
Article https://doi.org/10.1038/s41467-023-39283-x

Reaction performance prediction with an
extrapolative and interpretable graphmodel
based on chemical knowledge

Shu-Wen Li 1, Li-Cheng Xu1, Cheng Zhang2, Shuo-Qing Zhang 1 &
Xin Hong 1,3,4

Accurate prediction of reactivity and selectivity provides the desired guideline
for synthetic development. Due to the high-dimensional relationship between
molecular structure and synthetic function, it is challenging to achieve the
predictive modelling of synthetic transformation with the required extra-
polative ability and chemical interpretability. Tomeet thegapbetween the rich
domain knowledge of chemistry and the advanced molecular graph model,
herein we report a knowledge-based graph model that embeds the digitalized
steric and electronic information. In addition, a molecular interaction module
is developed to enable the learning of the synergistic influence of reaction
components. In this study, we demonstrate that this knowledge-based graph
model achieves excellent predictions of reaction yield and stereoselectivity,
whose extrapolative ability is corroborated by additional scaffold-based data
splittings and experimental verifications with new catalysts. Because of the
embedding of local environment, the model allows the atomic level of inter-
pretation of the steric and electronic influence on the overall synthetic per-
formance, which serves as a useful guide for the molecular engineering
towards the target synthetic function. This model offers an extrapolative and
interpretable approach for reaction performance prediction, pointing out the
importance of chemical knowledge-constrained reaction modelling for syn-
thetic purpose.

The chemical comprehension and accurate prediction of reactivity
and selectivity provide the foundation for the rational and efficient
exploration of massive synthetic space1,2. This establishment of the
structure–performance relationship (SPR) has been focused on
the reaction mechanism study and elucidation of the determining
transition state model3. Using the transition state model, chemists
can elucidate the origins of the observed reactivity/selectivity
trend and make synthetic judgments based on chemical theory
and empirical experience4. This classic knowledge-driven strategy

has reached remarkable success in synthetic chemistry and con-
tinues to provide strong support for the discovery of new cata-
lysts, reagents, and reaction5. Despite the advantage of offering
qualitative guidance in the synthetic universe, it is challenging for
the knowledge-driven strategy to handle the high-dimensional SPR
without a clear mechanistic basis and analytic equation. The see-
mingly subtle change in catalyst, additive, or even solvent may
result in significant perturbation of the overall synthetic
performance6,7. This is why laborious and repetitive condition
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optimization is still inevitably required, limiting the efficiency of
synthetic development8.

The data-driven approach has recently emerged as a powerful
strategy for SPR establishment9,10. By harnessing the interrelationship
within the synthetic data, modern machine learning (ML) algorithms
can create powerful models for synthetic prediction. Accurate pre-
dictions of reaction yield11–14, kinetic rate15,16 and activation energy17–19,
chemo-20, regio-21–25, and stereoselectivity26–32. have been achieved in a
wide array of organic transformations, which validated the exciting
concept ofML prediction of synthetic performances. However, theML
prediction and design of synthetic transformation are still far from
mature. One of the major bottlenecks is the availability of the mole-
cular encoding approach and the ML framework that are suitable for
SPRprediction (Fig. 1a).Quantumchemical descriptors27 are known for
their solid physical basis and high descriptive ability, but their appli-
cation typically requires a sophisticated understanding of the under-
lying reaction mechanism, and the descriptor generation can be time-
and resource-consuming for large-scale screening. The string- and
topological structure-based encodings (i.e., SMILES, molecular fin-
gerprints, etc.)33,34 do not require expert knowledge of the studied
transformation and can be efficiently generated, while it is difficult to
trace the physical organic origins of the synthetic performance. In
addition, the extrapolation problempresents additional challenges for
SPR prediction35,36. Current synthetic models still lack sufficient gui-
dance for developing new catalysts and transformations.

Beyond the human-specified engineering ofmolecular encodings,
the field of chemical prediction has beenwitnessing a growing interest
in representation learning. Through the innovation and application of
representation learning, data-driven predictions of molecular
property37,38 and reaction performance39,40 have achieved significant
progress. Particularly in SPR prediction, Jensen, Green, Coley, and co-
workers combined the classic graph neural network (GNN)model with
selected quantum chemical descriptors of reaction sites, developing a
fusion model called QM-GNN22,41 (Fig. 1b). This fusion model embeds
site-specific electronic information intoMLmodeling, which improves
the predictive ability towards regioselectivity22 and reactivity41 across a
series of transformations. The success of theQM-GNNmodel indicated
that enhancing the expression of local chemical information can pro-
vide valuable support for constraining synthetic modeling. Inspired by
this model, we surmise that the SPR prediction can be further
improved by enriching the local encodings of the chemical environ-
ment and strengthening the information interaction between reaction
components.

In this work, we report a reaction performance model with two
innovative designs (Fig. 1c): the knowledge-enhancedmolecular graph
provides an unbiased way to embed the digitalized steric and elec-
tronic information of the atomic environment, which enriches the
representation of the entire molecule instead of specifying the con-
trolling sites; the molecular interaction module allows the effective
learning of the synergistic control by multiple reaction components,
which enables the effective extension of molecular modeling to the
realm of SPR modeling. This model achieves excellent yield and ste-
reoselectivity predictions in a series of challenging tasks, and our
additional experimental tests of asymmetric thiol addition of imines
verify its extrapolation ability in new catalyst predictions. This accu-
rate, extrapolative, and interpretable model provides a useful
approach for reaction performance prediction, which accelerates the
ML design of molecular synthesis.

