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The states with triangular and linear chain configurations of three a-clusters in C12 are 

treated by the reaction matrix theory on the basis of a realistic nuclear force. Clustering 

dependence of G-matrix is found to be essential for clusterization. It also ·brings on a 

change of effective interaction between the two configurations, which has a role in reducing 

the excitation energy of the linear chain state. Its origin is mainly in the triplet even-state 

tensor force. 

§ I. Introduction 

Clustering phenomena in nuclei are closely related to the saturation property 

of nuclei. The saturation property makes two phases comparable in. energy: 

the one where all nucleons are combined in one nucleus and the other where nucleons 

are separated in several smaller nuclei. Consequently, we :find at rather low excita­

tion energy the states which seem to have cluster structure, and we also find in 

some cases the clustering feature in the· ground state. Thus, the mechanism 

which produces the saturation property is considered to influence the clustering 

phenomena too. 

We have some knowledge of nuclear saturation, though it has not yet been 

thoroughly clarified even for infinite nuclear matter .. We must investigate how physi­

cal effects of nuclear saturation, which we have clarified to date, appear in cluster­

ing phenomena. Here we discuss the effective nucleon-nucleon interaction within 

nuclei. It is known that the effective. interaction changes, depending on the mass 

n1Jmber of nuclei due to many-body effects. For example, we cannot obtain proper 

saturation for nuclear matter if we use as the effective interaction the phase shifts 

of free two-nucleon scattering.10
) This means that the nuclear force should act less 

attractively within nuclei than in free space. Such reduction of the effective at­

traction appears also from a-particle to heavier nuclei. 11
) This effect is very im­

portant for the overall saturation of binding energy from light to heavy nuclei. 

This effect originates mainly in the shielding of a strong tensor force due to 

many-body effects. 
Such a change of the effective interaction itself will also occur when a nu-
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1516 H. Banda, S. Nagata and Y. Yamamoto 

deus changes from shell phase to cluster phase. It will be especially distinct when 
a-clustering occurs, since the shielding of the tensor force is weak because of only 
four constituent nucleons. This can be said as some additional attractive interac­
tion is induced by a-clustering, and this induced interaction enhances the a-cluster­
ing itself. Thus, a physical situation which assures the saturation property will 
produce here some. clustering-induced attraction. This is the subject in this paper 
and our previous paper1

> (referred to as I). 
For this purpose, we proposed in I to use the Brueckner theory on the basis 

of the polycentre-shell model and made calculations for Be8 nucleus. Clustering 
phenomena have many aspects which should themselves be investigated. Thus, 
we adopt model wave functions which are simple but include the clustering features 
essential for our aim, that is, the poly-centre-shell model wave functions. This 
was discussed in I regarding the applicability of the reaction matrix· theory. 

We showed in· I that in the ground state band of Be8 th~ effective illterac­
tion becpmes more attractive as the distance betweel} two a-clu~te1·s becpm~s l~rger. 
Such -a cbal1ge of the effective interaction itself should appear more generally, 
not only in one state as treated in I, but also between states with different con­
figurations in a nucleus, for instance, the states with shell structure and with 
cluster structure. This feature of interdependence between the effective interac­
tion and the structure of a state is characteristic of the l}Uclear system. In this 
paper we treat the triangular and the linear chain configurations of three a­
clusters in C 12 (abbreviated as T- and L-configurations hereafter). · T-configura~ 
tion corresponds to the ground state of C12 from an a-cluster point of view. ' L­
configuration was proposed by Morinaga3

> as a possible interpretation· of the 
excited o+ state at 7.66 MeV of C12

• Though this interpretatio11 is not confirmed 
now,4

) we take L-configuration as a distinct contrast to the ground T-configura­
tion. The T- and L-configurations should have small and· large clusterization, 
respectively. So the change of effective interaction between them will play an im..: 
portant role in lowering the excitation energy of the L~configuration. · This effect 
can then be considered an important element of "clustering correlation" or "four­
body correlation". 

