
� is article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).

Fundamenta Informaticae 171 (2020) 261–277 261

DOI 10.3233/FI-2020-1882

IOS Press

Reaction Systems and Enabling Equivalence

Jetty Kleijn∗

LIACS, Leiden University

P.O.Box 9512, NL-2300 RA Leiden, The Netherlands

h.c.m.kleijn@liacs.leidenuniv.nl

Maciej Koutny

School of Computing, Newcastle University

Newcastle upon Tyne NE1 7RU, UK

maciej.koutny@ncl.ac.uk

Łukasz Mikulski

Faculty of Mathematics and Computer Science

Nicolaus Copernicus University, Toruń, Poland

lukasz.mikulski@mat.umk.pl

Abstract. Reaction systems were introduced in order to provide an abstract model for the study

of the biochemical processes that take place in the living cell. Processes of this kind are the result

of the interactions between reactions and may be influenced by the environment. Thus, reaction

systems can be considered as a model of (interactive) computation. In previous works, various

equivalences defined directly on reaction systems and processes had been proposed and compared.

These equivalences were all based on functional equivalence that compares a system’s behaviour

at every stage of its execution. In this paper, in contrast, we investigate enabling equivalence

which focuses on the system behaviour only in specific stages of its evolution, namely those

where all of its reactions are active. We discuss the effect of such an approach and, in particular,

its relationship to a transition system representation of the system’s behaviour.

Keywords: Reaction system, living cell, model of computation, functional equivalence, inter-

active process, context-independent process, transition system, enabling equivalence

∗Address for correspondence: LIACS, Leiden University, P.O.Box 9512, NL-2300 RA Leiden, The Netherlands

262 J. Kleijn et al. / Reaction Systems and Enabling Equivalence

1. Introduction

Reaction systems [1] originated as a formal model for the investigation of the functioning of the

living cell. They provide a means to investigate the biocomputations that drive natural processes

within cells (see, e.g., [2, 3, 4, 5]). The model of reaction system presents a conceptual view of the

processes resulting from interactions between biochemical reactions. These interactions are driven by

two mechanisms, facilitation and inhibition: (products of) reactions may facilitate or inhibit each other.

The basic model of reaction systems is a qualitative rather than a quantitative model that abstracts from

various features of biochemical reactions. However, it takes into account that the living cell is an open

system and its behaviour is influenced by the environment.

Reaction systems have turned out to be an interesting novel model of interactive computation (see,

e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]). Also, in this paper we take such a point of view. The dynamics

of reaction systems defines interactive computations (processes) that transit from state to state. In [16],

we have considered various notions of equivalence for reaction systems based directly on the reaction

systems as well as on the transition systems that can be associated with their computations. In this

paper, we follow up on a suggestion from [16]. There the (direct) equivalences were based on so-called

functional equivalence. Here we incorporate the more subtle enabling equivalence, introduced in [17]

in the context of evolving reaction systems where the set of reactions of a reaction system may change

provided the original and the transformed system are enabling equivalent. Enabling equivalence treats

the set of reactions of a reaction system as if it were a single reaction. It thus focuses on the system

behaviour only in specific states namely those where all of its reactions are active. We discuss the

effect of such an approach and, in particular, its relationship to a transition system representation of

the system’s behaviour.

The paper is organised as follows. In Section 2, we introduce reaction systems together with some

examples that will also be of use later in the paper. In particular, we recall the concepts of interactive

and context-independent processes and (context-independent) transition systems of reaction systems.

The direct equivalences, based on the idea that a reaction system defines a function from states to

states, are considered in Section 3. After discussing functional equivalence, process related equiva-

lences, and (the new) transition systems equivalences we move in Section 4 to enabling equivalence.

Rather than only relating to the result of the reactions on a state, this equivalence also takes into ac-

count whether or not it enables all reactions of the system. As it turns out, context-independence and

process equivalence based on enabling equivalence are no longer the same (in contrast to the case that

they are based on functional equivalence). We demonstrate how context-independent process equiv-

alence can be characterised in terms of a new kind of transition systems (in which some states are

invisible). Section 5 concludes the paper with a brief discussion of what has been achieved.

