). Write V (t, ·) = V (t) =

∑∞
j=0 uj(t)φj , where

{φj} are the normalized eigenfunctions of the Laplacian w.r.t. Neumann
boundary conditions and {λj} are the eigenvalues: λj+1 ≤ λj ≤ · · · <
λ0 = 0. By taking inner product of the equation for V with φj , we get
the equations for uj(t):

u′
j(t) = λjuj(t) + fj(t), j ≥ 0,

where fj(t) will be identified below. We have already solved the equation
for u0, called v above, so we consider the case j ≥ 1. Our goal is to show
that

(4.3) uj(t) → 0, t → ∞, j ≥ 1.

Solving the differential equation for uj results in

uj(t) = eλjtuj(0) +

∫ t

0

eλj(t−s)fj(s) ds.

The integral term converges to zero if
∫∞

0
|fj(s)|ds < ∞, so this condi-

tion is sufficient for (4.3) since λj < 0.
fj(t) = 〈φj , −kBV (t) + βkBV (t− τ)〉, where 〈·, ·〉 denotes the inner

product in L2(Ω). We estimate as follows:

∫ ∞

0

|〈φj , kBV (t)〉| dt ≤ −

∫

Ω

|φj(x)|

(∫ ∞

0

Bt dt

)
dx

=

∫

Ω

|φj |B0(x) dx ≤ ‖B0‖2,

where ‖B0‖2 denotes the norm of B0 in L2(Ω). Obviously, a similar
estimate can be made of the delayed term, the only difference being the
factor β. Thus, fj is integrable, and this completes our sketch of the
proof of (4.3).
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Weak convergence V (t, ·) ⇀ V∞ follows from uj(t) → 0, t → ∞, j ≥
1 provided V (t) is bounded in L2(Ω) for large t. See Theorem 3.5.3 in
[2]. But Lemma 3.4 implies global L2(Ω)-boundedness of V .

We claim that the trajectory {V (t, ·) : t ≥ 0} is precompact in C(Ω)
because, by Lemma 3.4, it is bounded in C(Ω). See, e.g., Theorem 2.5-
5 [11] or Theorem 7.2 of Chapter V in [10], which provide a uniform
bound on the gradient of V . Thus, if tn → ∞, then {V (tn, ·)}n has a
uniformly convergent subsequence, i.e., there is a subsequence {V (tnj

)}j
with V (tnj

) → φ in C(Ω). But then V (tnj
) → φ weakly in L2(Ω) and

hence φ = V∞ by uniqueness of the weak limit. Since every convergent
subsequence of {V (tn, ·)}n converges to V∞, it follows that V (tn, ·) →
V∞ in C(Ω). Consequently, V (t, ·) → V∞ as t → ∞.

Theorem 4.2. If α > 0, V (t, x) → 0 as t → ∞, uniformly for x ∈ Ω.

Proof. For t ≥ 2τ , V satisfies the inequality

V (t, x) ≤ c

∫ t

τ

∫

Ω

Γ(t− s, x, y)e−α(t−s)V (s− τ, y) dy ds

+ c

∫ τ

0

∫

Ω

Γ(t− s, x, y)e−α(t−s)I0(τ − s, y) ds dy

+

∫

Ω

Γ(t, x, y)e−αtV0(y) dy.

Here, c > 0, among other things, incorporates supx∈Ω B0(x). We will
use smoothness and boundedness properties of the Green’s function Γ
described in Chapter VI, Theorem 3.1 of [9].

Let ǫ ∈ (0, τ ]. By the Chapman-Kolmogorov equation, for t ≥ ǫ,

Γ(t, x, y) =

∫

Ω

Γ(ǫ, x, z)Γ(t− ǫ, z, y)dz ≤ γǫ

∫

Ω

Γ(t− ǫ, z, y)dz = γǫ

with

γǫ = sup
x,y∈Ω

Γ(ǫ, x, y).
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For t ≥ 2τ ,

V (t, x) ≤ c

∫ t

t−ǫ

∫

Ω

Γ(t− s, x, y)e−α(t−s)V (s− τ, y) dy ds

+ c

∫ t−ǫ

τ

∫

Ω

Γ(t− s, x, y)e−α(t−s)V (s− τ, y) dy ds

+ ce−α(t−τ)γτ

∫ τ

0

∫

Ω

e−αrI0(r, y) dr dy

+ γτe
−αt

∫

Ω

V0(y) dy.

Since V is bounded on every interval [τ, σ] with σ > 0,

V (t, x) ≤ cǫ sup
t−ǫ≤s≤t

sup
y∈Ω

V (s− τ, y)

+ cγǫ

∫ t−ǫ

τ

e−α(t−s)

∫

Ω

V (s− τ, y) dy ds

+ e−α(t−τ)MV , t ≥ 2τ,

with some constant MV > 0. After a substitution,

sup
x∈Ω

V (t, x) ≤ cǫ sup
t−2τ≤r≤t−τ

sup
y∈Ω

V (r, y)

+ cγǫ

∫ t

τ

e−α(r−τ)

(∫

Ω

V (t− r, y)dy

)
dr

+ e−α(t−τ)MV .

(4.4)

We fix ǫ ∈ (0, 1/(2c)). Since
∫
Ω
V (t, y) dy is a bounded function of t ≥ 0,

there exists M̃V > 0 such that

sup
x∈Ω

V (t, x) ≤ cǫ sup
t−2τ≤r≤t−τ

sup
y∈Ω

V (r, y) + M̃V , t ≥ 2τ.

Let σ > 2τ . Then

sup
2τ≤t≤σ

sup
x∈Ω

V (t, x) ≤ cǫ sup
0≤s≤σ

sup
y∈Ω

V (t, y) + M̃V

≤ cǫ

(
sup

2τ≤r≤σ

sup
y∈Ω

V (r, y) + sup
0≤r≤2τ

sup
y∈Ω

V (r, y)

)
+ M̃V .
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Then, as cǫ ≤ 1/2,

sup
2τ≤t≤σ

sup
x∈Ω

V (t, x) ≤ sup
0≤r≤2τ

sup
y∈Ω

V (r, y) + 2M̃V .

This holds for all σ > 2τ . This implies that V is bounded on [τ,∞).
Now, by (4.4),

sup
x∈Ω

V (t, x) ≤
1

2
sup

r≥t−2τ
sup
x∈Ω

V (r, x)

+ cγǫ

∫ t

τ

e−α(r−τ)

(∫

Ω

V (t− r, y)dy

)
dr

+ ce−α(t−τ)MV , t ≥ 2τ.

We take the limit superior as t → ∞. By a version of Fatou’s lemma,

lim sup
t→∞

sup
x∈Ω

V (t, x) ≤
1

2
lim sup
t→∞

sup
x∈Ω

V (r, x)

+
cγǫ
α

lim sup
t→∞

∫

Ω

V (t, y) dy + 0.

Since
∫
Ω
V (t, y) dy → 0 as t → ∞, this implies that

lim sup
t→∞

sup
x∈Ω

V (t, x) = 0,

i.e., V (t, x) → 0 as t → ∞, uniformly for x ∈ Ω.
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