Results
Encoding chemical information in the molecular graph
The key design of our knowledge-enhanced molecular graph is to
embed the atomic information of the steric and electronic
environment in the node. This introduces external chemical
knowledge to improve the model’s differentiation ability from the

local chemical environment. The generation workflow of the
designed molecular graph model, called steric- and electronics-
embedded molecular graph (SEMG), is presented in Fig. 2 using 1-
chloro-4-(trifluoromethyl)benzene as an example. The first step is
to generate a molecular graph with a series of empty vertices
from SMILES (Fig. 2a). Subsequently, the molecule is optimized
under the GFN2-xTB42 level of theory, and the digitalization of the
local steric environment is realized using a spherical projection
method developed by our group in previous work43 (Fig. 2b). This
approach, called spherical projection of molecular stereo-
structure (SPMS), maps the steric environment by projecting the
distance between the molecular vdW surface and a customized
sphere from a designated center (exampled by chlorine in
this case). Equirectangular projection of the mapped distance
sphere creates a two-dimensional distance matrix, which is used
as the embedded steric information for the graph vertex. For the
embedding of the local electronic environment, the B3LYP/def2-
SVP-computed electron density is used (Fig. 2c). This provides a
reasonable estimation of the electron density distribution in real
space, which supports the evaluation of the electronic environ-
ment neighboring the selected atom. Centered at the selected
atom, a cube with the vdW diameter as the side length was divi-
ded into 7 × 7 × 7 grids. The computed electron density values
were recorded as a 7 × 7 × 7 tensor, which is used as the embed-
ded electronic information for the vertex of the graph model.
Repeating the steric and electronic embeddings for each atom
leads to the final SEMG for model training. To ensure the physical
accuracy of the optimized geometry and the computed electron
density, we performed careful benchmarking of a series of theo-
retical approaches, GFN2-xTB optimization and B3LYP/def2-SVP
calculation of electron density was found to provide reasonable
model inputs with solid physical accuracy and affordable com-
putational cost for large-scale screening. Additional details of the
information embedding are provided in the Supplementary
Information.

Design of molecular interaction GNN
Building upon the rich chemical information of SEMG, next, we
modified the framework of GNN to make it suitable for SPR pre-
diction. Particularly, a molecular interaction module is developed
to enhance the information exchange between reaction compo-
nents during the model training. The synergistic molecular
interaction is of importance for the determination of SPR, while
was rarely explored for the model designs of synthetic predic-
tions; an interesting design from Liu and co-workers applied
hyper-graph to enhance the intermolecular information
exchange44 which aimed to address the same issue as in our
interaction module. Different from hyper-graph, our design of the
molecular interaction GNN (MIGNN) relies on matrix operation to
enable the information exchange (Fig. 3). The SEMGs of the
reaction components are processed by the attention layer, in
which the weight values are trained to capture the atomic con-
tribution for reaction performance determination. Subsequent
linear, convolution, max pooling, and flatten layers lead to a one-
dimensional reaction vector. This reaction vector, which is the
processed reaction representation with uneven local attention, is
duplicated into two copies. One copy of the reaction vector
undergoes the interaction module to enhance the information
exchange between reaction components. In the interaction
module, the matrix multiplication of the reaction vector allows
the information of each reaction component to interact with
those of the other components, whose details are further elabo-
rated in the Methods section. This creates an interaction matrix,
which is further processed by sequential attention, convolution,
and flattening layer to produce an interaction vector with the
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ability to focus on certain interacting pairs. The interaction vector
and the other copy of the reaction vector are then concatenated
as the final one-dimensional vector that represents the synthetic
transformation, which passes the last attention and linear layers
to provide the prediction value.

The interactionmodule ofMIGNNprovides anopportunity for the
ML model to capture the synergistic effect of reaction components,
which is challenging for the conventional ML framework of SPR pre-
diction. Current ML models of synthetic transformation generally
concatenate the molecular encodings in an unphysical sequence. This
simple concatenation directly mixes the molecular encodings of all
reaction components; thus, the physical information of intra- and
intermolecular boundaries no longer exists, making it difficult for the
ML model to directly capture the synergistic influence of multiple
reaction components. In MIGNN, the interaction matrix allows all
possible combinations of the physically meaningful reaction compo-
nents to fully exchange their encoded information, which supports the
model’s prediction in the high-dimensional synthetic space with
intertwined reaction components.

Performance of the SEMG-MIGNN model
We next evaluated the predictive ability of the SEMG-MIGNN model.
Both yield and enantioselectivity predictions were tested usingDoyle’s

dataset11 of Pd-catalyzed C–N cross-coupling reactions between
4-methylaniline and aryl halides aswell as Denmark’s dataset31 of chiral
phosphoric acid (CPA)-catalyzed thiol addition to N-acylimines. These
high-quality datasets provide valuable statistics thatmap the complete
synthetic space given the studied reaction components, which
have been widely applied as benchmark datasets in ML studies of
SPR13,40,45. The data size and variations of the involved reaction com-
ponents are described in Fig. 4a and Fig. 5a, respectively. To highlight
the effectiveness of the chemical information embedding and the
interaction module in the SEMG-MIGNN model design, we compared
SEMG with the classic molecular graph46 (baseline MG) which uses the
limited atomic descriptions in the vertex (atom type, atomic number,
binary definition of acceptor/donor, etc.). The MIGNN framework was
compared to the classic GCN47 designswithout the interactionmodule.
These variations together led to four possible modeling approaches:
baseline MG-GCN, SEMG-GCN, baseline MG-MIGNN, and SEMG-
MIGNN. Further technical details of the tested models are provided
in the Supplementary Information.