As the model wave functions of three a-clusters, we use the S·orbits around 
three points in • space corresponding to the configurations.5>. · From these, -we 
construct single particle wave functions by using geometrical symmetry or the 
Hartree-Fock condition. The parameters are the size of the a-clusters and the 
distance between them. Since these model wave functions include harmonic oscil­
lator shell model wave functions in a limit of parameters, we can describe the 
degree of. clustering by these parameters. ·For each value of parameters we cal­
culate the reaction matrices and single particle energies self-consistently. Thus, 
we can obtain the energy surface for parameters, which includes the ·effect of 
clustering dependence of the effective interaction (reaction matrix) . · Our method 
is formulated in § 2 and the calculated results are discussed in § 3. 
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Reaction Matrix Theory for Cluster States in Light Nuclei. II 1517 

§ 2. Model wave functions and reaction matrix 
2-1 Triangular configuration 

We take the triangular configuration of three a-clusters (shown in Fig. 1) 
as the intrinsic wave function of the ground state of C12

• 

The s-orbit around the centre of each a-cluster is occupied by 2 protons and 
2 neutrons. They are written as 

( ) 
_ ( /-b)-3/2 -('¥'-Ci)2j2/J2 Cf!i r - v n e , i=1,2,3, (2 ·1) 

where ci (shown in Fig. 1) satisfies c1 + c2 + Cs = 0 and 
jcij =d/ v3 (d :distance between a-clusters). Our model 
wave function is the Slater determinant of Cf!i (r) 's. We 
can easily construct ortho-normal single particle wave 
functions from cplr ), considering the symmetry for 2n'/3 
rotation within xy-plane. They are expressed as 

f-- d-----! 

Fig. 1. Triangular configura­
tion of three a-clusters . 

. X1(r) = {~(1+2.d114)}- 112 (cpi+cp2+Cf!s), 

x2 Ci-) = { t CI- .1114)} -l/
2 Cp1- tcp2- t (/!3), (2·2) 

Xs (r) = {2 (1- .Jlf4) }-1/2 (cp2- C{!s)' 

where .d=e-o and iJ=d2/b 2
• X2 and Xs are degenerate. In the limit of d--+0, Xh 

X2 and Xs tend to- (Os) and (Op) states with a quantum m y-axis and in x-axis, 
respectively, of the usual h.o. shell model. 

Now, let us transform the pair wave functions Xi (r1) Xj (r2) into the relative 
(r) and centre of mass (R) coordinates. There appear six independent ba~is 
functions for the centre of mass and seven for the relative coordinates, which 
are written as 

(a) 

(b) 

Fig. 2. Geometrical illustration of the 
independent basis functions for 
c.m. (a) and relative (b) coordi­
nates. 

(j7C ) '-3/2 [ ( C· + c .)2/ ..... J ([J<ij) (R) = 2b, exp - R- ~ 
2 

1 
. b2 

and 

(2·3) 

¢<o) (r) = ( ..;2-;r b )-3f2e-r2f4b\ 

¢<ij) (r) = ( ,;2-;r b )-3f2e-{r-<t'i-CJ)}2f4b2. (i~ j) 

(2 ·4) 

Equations (2 · 3) and (2 · 4) are illustrated in 
Fig. 2. Again we can construct orthonormal 
sets with certain symmetry from ([J<ij> and ¢<0

), 

¢<ij>, respectively. 
As for the c.m. coordinates, they are ex­

pressed by 
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1518 H. Banda, S. Nagata and Y; Yamamoto 

(])1 (R) = {2 (1 +No) }-112 {A0 {R) + Bo (R)}, 

(])2 (R) = {2 (1- N1)} - 112 {Ay (R) -By (R)}, 

(])3(R) = {2(1-N1)}-112 {Ax(R) -Bx(R)}, 

(])4(R) = {2(1-No)}-112 {Ao(R) -B0 (R)}, 

(])5 (R) = {2 (1 + N1) }-112 {Ax (R) + Bx (R)},. 