2. Preliminaries

We use the standard mathematical notation. Moreover, the projection of a sequence of sets ξ =
X1 . . . Xn w.r.t. a set X is the sequence of sets projX(ξ) = (X1 ∩ X) . . . (Xn ∩ X). The empty

sequence is denoted by λ. Note that λ is not the same as the sequence ∅ consisting of a single

occurrence of the empty set. In addition, λξ1ξ2 = ξ1λξ2 = ξ1ξ2λ = ξ1ξ2, for all sequences ξ1 and ξ2.

J. Kleijn et al. / Reaction Systems and Enabling Equivalence 263

A transition system is a pair T = (Q, V), where Q is a finite set and V ⊆ Q × Q. The set of

state sequences of T , denoted by STS(T), is the set of all finite sequences θ = q0q1 . . . qn (n ≥ 0)

of elements of Q such that (qi, qi+1) ∈ V for all 0 ≤ i < n. Furthermore, STSq(T) are all state

sequences of T which start from a given q ∈ Q.

2.1. Reaction systems

Let S be a finite nonempty set with at least two elements. A reaction (in S) is a triple a = (R, I, P)
such that R, I , and P are nonempty subsets of S with R ∩ I = ∅, respectively called the reactants,

inhibitors, and products of a, and denoted by Ra, Ia, and Pa. In the examples, a will be denoted as:

a : R, I → P

We refer to S as a background set while the elements of a background set are entities; rac(S) denotes

the set of all reactions in S.

A reaction a ∈ rac(S) is enabled by X ⊆ S, denoted by ena(X), if Ra ⊆ X and Ia ∩X = ∅.1

The result of a on X is resa(X) = Pa if ena(X), and resa(X) = ∅ otherwise. For A ⊆ rac(S), the

result of A on X is resA(X) =
⋃

a∈A resa(X). We also denote

RA =
⋃

a∈A

Ra IA =
⋃

a∈A

Ia PA =
⋃

a∈A

Pa .

Moreover, A is enabled by X ⊆ S if RA ⊆ X and IA ∩X = ∅. In other words, all reactions from A

are enabled by X . We denote this by enA(X).

A reaction system is a pair A = (S,A), where S is a background set and A ⊆ rac(S) a nonempty

set of reactions. The elements of S are called the entities of A. The subsets of S are the states of A.

Given a state X ⊆ S, the result of A on X is resA(X) = resA(X).

The running example of this paper illustrates computational applications of reaction systems.

Example 2.1. Consider reaction system A = (S,A) with background set S = {1, 2, 3, 4} and reac-

tions A = {a, b, c} defined as follows:

a : {4} , {3} → {4}

b : {1, 4} , {3} → {2}

c : {4} , {2, 3} → {1}

In this reaction system, entities 3 and 4 are ‘dummies’, viz. 3 is a universal inhibitor (should never be

present) while 4 is a universal reactant (should always be present). The other two entities, 1 and 2, can

be seen as representing two bits with the first (least significant) bit being 0 iff 1 is not present in the

current state and, similarly, the second bit being 0 iff 2 is not present. Then A can be interpreted as a

Gray code [18]. This can be seen by examining the states of A and the results of A on them.

1Note that this means that ∅ 6= X 6= S as it is assumed that Ra, Ia 6= ∅.

264 J. Kleijn et al. / Reaction Systems and Enabling Equivalence

Only states that contain 4 and do not contain 3 enable reactions. These four states are generated

cyclically in the order {4} {1, 4} {1, 2, 4} {2, 4}, as shown in Figure 1. In this diagram, states are

depicted as nonagons, while the reactions enabled by a given state are displayed on its outgoing arc.

Note that two neighbouring states (sets) differ by exactly one entity coming from {1, 2}, and so they

can be seen as representing two consecutive words in a Gray code. ♦

4 1, 4

1, 2, 42, 4

a, c

a, b, c

a, b

a

Figure 1. States {4}, {1, 4}, {1, 2, 4}, {2, 4} represent cyclically the words 00, 01, 11, 10.