Doyle’s C–N coupling yield dataset was randomly split into 70%
(training) and 30% (test), and ten trials of yield prediction were
performed. For each model, a representative regression perfor-
mance is elaborated in Fig. 4b. The baseline MG-GCN model gave
unsatisfying prediction results; the R2 value is 0.545, and the RMSE is
18.40%. Changing the baseline MG to the chemical information-
embedded SEMG improves the regression performance, the SEMG-
GCN model achieved a R2 of 0.592 and RMSE of 17.56%. To our
satisfaction, the training with MIGNN significantly improves the
predictive ability of graph representation. Evenwith the baselineMG,
the baseline MG-MIGNN model can achieve an excellent yield pre-
diction with an average R2 of 0.921 and RMSE of 7.69%. This high-
lights the synergistic yield control of the reaction components in the
Pd-catalyzed C–N cross-coupling and the ability of the MIGNN fra-
mework to capture this effect. The usage of the SEMG-MIGNNmodel
further improves the prediction performance, which is the best
among the tested four combinations. The R2 and RMSE of the
representative SEMG-MIGNN modeling are 0.969 and 4.81%,
respectively. In addition to the changes in graph representation and
GNN framework, we also compared the SEMG-MIGNN model with
other state-of-the-art (SOTA) ML approaches (Yield-BERT40, DRFP45,
and MFF13) without the embedding of steric and electronic infor-
mation. Table 1 presents the inter/extrapolative prediction perfor-
mances of these models with varied splittings of the dataset. In the
interpolation tasks with different ratios of training data, all the SOTA
models were able to provide satisfying prediction performances,
with SEMG-MIGNN showing limited improvements. In the extra-
polation tasks, however, SEMG-MIGNN demonstrated noticeable
advantages. We performed scaffold splitting22,48 based on the struc-
tural variations of the compounds involved in the yield dataset,
resulting in four extrapolation challenges of aryl halide, additive,
ligand, and base; the details of these splittings are provided in the
Supplementary Information (Supplementary Fig. 20). The tested
SOTAmodelsmet difficulties in these extrapolation tasks with RMSEs
ranging from 18% to 26%, making predictions with limited synthetic
value. SEMG-MIGNN model can provide accurate extrapolative pre-
dictions for additives and ligands, with RMSE of 10.36% and 11.02%,
respectively. The aryl halide and base extrapolations are more chal-
lenging, yet the SEMG-MIGNN model still achieved markedly super-
ior performance compared to the other models. Detailed regression
performances are provided in the Supplementary Information
(Supplementary Fig. 21). These results further highlighted the SEMG-
MIGNN model’s ability to make extrapolative predictions for new
molecules, emphasizing the significance of embedding chemical
information in SPR modeling.

The evaluations of enantioselectivity prediction also verified the
excellent ability of the SEMG-MIGNN model (Fig. 5). Denmark’s

Fig. 1 | Machine learning prediction of synthetic performance and molecular
property. a Representative strategy of synthetic prediction by concatenating the
molecular encodings of reactant 1 (orange), reactant 2 (blue), additive (green), and
product (yellow). b Previous work of quantum chemistry-augmented graph model
for synthetic prediction using the WLN (Weisfeiler-Lehman network) encoder and
QM (QuantumChemistry) descriptors. The green background represents the input
compounds and the architecture of themodel. The orange background represents
four quantum chemical descriptors. α, β, γ, and α’ indicate the reaction sites.
c Chemical knowledge-based design of graph model for synthetic performance
prediction (this work).
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asymmetric thiol addition dataset of 1075 transformations were ran-
domly split into 600 (training) and 475 (test) following the data split-
ting in the original study31 (Fig. 5a). Fig. 5b compares the GNN
performances with or without the SEMG andMIGNN designs. Training
with the baselineMG-GCNmodel again led to less satisfying regression
performance; the representative trial has anR2 of0.778 and anRMSEof
0.332 kcalmol−1. Changing either the graph representation or the GNN
framework improved the predictive ability. The SEMG-GCN and base-
lineMG-MIGNNmodels have predictions of the enantioselectivity with

R2 of 0.819 and 0.880, respectively. Consistently, the SEMG-MIGNN
model is the best among the four tested combinations with an excel-
lent prediction performance. The R2 of the representative SEMG-
MIGNN trial is 0.915, and the corresponding RMSE is 0.197 kcalmol−1.
The comparisons with other SOTA models further highlighted the
predictive ability of the SEMG-MIGNN model in enantioselectivity
tasks. Table 2 provides the inter- and extrapolative enantioselectivity
predictions using SEMG-MIGNN and other SOTA models. In the inter-
polation tasks, all the SOTA models were able to provide accurate

Fig. 3 | Frameworkofmolecular interactiongraphneuralnetwork (MIGNN)and
the design of the interaction module. The MIGNN (molecular interaction
graph neural network) first processes the SEMGs (steric- and electronics-
embedded molecular graph) of the reaction components via the attention,
linear, convolution, max pooling, and flatten layers, which leads to a one-
dimensional reaction vector. Subsequently, the reaction vector is duplicated

into two copies. One copy undergoes an interaction module that allows the
information of each reaction component to interact with those of the other
components, resulting in an interaction vector. This interaction vector and
the other copy of the reaction vector are concatenated as the final one-
dimensional vector, which passes the attention and linear layers to provide
the prediction value.