(])6(R) = {2(1+Nt)}-112 {Ay(R) +By(R)}, 

where A (R) and B (R) are defined by 

and 

Ao(R) = {3 (1 +2.J112) }-1!2{(j)<n) +(])<22) + (])<33)}, 

Ay (R) = {! (1-- .:1112)} -1;2 {(])(11) _ t(])<22) _ !(])(33)}, 

Ax (R) = {2 (1- .Jlf2) }-1!2{(])<22) _ (])<33)}, 

Bo (R) = {3 (1 + 2.J118)} -1;2 {(])<23) + (])<31) + (])<12)}, 

By (R) = H (1- .J118)} -1/2 {(])(23)- !(])(31)- !(])(12)}' 

Bx (R) = {2 (1- .J1!8)} -1;2 {(])<31) _ (])<12)} 

N 0 = <Ao (R) JBo (R)) = (.J3/B + 2.J1!8) (1 + 2.J1!2)-1/2 (1 + 2.J118)-112, 

N1 = <Ay (R) jBy (R)) =<Ax (R) JBx (R)) 

(2·5) 

(2·6) 

(2·7) 

In the limit d~o, (])N(R) tends to (Os) for N=1, (Op) forN=2, 3 and (1s,Od) 
for N = 4rv6, in h.o. wave functions. 

Similarly we can construct orthonormal relative wave functions with definite 
symmetry and parity, taking account of additional ¢<0

) (r). The results are 

¢1 (r) = {2 (1 + Voo) }-112 [¢<0
) (r) + {2 (1 + V0)}-

112 {ao (r) + /10 (r)}], 

¢2 (r) = {2 (1- v1) }-112 {ay (r) - {1y (r)}, 

¢3 (r) = {2 (1- v1)}-112 {ax (r) - t1x (r)}' 

¢4 (r) = {2 (1- V00) }-
112 [¢<0

) (r)- {2 (1 + V0) }-
112 {a0 (r) -1-/10 (r)}], (2 · 8) 

¢5 (r) = {2 (1 + v1) }- 112 {ax (r) + t1x (r)}, 

¢a (r) = {2 (1 + v1) }-112 {ay (r) + {1y (r)}, 

¢7 (r) = {2 (1- Vo) }-112 {ao (r) - /1o (r)}, 

where a (r) and /1 (r) are defined by 

ao (r) = { 3 (1 + 2.Js;s) }-1;2 {¢<23) + ¢<31) + ¢<12)}, 

ax (r) = {! (1- .J3f8)} -1/2 {¢(23)- t¢(31)- t¢(12)}' 
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av (r) = { 2 (1 - .Ja;s)} -1;2 {¢<31) _ ¢<12)}, 

f3o (r) = {3 (1 + 2.J3IB) }-1/2{¢(32) + ¢<13) + ¢<21)}, 

f3x (r) = {j (1- .J3!8) }-1/2{¢(32) _ i¢(13) _ i¢(21)}, 

f3v(r) = {2 (1 -.Js;s)}-1/2{¢<13)_¢(21)} 

Vo = (ao (r) I /30 (r)) = .J1
18 (1 + 2.J318)-1 (2 + .J318), 

V1 =(ax (r) lf3x (r)) = (av (r) lf3v (r)) =- .:1118, 

Voo = Jt).Jl!8 (1 + 2.J31B)-1/2 (1 + Vo)-112. 