Processes and transition systems of reaction systems

A reaction system formalises the ‘static structure’ of a system. Its dynamics results from the interac-

tions of the reactions. Starting from an initial state, the reactions enabled by the current state produce

a result set which then, possibly with context thrown in, forms the next state etc.

An interactive process in a reaction system A = (S,A) is a pair π = (γ, δ) comprising a context

sequence γ = C0 . . . Cn and result sequence δ = D0 . . . Dn, where n ≥ 0, C0, D0, . . . , Cn, Dn ⊆ S

and Di = resA(Di−1 ∪ Ci−1), for every 1 ≤ i ≤ n. Moreover, STS(π) = W0 . . .Wn, where

Wi = Ci ∪ Di, for every 0 ≤ i ≤ n, is the state sequence of π and W0 = C0 ∪ D0 is the initial

state of π. (This is illustrated in Figure 2.) For a subset X of S, PROCX(A) is the set of all interactive

processes in A with initial state X , and PROC(A) =
⋃

X⊆S PROCX(A).

D0 D1 D2 D3 D4

C0

enA(W0)

C1

enA(W1)

C2

enA(W2)

C3

enA(W3)

C4

Figure 2. An interactive process. Hexagons depict its result sequence, while seven-pointed stars depict the

context sequence. The labels on the arcs indicate which reactions are enabled in the preceding state.

Context sequences formalise the fact that the behaviour of an open system is influenced by its

environment (the ‘rest’ of a bigger system). An interactive process π is context-independent if Ci ⊆
Di, for every i ≤ n. In that case, one may assume that no context is provided i.e., the Ci’s are empty.

CIPROC(A) is the set of all context-independent interactive processes of A and CIPROCX(A) is the

set of context-independent interactive processes of A with initial state X .

Interactive processes are one way of capturing behaviours of reaction systems. Another is provided

through transition systems, by viewing the state space of a reaction system A as a finite directed graph

J. Kleijn et al. / Reaction Systems and Enabling Equivalence 265

with the states of A as its nodes and its edges determined either by the result function resA (in case of

context-independent interactive processes) or by the joint effect of resA and the context sets (in case

of general interactive processes). This leads to the following definitions.

The context-independent transition system of reaction system A = (S,A) is the transition system

CITS(A) = (Q, V) such that Q = 2S and V = {(X, resA(X)) | X ∈ 2S}. The (full) transition

system of A is the pair TS(A) = (Q, V) such that Q = 2S and V = {(X, resA(X)∪C) | X,C ∈ 2S}.

Note that CITS(A) is a proper subgraph of TS(A). Neither of the two transition systems is initialised,

as any subset of the background set S can be the first state of an interactive process or a context-

independent interactive process of A.

The soundness of the definitions of TS(A) and CITS(A) is established by relating the state se-

quences of the interactive processes of A to the state sequences of the two kinds of transition systems.

Proposition 2.2. ([16])

Let A = (S,A) be a reaction system and X ⊆ S. Then:

STS(TS(A)) = STS(PROC(A)) STS(CITS(A)) = STS(CIPROC(A))

STSX(TS(A)) = STS(PROCX(A)) STSX(CITS(A)) = STS(CIPROCX(A)) .

A direct relationship between reaction systems and transition systems has been studied in the

literature, see e.g., [8, 19]. In particular, one can simulate finite transition systems by reaction systems

and one can simulate reaction systems by finite transition systems, see e.g., [2, 8].