Fig. 2 | Generationworkflowof the steric- and electronics-embeddedmolecular
graph (SEMG). a Molecular graph generation from SMILES (simplified molecular
input line entry system). b Embedding of the atomic information of the steric

environment. c Embedding of the atomic information of the electronic environ-
ment. dGenerated SEMG (steric- and electronics-embeddedmolecular graph) with
embedded chemical information.
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prediction performances; the SEMG-MIGNN model showed marginal
improvement in all cases. In contrast, the thiol and catalyst extra-
polation tasks differentiated the model performances. The SEMG-
MIGNN model was still able to provide competent predictions with
RMSE of 0.300 kcalmol−1 (thiol) and 0.294 kcalmol−1 (catalyst), which

outcompetes the tested SOTA models with marked differences.
Detailed regression performances are provided in the Supplementary
Information (Supplementary Fig. 23). Consistent with the yield pre-
dictions, the modeling of enantioselectivity prediction confirmed the
excellent extrapolative ability of the SEMG-MIGNN model, providing

Fig. 5 | Prediction of enantioselectivity by SEMG-MIGNN model (steric- and
electronics-embedded molecular graph with molecular interaction graph
neural network). a Overview of the dataset of the chiral phosphoric acid-
catalyzed thiol addition to N-acylimines. These data are originally published
by Denmark and co-workers26. b Regression performances of baseline MG-
GCN (baseline molecular graph and graph convolutional network), SEMG-GCN
(steric- and electronics-embedded molecular graph with graph convolutional
network), baseline MG-MIGNN (baseline molecular graph with molecular

interaction graph neural network) and SEMG-MIGNN models (steric- and
electronics-embedded molecular graph with molecular interaction graph
neural network). The dataset was randomly split into 600 (training) and 475
(test) reactions. SEMG-MIGNN model (steric- and electronics-embedded
molecular graph with molecular interaction graph neural network) outper-
forms the other tested combinations with R2 and RMSE (root mean square
error) of 0.915 and 0.197 kcal mol−1 respectively. Source data are provided as
data2.csv and Data_for_Fig_5.csv.

Fig. 4 | Prediction of reaction yield by SEMG-MIGNN model (sterics- and
electronics-embedded molecular graph with molecular interaction graph
neuralnetwork). aOverview of the dataset of Pd-catalyzed C–N cross-coupling
reactions between 4-methylaniline and aryl halides. These data are originally
published by Doyle and co-workers11. b Regression performances of baseline
MG-GCN (baseline molecular graph with graph convolutional network), SEMG-
GCN (steric- and electronics-embedded molecular graph with graph con-
volutional network), baseline MG-MIGNN (baseline molecular graph and

molecular interaction graph neural network) and SEMG-MIGNN models
(steric- and electronics-embedded molecular graph with molecular interac-
tion graph neural network). The dataset was randomly split into 70% (training)
and 30% (test). SEMG-MIGNN model (steric- and electronics-embedded
molecular graph with molecular interaction graph neural network) outper-
forms the other tested combinations with R2 and RMSE (root mean square
error) of 0.969 and 4.81%, respectively. Source data are provided as data1.csv
and Data_for_Fig_4.csv.
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strong support that the embedding of local chemical information is
beneficial for SPR predictions.

Experimental verifications of extrapolation ability
To further evaluate the predictive ability of the SEMG-MIGNN model
and test its reliability in the application scenario of catalyst discovery,
we next performed a series of experimental verifications using addi-
tional CPA catalysts in the asymmetric thiol addition to N-acyl amines.
These transformations are the extensions to Denmark’s enantioselec-
tivity dataset, but the tested elevenCPAs are not present in the original
dataset (Fig. 6). We also evaluated the structural differences between
the tested CPAs and those in Denmark’s dataset; the averaged corre-
lation coefficient of Tanimoto similarity using Morgan molecular fin-
gerprints is only 0.56 (Supplementary Fig. 18). The structural variation
of these 11 CPA catalysts provides a reasonable experimental scenario
to evaluate the model’s extrapolative ability, which is essential for the
ML-driven discovery of new catalysts and reagents. Training with
Denmark’s dataset, the SEMG-MIGNN model achieved excellent pre-
dictions for all the eleven tested cases (Fig. 6). The largest errors of
prediction are only 0.21 kcalmol−1 (CPA-2, CPA-3, and CPA-11), whose
predictions are still synthetically useful. These additional experimental
verifications corroborated the extrapolative ability of the SEMG-
MIGNN model; the trained ML model is able to differentiate the per-
formance of the candidate catalysts from related SPR data, making
useful synthetic judgments without the requirement of a mechan-
istic model.