(2·9) 

(2 ·10) 

In the limit d~o, ¢n (r) tends to (Os) for n = 1, (Op) for n = 2, 3, (1s, Od) for 
n = 4r-v6 and (1p, Of) for n = 7, in h.o. wave functions. In order to solve the 
reaction matrix equation, we expand the relative wave functions ¢n (r) in partial 
waves, using the expansion 

¢<iJ) (r) =4n( J2n b)-
8
1
2.J114e-r

21402 ~ J~(:~) Y~~(~~1) Ytm(r), (2·11) 

where g (z) = Jn/2z IHl/2 (z). ¢1, ¢4, ¢5, ¢6 and ¢2, ¢s, ¢7 include even and odd 
l waves, respectively. ¢5 and ¢6 are found to have higher than d waves only 
and ¢7 higher than f waves only. 

Using the inverse relations of Eqs. (2 · 5), (2 · 6), (2 · 8) and (2 · 9) we ex­
press Xi (r1) XJ (r2) in terms of (/) N (R) and ¢n (r), and then expand the latter in 
partial waves. The resultant expressions are shown in the Appendix. There 
appear eight kinds of s:wave functions, ~o<n) (r). The reaction matrix equation is 
solved for each unperturbed wave function ~ (r). 

2-2 Linear chain configuration 

by 
The model wave function in this case is the Slater determinant of (/)i (r) given 

(/) 1 (r) = ( ·l7ib)-312e-rz;2b2' 

({)
2 
(r) = ( v'n b )-8!2e-<r-d)2f2b\ 

({)3 (r) = ( v'n-b)-3!2e-<r+d>2f2o2. 

(2 ·12) 

The orthonormal single particle wave functions Xi (r) are not determined 

Fig. 3. Linear chain configuration of three a-clusters. 
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uniquely by geometrical symmetry in this case, since (92 - q> 3) is the unique nega­
tive parity state, while Y?1 and (q>2 + q>3) with positive parity can admit in an ar­
bitrary way. We determine them by the Hartree-Fock condition. Thus Xt (r) is 
written as follows: 

X1 (r) = {1 +sin (2()1) cosh-112 (iJ 12) }-112 [cos ()1 Y?1 +sin ()1 {2 (1 + J) }- 112 (92 + q>a)], 

X2 (r) = {2 (1- J) }- 112 (92- Y?s), (2 ·13) 

X3 (r) = {1- sin (2()3) cosh - 112 (iJ /2)} - 112 [-sin ()a Y?1 +cos ()3 {2 (1 + J)} - 112 (92 + q>3)]. 

Orthogonality of X1 and X3 imposes the condition 

(2 ·14) 

x~, X2 and Xa ten·d to the (Os), (Op) and (Os, 1d) states, respectively, of the 
h.o. shell model in the limit d~o, so far as o<e1 <rrl2. The parameter ()1 (83) 
is determined later by the H-F condition 

(2 ·15) 

Now we transform the pair wave functions Xi (r1) Xj (r2) into the c.m. and re­
lative coordinates. From 'Pi (r1) lf'j (r2) there appear five independent basis func­
tions for each R and r, which are 

. ([)<±N) (R) = ( j ~b) -3/2 e-<R+Ndf2)2fll\ N = 0, 1, 2' (2 ·16) 

(2 ·17) 

There is arbitrariness in co;nstructing orthonormal sets from ([)<±N) and ¢/±n), .so 
we adopt a simple way of conserving parity. The results are 

(/)1 (R) = ([)<o> (R) , 

([) 2 (R) = {4.J114 sinh(iJ/4)}-1
;

2 {([)<+ 1> (R) - ([)<-1
) (R)}, 

([) 3 (R) = { .J8J118 sinh (a 18)} - 1 {([)<+ 1
) (R) + ([)<- 1

) (R) - 2J1
1

8([)<o) (R)}, 

([)4 (R) = [ 4J sinh-1 (a I 4) {sinh (iJ) sinh (a 1 4) - sinh2 (a 12)} ]-1
;

2 

x [ {([)<+ 2
) (R) - ([)<- 2

> (R)} - .J318 sinh (a 12) sinh-1 (a 1 4) 

X {([)<+1) (R) - ([)<- 1> (R)}], 

f.D 5 (R) = [8J sinh-2 (iJ 18) {sinh2 (a 12) sinh2 (iJ/8) - sinh4 (a 1 4)} ]-1
;

2 

x [ {([)<+ 2> (R) + m<- 2> (R)}- J 318 sinh2 (al4) sinh-2 (alB) 

(2 ·18) 

x {([)<+ 1)(R) +([)<~ 1)(R)} +2J112 {sinh2 (iJI4)sinh-2 (al8) -1}(/)<0)(R)]. 