Example 2.3. Consider reaction system A′ = (S,A′) with background set S = {1, 2, 3, 4} and

reactions A′ = {a, b, c, d, e, f} defined as follows:

a : {4} , {2, 3} → {1, 4}

b : {1, 4} , {3} → {2, 4}

c : {2, 3} , {4} → {1}

d : {2} , {1} → {2, 3}

e : {1, 3} , {4} → {3}

f : {3} , {1, 2} → {4}

The role of entities 1 and 2 is as before in Example 2.1, viz. they represent two bits in a Gray

code. Entities 3 and 4, however, now have a new role. Similarly as Figure 1, Figure 3 depicts

the states of A′ containing either 3 or 4 and transitions between them. Now one can think of the

presence of 4 as indicating a forward listing of the consecutive words in a Gray code, while the

presence of 3 is associated with a generation of the code in the reverse direction. The sequence

{4}{1, 4}{1, 2, 4}{2, 4}{2, 3}{1, 2, 3} is an example of a state sequence of a context-independent

interactive process of A′ with initial state {4}.

Without the names of enabled reactions, Figure 3 shows a fragment of the context-independent

transition system of A′. What is missing are the states which contain neither 3 nor 4, or contain 3 and

4, together with their outgoing arcs.

Figure 4 depicts two context-independent interactive processes of A′ starting in state {4}. The first

one is context-independent as the environment does not throw in anything, while the context sequence

of the second interactive process is {4}{4}{4}{4}{3}{3}{3}{3}{4} (and so each entity provided as

context was also produced as a result of the reactions enabled by the previous state). ♦

266 J. Kleijn et al. / Reaction Systems and Enabling Equivalence

4 1, 4 1, 2, 4 2, 4

2, 31, 2, 31, 33

a a, b b

d

c, dc, ee

f

Figure 3. Forward and backward generation of a Gray code.

4 1, 4 1, 2, 4 2, 4 2, 3 1, 2, 3 1, 3 3 4

∅

a

∅

a, b

∅

b

∅

d

∅

c, d

∅

c, e

∅

e

∅

f

∅

4 1, 4 1, 2, 4 2, 4 2, 3 1, 2, 3 1, 3 3 4

4

a

4

a, b

4

b

4

d

3

c, d

3

c, e

3

e

3

f

4

Figure 4. Two context-independent interactive processes of A′ that start from state 4.

Example 2.4. Consider reaction system A′′ = (S,A′′) with background set S = {1, 2, 3, 4} and

reactions A′′ = {a, b, c, d} defined as follows:

a : {4} , {2} → {1}

b : {1, 4} , {3} → {2}

c : {2, 3} , {4} → {1}

d : {2} , {1} → {2}

This reaction system A′′ is derived from A′ from Example 2.3 under the assumption that entities 3
and 4 are not produced by the system itself but rather provided by the environment as context.

∅ 1 1, 2 2 2 2 2 2 2

4

a

4

a, b

4

b

4

d

4

d

4

d

4

d

4

d

4

∅ 1 1, 2 1 1, 2 2 1, 2 2 2

4

a

4

a, b

3

c

4

a, b

4

b

3

c, d

4

b

4

d

3

∅ 1 1, 2 2 2 1, 2 1 ∅ ∅

4

a

4

a, b

4

b

4

d

3

c, d

3

c

3

∅

3

∅

4

Figure 5. Interactive processes in reaction system A′′ with different context sequences starting from state {4}.

J. Kleijn et al. / Reaction Systems and Enabling Equivalence 267

Figure 5 depicts three interactive processes in A′′: (i) in the first one, the environment throws in

nine times entity 4 (for forward execution); (ii) in the second interactive process, the context sequence

is {4}{4}{3}{4}{4}{3}{4}{4}{3}; and (iii) in the third one, after four 4’s there are four 3’s and an-

other 4. Note that the state sequence of the last interactive process is identical with the state sequences

of the two context-independent interactive processes depicted in Figure 4. ♦

3. Direct equivalences and transition system equivalence

Let A = (S,A) and B = (S,B) be two reaction systems with the same background set. The (standard)

notions of equivalence are based on the idea that a reaction system is a function from states to states,

and that reaction systems are generators of interactive processes:

• A and B are (functionally) equivalent ([1]), denoted A ∼ B, if they have the same result on

every state, i.e., resA(X) = resB(X) for all X ⊆ S.

• A and B are process equivalent ([16]), denoted A ∼PROC B, if their interactive processes are the

same, i.e., PROC(A) = PROC(B).