The experimental verifications also provided the opportunity to
compare the predictive ability between the SEMG-MIGNNmodel and
other ML approaches. Considering that DRFP and MFF models only
contain topology-based encodings, we also evaluated the predictions
of atom-centered symmetry functions (ACSFs) descriptors49, which is
a typical 3D descriptor for chemical modeling. The errors of pre-
dictions of these four models are compared in Fig. 7, in which the
advantage of SEMG-MIGNN predictions is evident. It is worth

noticing that all the SEMG-MIGNN predictions are within a reason-
able error, while the other models tend to encounter pitfall cases
where the error of prediction can be larger than 0.5 kcalmol−1 and
misleading for synthetic designs. Full details of the prediction results
are provided in the Supplementary Information (Supplementary
Table 18).

Model interpretation
In addition to the improved predictive ability, another key merit
of graph representation is the opportunity to trace the atomic
contribution to the overall determination of the SPR prediction.
This allows a chemically meaningful perspective to interpret the
ML model and provide atomic-level insight for the structural
engineering of catalysts and reagents. Because the embeddings of
the steric and electronic information are independent in our
SEMG design, the influence of the steric and electronic encodings
on the overall synthetic performance prediction can be explored
based on the perturbation of prediction upon eliminating the
encodings. By setting the studied steric or electronic encodings
to zero, the mathematical outcome directly related to these
encodings would be deleted, which led to a perturbed prediction
result. This perturbation provided a useful perspective of the
steric and electronic effects on SPR. We want to emphasize that
setting encodings to 0 is only a relatively intuitive operation, and
the resulting perturbation is not additive. The reason for adopt-
ing this approach is that there is currently lack rigorous methods
to analyze the causal relationship of highly parametrized non-
linear models. Fig. 8a shows the changes in predicted yield by
eliminating the steric or electronic encodings using
3-chloropyridine as an example. In Doyle’s dataset,
3-chloropyridine has 264 associated transformations. By remov-
ing the steric or electronic encodings of each atom from 3-
chloropyridine, 4752 perturbations of the yield predictions were
identified. In the yield prediction task, removing the steric
encodings led to limited influence on the predicted values; 4031
transformations have a value change within 20% (Fig. 8a). In
contrast, removing the electronic encodings resulted in a
noticeable change in the reaction yield prediction. Over 3000
cases have a perturbation higher than 20% (Fig. 8a). This model
interpretation confirmed the chemical knowledge that the elec-
tronic effect plays a dominant role in the reaction yield of Pd-
catalyzed Buchwald–Hartwig reaction, while the steric effect is
limited for the explored reactants. This chemical insight indeed
followed the empirical mechanistic understandings, which indi-
cated that the steric and electronic effects of the SEMG model can
be analyzed to provide chemically meaningful understandings.

Not only the SEMG representation can quantitatively elaborate
the steric and electronic effects on the prediction of synthetic per-
formance, but the introduction of the attention layer also offers an
atomic level precision to identify the key positions of performance

Table 1 | Comparison of yield predictions between the SEMG-MIGNN model with other SOTA models

Data splitting Yield-BERT DRFP MFF SEMG-MIGNN

Random 90/10 5.20 ± 0.500 5.09 ± 0.500 6.34 ± 0.500 4.79 ± 0.500

Random 70/30 5.82 ± 0.400 6.28 ± 0.300 6.77 ± 0.300 4.81 ± 0.400

Random 50/50 7.62 ± 0.500 7.36 ± 0.300 8.55 ± 0.300 6.83 ± 0.500

Random 30/70 9.41 ± 0.500 8.67 ± 0.500 10.09 ± 0.500 8.79 ± 0.700

Aryl Halidea 26.04 ± 0.300 26.19 ± 0.200 22.04 ± 0.200 19.34 ± 0.400

Additivea 21.29 ± 0.200 22.43 ± 0.200 21.66 ± 0.200 10.36 ± 0.200

Liganda 20.04 ± 0.200 18.35 ± 0.200 18.85 ± 0.200 11.02 ± 0.200

Basea 19.40 ± 0.200 19.90 ± 0.200 20.66 ± 0.200 14.52 ± 0.200

Note: The best performance of each task is shown in bold. aThese data splitting tasks refer to the extrapolative predictions based on the scaffold splitting of the reaction components. Details are
elaborated in Supplementary Fig. 20. RMSEs are in %.

Table 2 | Comparison of enantioselectivity predictions
between the SEMG-MIGNN model with other SOTA models