In the limit d~o, (/)N(R) tends to h.o. wave functions with (N -1) quanta in 
z-direction. ([)~, (/)3, (/) 5 and (/) 2 , (/)4 have even and odd parity, respectively. The 
definition of the orthonormal relative wave functions ¢n(r) is the same as Eq. 
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(2 ·18), if (/)'s are replaced by ¢'s. Partial wave expansion of ¢n (r) is also 
straightforward. The expressions of Xi (r1) xj (r2) are more complicated than in 
the case of T-con:figuration and are not shown explicitly here. 

2-3 Reaction matrix and single particle energy 

The reaction matrix G is solved for each ~ (r) defined m the Appendix by 
the equation 

G=v+v Q G, 
Ce1 + e2) - (T1 + T2) 

(2 ·19) 

where Q is the Pauli projection operator, ei is the single particle energy of the 
state Xi which is determined self-consistently and Ti is the kinetic energy opera­
tor. It has been shown12) in the case of nuclear matter that single particle potent­
a! energy in off-energy-shell propagation is negligibly small. This fact is related 
to three-body correlation which decreases by taking into account all order dia­
grams for the singular two-body force. Though numerical calculations of 
three-body correlation have not yet been published for :finite nuclei, the situation 
will be the same as in nuclear matter because the above-mentioned result is con­
cerned mainly with high momentum correlations. Therefore, we take single par­
ticle potential energy at virtual state to be zero.13

) 

We solve Eq. (2 ·19) in two steps, :first omitting Pauli operator Q and then 
taking it into account. The method of calculation is the same as explained in I. 
Approximation in our calculation is only in the over-estimate of the contribution 
of one particle jump. The G matrix depends on single particle states i and j 

and c.m. quantum state N through the starting energy. It will be found that the 
starting energy plays an important role in inducing some changes in the reac­
tion matrices depending on clusterization. 

Single particle potential energies are given by G as follows: 

(2. 20) 

Single particle energies are expressed by 

(2· 21) 

Si thus obtained should equal the values put in Eq. (2 ·19) . Computations are 
performed until this self-consistency requirement is satisfied. In the case of L­
con:figuration, an additional condition Eq. (2 ·15) is necessary in order to deter­
mine the parameter el (8s). Four quantities, Ci and eh are, therefore, to be de­
termined self-consistently in this case, while two, e1 and e2 ( = s3), are to be 
determined self-consistently in the case of T-con:figuration. 

Thus, tatal energy is given by 

3 

( 1 ) 3 h
2 

E(bd)=4"e·--U· ---
' f;j ~ 2 ~ 4 Mb2 ' 

(2 ·22) 
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in which the zero point oscillation energy of the total system is subtracted m 

the last term. 

§ 3. Results and discussion 

We adopt OPEG potential6
) (with one-pion-exchange tail and gaussian soft 

core) as a realistic nuclear force. This force gives about -22 MeV at b = 1.4 fm 

for the binding energy Ba of an a-particle1
). Ba is related to E (b, d) in Eq. 