• A and B are context-independent process equivalent, denoted A ∼CIPROC B, if their context-

independent interactive processes are the same, i.e., CIPROC(A) = CIPROC(B).

Process equivalence is rather demanding since it relates reaction systems in all possible contexts and

compares states in their entirety. For this reason, [16] considered also ways in which one might relax

∼PROC by taking into account only those interactive processes that begin in certain designated states

(∅ 6= Z ⊆ 2S), and allowing only a part (Y ⊆ S) of the background set to be ‘visible’ to an observer:

• A and B are Y -projection equivalent ([16]), denoted A ∼Y
PROC B, if proj Y (STS(PROC(A))) =

projY (STS(PROC(B))).2

• A and B are context-independent Y -projection equivalent, denoted A ∼Y
CIPROC B, if we have

proj Y (STS(CIPROC(A))) = projY (STS(CIPROC(B))).

• A and B are Y -projection equivalent w.r.t. a set of initial states Z ([16]), denoted A ∼Y :Z
PROC B,

if we have proj Y (STS(PROCX(A))) = projY (STS(PROCX(B))), for every X ∈ Z.

• A and B are context-independent Y -projection equivalent w.r.t. a set of initial states Z, denoted

A ∼Y :Z
CIPROC B, if we have proj Y (STS(CIPROCX(A))) = projY (STS(CIPROCX(B))), for every

X ∈ Z.

Example 3.1. Consider again two reaction systems: A = (S,A) from Example 2.1, and A′ = (S,A′)
from Example 2.3.

Clearly, A ∼
{1}:{4}
CIPROC A′ since in both reaction systems the language of state sequences projected

on {1} for context-independent interactive processes starting in {4} consists of all nonempty prefixes

of (∅{1}{1}∅)∗.

2See the beginning of Section 2 for the definition of the projection function proj .

268 J. Kleijn et al. / Reaction Systems and Enabling Equivalence

Also A ∼
{1}
CIPROC A′. In the case of A there are 12 states not depicted in Figure 1. Some of them

contain 1 and none contain 4, and so the result of A on any of them is ∅. The case of A′ is somewhat

more complicated. There are 8 states not depicted in Figure 3: (i) the result of A′ on {1, 2, 3, 4},

{1, 3, 4}, {1}, {1, 2}, and ∅ is ∅; (ii) the result of A′ on {3, 4} is {4}; (iii) the result of A′ on {2} and

{2, 3, 4} is {2, 3}. Hence, for both systems, the set of state sequences projected on {1} consists of all

nonempty prefixes of:

∅
∗ ∪ {1}∅∗ ∪ (∅{1}{1}∅)∗ ∪∅(∅{1}{1}∅)∗ ∪ {1}∅(∅{1}{1}∅)∗ ∪ {1}{1}∅(∅{1}{1}∅)∗ .

Moreover, A′ 6∼CIPROC A 6∼
{1}:{3}
CIPROC A′ 6∼

{2}
CIPROC A. ♦

The transition systems associated with reaction systems also lead in a natural way to an equiva-

lence notion. Reaction systems A and B are transition system equivalent, denoted A ∼TS B, if they

induce the same transition system, i.e., TS(A) = TS(B). Similarly, they are context-independent tran-

sition system equivalent, denoted by A ∼CITS B, if they define the same context-independent transition

system, namely CITS(A) = CITS(B).
Both ∼PROC and ∼TS are equivalences defined in terms of states. They are based on manifestations

of behaviour expressed in terms of interactive processes and transition systems, respectively. For

a given reaction system, there will normally be loss of behavioural information when one focusses

solely on the state sequences of its interactive processes, or of its transition system. In general, it will

not be clear for a given state, what has been produced from a previous state and what has been thrown

in as context.

As expected, one can show that the equivalence relations ∼Y :Z
PROC form a ‘hierarchy’, as A ∼Y :Z

PROC B
implies A ∼X:W

PROC B, for all X ⊆ Y ⊆ S and ∅ 6= W ⊆ Z ⊆ 2S (see [16]). What is perhaps less

expected, is that process equivalence holds whenever reaction systems are equivalent under full ob-

servability with respect to any nonempty set of initial states (in fact, even one initial state is sufficient).