Data Splitting DRFP MFF SEMG-MIGNN

Random 90/10 0.190 ± 0.010 0.183 ± 0.010 0.180 ± 0.010

Random 70/30 0.201 ± 0.010 0.212 ± 0.020 0.189 ± 0.010

Random 50/50 0.248 ± 0.030 0.227 ± 0.030 0.205 ± 0.020

Random 30/70 0.259 ± 0.030 0.243 ± 0.030 0.240 ± 0.020

Iminea 0.227 ± 0.005 0.226 ± 0.005 0.238 ± 0.005

Thiola 0.774 ± 0.020 0.726 ± 0.020 0.300 ± 0.010

Catalysta 0.565 ± 0.020 0.464 ± 0.020 0.294 ± 0.010

Transformationa 0.235 ± 0.005 0.264 ± 0.005 0.205 ± 0.005

Note: The best performance of each task is shown in bold. aThese data splitting tasks refer to the
extrapolative predictions based on the scaffold splitting of the reaction components. Details are
elaborated in Supplementary Fig. 22. RMSEs are in kcalmol−1.
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control. Fig. 8b shows the attention weight of electronic encodings at
each atom of the representative aryl halides. Comparing the
3-halidepydines (AH-1, AH-2, and AH-3), the model correctly identi-
fied the critical role of halide. When substitution is involved, the
attention weights of the para-substituted chlorobenzenes revealed
the influence of the substituents (AH-4, AH-5, and AH-6). Although
obtained purely from synthetic statistics, the atomic map of elec-
tronic influence is consistent with the understanding of organic
chemistry and provides the opportunity to harness mechanistic
knowledge in synthetic data.

Applying the same interpretation approach to the enantioselec-
tivity prediction model revealed the role of the steric effect on enan-
tioselectivity determination. Fig. 8c shows the changes in predicted
enantioselectivity values by eliminating the steric or electronic
encodings using CPA-12 as an example. The perturbations of the
enantioselectivity model are in sharp contrast to those of the yield
model. Eliminating the electronic encodings lead to very limited
influence on the enantioselectivity prediction, 3611 predictions
received perturbations within 0.2 kcalmol−1 (Fig. 8c). However, elim-
inating the steric encodings led to significant changes in the predicted
enantioselectivity values (Fig. 8c). This agrees well with the chiral
induction model of the asymmetric thiol addition reaction50 Similarly,
the attention weights of the steric encodings can offer insights on the
positions related to steric control of the enantioselectivity control
(Fig. 8d). In addition to the labeled substituents (i.e., tBu substituent of
CPA-14 and the ortho-chloro substituent of CPA-15), it is interesting
that themodel identified theH8-BINAP backbone (CPA-12 andCPA-15)
also contributed to the steric effects.

Discussion
In summary, we developed a chemical knowledge-based ML model
called SEMG-MIGNN for the prediction of synthetic performance.
Following the chemical concept, two key designs were implemented:
first, the local chemical environment of steric and electronic effectwas
digitalized and embedded in the graph representation. This sig-
nificantly enriches the model’s characterization of the atomic envir-
onment and improves the model’s extrapolation ability toward new
molecular structures. In addition, an interaction module was devel-
oped to enhance the information exchange between reaction com-
ponents while maintaining the intermolecular boundaries, offering a
way to capture the synergistic effect involving multiple reaction
components.

The effectiveness of the designed ML model was validated in a
number of synthetic prediction tasks with convincing performances.
Excellent predictions were found in the yield prediction of Pd-
catalyzed C–N cross-coupling reactions and the enantioselectivity
prediction of CPA-catalyzed thiol addition to N-acyl imines. Further
experimental tests of additional CPA catalysts corroborated the
model’s predictive ability to face unseen molecular structures. Parti-
cularly, we found that the SEMG-MIGNN model showed exceptional
extrapolative ability in scaffold-based splitting tasks, which is highly
desirable for synthetic predictions considering the need to extend the
realm of available SPR data.

In addition to the excellent predictive ability, the physically
meaningful encodings of steric and electronic effects provide the
atomic level of chemical interpretation. Analysis of the trainedmodel
revealed the critical role of the electronic effect on the yield

Fig. 6 | Experimental tests of the extrapolation ability of the SEMG-MIGNN
model (steric- and electronics-embedded molecular graph with molecular
interaction graph neural network) using additional chiral phosphoric acid
catalysts for the asymmetric thiol addition of N-acyl amines. Training with

Denmark’s dataset, the SEMG-MIGNN model (steric- and electronics-embedded
molecular graph with molecular interaction graph neural network) achieved
accurate predictions for all the eleven tested phosphoric acids with RMSE (root
mean square error) of 0.127 kcalmol−1.
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prediction of the C–N cross-coupling, while the enantioselectivity
prediction relies heavily on the steric effect. Moreover, the model is
able to identify the hot spot of the molecular structure for synthetic
performance determination, offering useful insight to future designs.
The effectiveness of this model shows that integrating representa-
tion learning with digitized chemical knowledge can support
the development of generalizable models in chemical space, pro-
viding the opportunity for the data-driven design of synthetic
transformation.

Methods
Computation
Details of geometry optimization, standardization of molecular
orientation and electron density calculation were elaborated below.

Step 1: Geometry optimization. We used RDKit’s51 built-in ETKDG52

method to generate the initial 3D structure. Subsequent geo-
metry optimizations were performed using the semi-empirical
extended tight-binding program package xTB (version 6.3.0), at
the GFN2-xTB level of theory. GFN2-xTB default convergence
criteria were used. All the GFN2-xTB input and output files are
available in our GitHub repository (https://github.com/Shuwen-
Li/SEMG-MIGNN).