(2. 22) by 

1 { 3 h
2 

Ba=- E(b d---H:>O) -2·-~} 
3 ' 4 Mb 2 

' 
(3 ·1) 

m which the subtracted term corresponds to the zero point oscillation energies 

of the a-clusters. 
We take only relative s-waves in the computations here, because the odd 

state contributions are rather small, and our aim is to show the importance of 

clustering dependence of effective interaction in an even state of relative angular 

momentum. 
In Fig. 4, calculated single particle energies for T- and L- configurations are 

shown with respect to the distance between a-clusters. For the £-configuration, 

values of 81 are also shown. Corresponding total energies are shown in Fig. 5 

in terms of JE (b, d) = E (b, d)- E (b, d---H>O). 

Single particle energies tend to coincide for large values of d and split 

gradually for smaller values of d. In the limit of small d, they correspond to 

the values in the usual h.o. shell model. The value of 81 goes up to rc/2 at 

d~1 fm, and at smaller d no solution of 81 is found which satisfies the H-F con­

dition (2 ·15). This means that h.o. wave functions can not satisfy the H-F 

MeV 

30 
r-configuration 

20~ 
---.li___---

1 0 

or-~~~~7---~~~ 

-10 

Fig. 4. Single particle energies for b=l.4fm (Ti: kinetic energy, Ui: potential energy and Ei 

= T;, + Ui) and the mixing parameter fh for £-configuration. 
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6 d(fm) 

-20- b=1.5 

Fig. 5. Total energy .JE(b, d) for two con­
figurations. 

condition by themselves. 

L/E(b,d), 
MeV. \ 

I 

Fig. 6. .JE(b, d) for b=1.4fm. Dashed curves 
represent the values obtained by usi~g G(d 
= oo) for all d-values (no clustering depen­
dence of G-matrix). 

The total energy L1E (b, d) has a shallow m1mmum around d = 2 fm for T­
configuration and a steep minimum around d = 3 fm for L-configuration. This 
means that the latter has more distinct and more stable clusterization than the 
former. It is emphasized that these energy minima at non-zero values of d are 
obtained by using no odd-state repulsive force. Clustering dependence of effec­
tive interaction, that is, d-dependence of G-matrix is responsible for bringing 
about these clusterizations. In order to see the effect explicitly, let us compare 
L1E (b, d) in Fig. 5 with those calculated by using the G-matrix obtained at d = oo 
for all values of d. At d = oo the G-matrix is same for both configurations. 
They are shown in Fig. 6. In T-configuration, the energy minimum is found at 
d = 0, if we use artificially the same G-matrix for all values of d. This means 
that without the d-dependent G-matrix T-configuration would have no clusteriza­
tion. This situation occurs usually when we use simple phenomenological inter­
actions without strong odd-state repulsion. Our results show that the effective 
interaction is generally more attractive as the clustering becomes more notice­
able with larger values of d. In other words, clusterization makes the effective 
interaction more favourable to clusterization. In the case of L-configuration, we 
see in Fig. 6. that there remains stable clustering even if the d~dependence of 
the G-matrix is ignored. This is due to the strong effect of the Pauli principle.7> 

In order to find the difference of the effective interaction between T- and 
L-configurations, we measure in Fig. 6 the total energies from the dashed 
curves which were obtained by use of the same G-matrix. Energy differences 
from the dashed lines are about 11 MeV at the energy minimum for T-configura­
tion, but only about 5 MeV at the energy minimum for L-configuration. This 
means that the effective interaction is more attractive in L- than in T- con­
figuration, and this configuration dependence makes the excitation energy of 
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the L-state from the ground state, i.e. the T-state, about 6 MeV lower than that 
obtained without this effect. 