Step 2: Standardization of molecular orientation. Based on the
GFN2-xTB-optimized geometry, we standardized the molecular
orientation to ensure the consistency of the encodings generated
from different initial orientations. For each molecule, we selected
three key atoms to determine the orientation of the molecule: the
center of gravity, the atom closest to the center of gravity
(atom1), and the atom furthest from the center of gravity (atom2).
In step 1, the center of gravity is placed at the origin of the xyz

coordinate system. In step 2, atom1 is rotated to the positive half
of the z-axis, which determines the direction of the molecule
along the z-axis. In step 3, atom2 is rotated to the yz plane and
placed at the positive half of the y-axis, which determines the
direction of the molecule along the y-axis.

Step 3: Electron density calculation. Based on the standardized
optimized structures, we used the PySCF package53 to calculate the
electron density distribution of each molecule at the B3LYP/def2-SVP
level, which was used for the training of the SEMG-MIGNN model. We
also computed the electron densities of other theoretical levels using
the PySCF package for benchmark purposes. All the PySCF input and
output files are available in our GitHub repository (https://github.com/
Shuwen-Li/SEMG-MIGNN).

SEMG. The keydifferencebetweenSEMGand classicmolecular graphs
is the embedding of steric and electronic information in the atoms
(nodes). The detailed workflow of SEMG generation is elaborated
below. All the related scripts are available in our GitHub project
(https://github.com/Shuwen-Li/SEMG-MIGNN).

Step 1: Generation of the molecular graph. Based on the SMILES of
the molecule, we obtained the sdf file by RDKit. Using the sdf files, the
information on atoms and bonds can be extracted by RDKit. Subse-
quently, the molecular graph was generated by dgl54 with the atoms as
nodes and the bonds as edges.

Step 2: Embed steric information. Based on standardized 3D
structure, herein we took the chlorine atom of aryl halides as an
example to illustrate the generation of steric information. With the
chlorine atom at the center, a sphere of radius 10 Å was built. The
radius of this sphere can be customized depending on the sizes of

Fig. 7 | Errors of predictions for the experimentally tested CPAs by SEMG-
MIGNN model (steric- and electronics-embedded molecular graph with mole-
cular interaction graph neural network) and other strategies. SEMG results are
shown in blue. Other strategies’ results are shown in red.a Errors of predictions of the
ACSFs-GB model (atom-centered symmetry functions with gradient boosting).
b Errors of predictions of the DRFP-XGB model (differential reaction fingerprint with
XGBoost). c Errors of predictions of the MFF-RF model (multiple fingerprint feature

with random forest). d Errors of predictions of the SEMG-MIGNN model (steric- and
electronics-embedded molecular graph with molecular interaction graph neural net-
work). These comparisons demonstrate the advantageous predictions by the SEMG-
MIGNN model (steric- and electronics-embedded molecular graph with molecular
interaction graph neural network), whose predictions are all within a reasonable error,
while the other models encounter pitfall cases where the error of prediction can be
larger than 0.5 kcalmol−1. Source data are provided as a Data_for_Fig_7.csv.
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the molecules in the dataset. In our study, there were a number of
fairly large molecules with more than 180 atoms. 10 Å was assigned
as the radius of the sphere to ensure the full description of the steric
environment. The distance between the van der Waals surface and
the spherical surface was calculated andmapped to the sphere. The
steric mapping of the distance on the sphere was encoded as a two-
dimensional matrix using equirectangular projection. Based on the
selected number N (default is 10) of grids, the polar angle θ (0–π)
dimension was evenly segmented to N parts (θi = π/N), and the
azimuth angle φ (0–2π) dimension was evenly segmented to 2N
parts (φj = π/N). This providedN×2Ndistancematrix; in our study, a
10 × 20matrix was generated for each atom. This 10 × 20matrix was
embedded into the node of the molecular graph to describe the
steric informationof the atom. Repeating the process for each atom
in the molecule, the steric information was embedded in the nodes
of the molecular graph.

Step3: Embedelectronic information. Startingwith the standardized
3D structure, the density matrix was generated by PySCF53 at the
B3LYP/def2-SVP level. Taking the chlorine atom as an example, a
7 × 7 × 7 cubic grid with the chlorine atom at the center was generated.
The side length of the cubewas the van derWaals diameter of chlorine.
According to the Cartesian coordinates of the chlorine atoms and the
7 × 7 × 7 cubic grid, the Cartesian coordinates of the 7 × 7 × 7 cubic
grids’ center position were obtained. By evaluating the electron den-
sity of the 7 × 7 × 7 cubic grids’ center position, a 7 × 7 × 7 tensor was
generated and further used as the electronic information for embed-
ding into the node of the molecular graph. Repeating the process for
each atom in the molecule, the electronic information was embedded
in the nodes of the molecular graph.

Step 4: Generate SEMG. Eventually, the SEMG was generated as an
embedded molecular graph with a 10 × 20 steric matrix and 7 × 7 × 7
electronic tensor in each node.

MIGNN model. The detailed workflow of the MIGNN model is elabo-
rated as follows. All the related scripts forMIGNNwere available in our
GitHub project (https://github.com/Shuwen-Li/SEMG-MIGNN).

Step 1: Input the molecular graphs. The molecular graphs of all
involved compoundswere first input into theMIGNNmodel. The steric
information and electronic information were divided into two chan-
nels, which are processed separately.

Step 2: Atom attention. The steric information and electronic infor-
mation were processed by several (The number of attention layers was
defined by hyper-parameter ‘atom_attention’.) attention layers.

Step 3: Linear layer. Subsequent processing was several (the number
of linear layers was defined by hyper-parameter ‘linear_depth’.) linear
layers. After the linear layers, they dealt with Batch Normalization and
the tanh activation function. In this way, we obtained a steric tensor
and an electronic tensor for a given molecule. For a reaction involving
m molecules, we would obtain 2m different tensors from the above
steps, which were m steric tensors and m electronic tensors. Con-
catenating the m steric tensors, the steric reaction tensor was
obtained. Concatenating the m electronic tensors, the electronic
reaction tensor was obtained.

Step 4: Convolution, maxpooling, and flatten layer. The steric
reaction tensor and electronic reaction tensor were processed by

Fig. 8 | Chemical interpretation of the yield and enantioselectivity determi-
nation by the SEMG-MIGNN (steric- and electronics-embedded molecular
graph with molecular interaction graph neural network) model. a Change of
predicted yield by eliminating steric (red) or electronic (blue) encodings.
b Attention weight of electronic encodings at each atom of the selected aryl

halides in the yield prediction task. c Change of predicted enantioselectivity
by eliminating steric (red) or electronic (blue) encodings. d Attention weight
of steric encodings at each atom of the selected chiral phosphoric acids in
the enantioselectivity prediction task. Source data are provided as a
Data_for_Fig_8.csv.
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convolution. The steric reaction tensor was put into the 2D convolu-
tion layer, and the electronic reaction tensor was put into the 3D
convolution layer. Next, the steric reaction tensor passed through
maxpooling layer, convolution layer, and flatten layer sequentially,
which produced a steric reaction vector. Similarly, the electronic
reaction tensor passed through maxpooling layer and flatten layer
sequentially, which produced an electronic reaction vector.

Step 5: Interaction layer. The steric reaction vector was copied into
two parts. For one copy of the steric reaction vector, it was processed
by several (the number of attention layers was defined by hyper-
parameter ‘inter_attention’) attentions and one linear layer to give a
one-dimensional steric representation of the overall transformation.
Subsequently, the one-dimensional steric representation and its
transpose were multiplied to form the so-called interaction matrix of
sterics. The interaction matrix of sterics was then processed by
three convolution layers and one flatten layer to produce the interac-
tion vector of sterics. The electronic reaction vector was processed by
the same procedures, which led to the interaction vector of electronics.

Step 6: Concatenating steric information, electronic information,
and interaction information. The replicated steric reaction vector
(generated from step 4), the replicated electronic reaction vector
(generated from step 4), the interaction vector of sterics (generated
from step 5), and the interaction vector of electronics (generated from
step 5)were concatenated to the total transformation vector. This total
transformation vector includes four parts as elaborated in
steps 4 and 5.

Step 7: Prediction of reaction performance. From the total trans-
formation vector, we added one attention layer to learn the weight
between the total transformation vector and reaction performance.
Eventually, the processing of three linear layers led to the predicted
reaction performance.

Interpretation of SEMG-MIGNN. In order to interpret the trained
SEMG-MIGNN model, we evaluate the perturbation of the predicted
results by eliminating the steric or electronic encodings for each atom.
For a to-be-predicted transformation, we eliminate the steric or elec-
tronic encodings of a selected atom in the studying compound of this
transformation. This alters the original encodings of the compound to
changed encodings with one atom’s steric or electronic encodings
assigned as zero. Using this changed encoding, the SEMG-MIGNN
model would give a different predicted value for the to-be-predicted
transformation, and the change of the predicted values (original
encoding vs. changed encoding) is the so-called perturbation.
Repeating the process for each atom in the molecule, the changes in
the predicted values of the molecule were obtained.

General information about the experiment. HPLC analysis was per-
formed on Waters-Breeze (2487 Dual λ Absorbance Detector and
1525 Binary HPLC Pump). The Chiralpak OD-H column was purchased
from Daicel Chemical Industries, Ltd. Starting materials were pur-
chased from commercial suppliers (Energy Chemical and Adamas-
Beta) and used as supplied unless otherwise stated. CPAs were pur-
chased from DAICEL CHIRAL TECHNOLOGIES (CHINA) CO., LTD.
Toluene was purified and dried according to standard methods
prior to use unless stated otherwise. N-acyl imine was synthesized
according to the literature procedure and was purified by
sublimination55.

General procedure for the reaction of 4-methoxybenzenethiol with
N-acyl imine. To a 10mL vial was added N-acyl imine (20.9mg,
0.1mmol) and (R) -CPA* catalyst (5mol%). Dry toluene (1.0mL) was
added to themixture, followed by 4-methoxybenzenethiol (0.12mmol)

via a syringe. The reaction was stirred at room temperature for 30min.
The crude product was purified directly by flash column chromato-
graphy (hexane: ethyl acetate = 3:1) to give the corresponding chiral
N,S-acetal product. The ee values of the products were determined by
chiral HPLC analysis after the products were purified (Daicel Chiralpak
OD-H, n-hexane/i-PrOH=90:10, flow rate = 1.0mL/min, λ = 231 nm).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that all the relevant data supporting the findings
of this study are available at our repository (https://github.com/
Shuwen-Li/SEMG-MIGNN) and Figshare56. Source data are provided in
this paper.

Code availability
All codes needed to run thismodel are available at https://github.com/
Shuwen-Li/SEMG-MIGNN57.
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