The above discussion is a generalization. Actually, G-matrices; even for a 
fixed value of d, depend in a complicated way on the st~tes of the two interacting 
nucleons. In Fig. 7 are shown the ratios of the matrix elements (XiXjiGTsiXiX) 
to those calculated by use of the G-matrix at d = oo, which are used to obtain the 
dashed curves in Fig. 6. We find that T=O, S=1 matrix elements change markedly 
with d, while T = 1, S = 0 change only slightly. This originates from the tensor 

0.9 

0.8 

1.0--~ 

0.9 ''~-~----------
0.8 i =2 

,. 
2 3 4 5 d (fm) -------~---

1.0 ---------~ 

-: T=1, 5=0 0.9-

----:T=O, 5=1 0.8 
r 

i=3 

I I I r, 

potential energy in our calculation. 

force in the triplet even state. It 
is seen from Figs. 4 and 7 that re­
normalizations of the tensor force 
to the central part depend- on the 
changes of single particle ener­
gies c:/s and on the existence of 
levels to be rejected by the 
Pauli principle. Thus we can 
say that the 3E-tensor force is 
mainly responsible for the cluster­
ing dependence of the effective 
interactions, which enhances clus­
tering itself as a whole. 

The a hove results should be 
thought in a qualitative and not 
a quantitative sense, since the 
binding energy of an a-particle 
is deficient by about 10% of the 

§ 4. Conclusions 

We have shown in this paper that 
i) there exists a "clustering dependence of effective interaction" which en­

hances clustering itself (this may be regarded as clustering-induced attrac­
tion), 

ii) it has a decisive role in bringing about some clusterization for the ground 
T-confi.guration of C12

, 

iii) it makes the effective interaction more attractive in the excited L-configura­
tion than in the ground T-configuration and, as the result, reduces the ex­
citation energy of the L-state, 

iv) it appears most markedly in the triplet even state and is understood as ori­
ginating from a strong tensor force. 

These results may give a theoretical foundation to cluster structure in light nuclei 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/45/5/1515/1913352 by guest on 21 August 2022



Reaction Matrix Theory for Cluster States in Light Nuclei. II 1525 

from the view-point of the effective interaction. We have adopted simple model 
wave functions here. Many effects such as polarization of a-clusters, 8) l· s split­
ting,9l and so on, must be taken into consideration in order to give realistic 
results. Still then, clustering dependence of the effective interaction will play an 
important role. 
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Appendix 

In T-configuration, Xi (r1) X,j (r2) are transformed into c.m. and relative coor­
dinates as follows: 

X1 Cr1) X1 (r2) = J
6 

(1 + 2.::1114)-1 { (1 + NoY12@1 (R) ~oc1 ) (r) + (1- NoY12@4 (R) ~oc2 ) (r)}, 

X2 (r1) X2 (r2) = J
6 

(1- .::1114)-1 { (1 + NoY12@1 (R) ~o c4) (r) + J
2 

(1- N1Y12@2 (R) ~o c6
) (r) 

+ (1- NoY12@4 (R) ~oc3) (r) + J
2 

(1 + N1Y12@5 (R) ~oc5) (r)}, 

X3 Cr1) XB Cr2) = X2 Cr1) X2 (r2), 

X1 (r1) X2 (r2) = J
6

(1 + 2.::1114)-112(1- .::1 114)-112 {(1- N 1Y12@2 (R) ~o <7) (r) 

+ (1 + N1Y12@5 (R) ~ocs) (r)}, 

X2 (r1) X3 Cr2) = - } (1- .::1114)-1 { (1- N1Y12@3 (R) ~oc6) (r) 
v12 

+ (1 + N1Y12@a (R) ~o <5
) (r)}, 

X3 (r1) X1 (r2) = J6 (1 + 2J114)-112 (1- J114)-1f2 { (1- N1YI2(])3 (R) ~o(7) (r) 

+ (1 + N1Y12@6 (R) ~oc8) (r)}. 

Here the s-state wave functions ~ocn) (r) are defined by 

~0cn) (r) = ( ~Zn b )-3f2e-r2f4b2 { ( 1 + ZJ112y12 _ ( _ tP (n) 
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and 

n=5r.../8, 

where p(n) =2 for n=1, 2, 5, 6 and 1 for n=3, 4, 7, 8. Other than s-waves are 
omitted in the above expressions. 

The expressions in the case of L-configuration are more complicated and are 
not written here explicitly. 
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