Moreover, the process, functional, and transition system equivalences coincide.

Proposition 3.2. Let A and B be reaction systems with the same background set S. Then A ∼ B iff

A ∼PROC B iff A ∼CIPROC B iff A ∼TS B iff A ∼CITS B iff A ∼S:Z
PROC B for some nonempty Z ⊆ 2S .

Proof:

Corollary 2 from [16] states that A ∼ B ⇐⇒ A ∼PROC B ⇐⇒ (∃ ∅ 6=Z⊆2S) A ∼S:Z
PROC B.

Proposition 2.2 implies A ∼PROC B ⇐⇒ A ∼TS B and A ∼CIPROC B ⇐⇒ A ∼CITS B. Moreover,

A ∼TS B ⇐⇒ A ∼CITS B is immediate. Hence all the equivalences are satisfied. ⊓⊔

The above result cannot be extended to arbitrary equivalence relations ∼Y :Z
PROC as we have A ∼∅:Z

PROC

B, for all reaction systems A and B. Similarly, it cannot be extended to A ∼S:Z
CIPROC B for arbitrary

nonempty Z, since A ∼
S:{∅,S}
CIPROC B, for all reaction systems A and B.

4. Enabling equivalence

When considering the result of a single reaction on a given state, then this reaction is either enabled or

not. However, in the case of a set of reactions, it is possible that some of the reactions are enabled and

J. Kleijn et al. / Reaction Systems and Enabling Equivalence 269

some not. For this reason, [17] motivated, introduced, and investigated a notion of equivalence which

treats a set of reactions as if it were a single reaction, and so this set is considered relevant only for

those states that enable all its reactions.

Considering a set of reactions as one ‘block’ that acts in unison leads to a different notion of equiv-

alence for reaction systems. Reaction systems A = (S,A) and B = (S,B) are enabling equivalent if,

for every X ⊆ S, enA(X) iff enB(X), and enA(X) implies resA(X) = resB(X). We denote this

by A + B.

There is a syntactic characterisation of enabling equivalence of A and B which allows one to check

whether A + B just by inspecting the respective sets of reactions. Here a reaction system (S,A) is

said to be consistent if RA ∩ IA = ∅. Note that there is a state X ⊆ S that enables A iff (S,A) is

consistent.

Proposition 4.1. ([17])

A + B iff RA = RB , IA = IB , and PA = PB , whenever A and B are consistent.

In other words, in order to establish the enabling equivalence of two reaction systems, it is suffi-

cient to compare them as if they had a single reaction. Functional equivalence and enabling equiva-

lence are incomparable notions (see Examples 3.3 and 3.4 in [17]), but for reaction systems with only

a single reaction they coincide.

Enabling process equivalence

The process based equivalence notions discussed so far were all related to functional equivalence in

the sense that they all were based on the combined result of the reactions of the reaction systems

under consideration. Now we will rely on enabling equivalence for our comparisons which implies

that we only consider the result of the reactions of a reaction system on a state when all its reactions

are enabled by that state.

We use the following notation: for a sequence ξ = X1 . . . Xn of subsets of the background set of a

reaction system A = (S,A) we let [ξ]A
en

be the sequence obtained from ξ by deleting all Xi such that

neither enA(Xi) nor enA(Xi−1) (if i > 1). In other words, we retain only those states at which A is

enabled, and the states immediately following them. This reflects the idea that we are interested only

in states that enable all reactions from A and the result of A on these states. For a set Ξ of sequences

of subsets of the background set of reaction system A, we denote [Ξ]A
en

= {[ξ]A
en

| ξ ∈ Ξ}. Following

this, reaction systems A and B with the same background set are:

• ci-process enabling equivalent if [STS(CIPROC(A))]A
en

= [STS(CIPROC(B))]B
en

.

• process enabling equivalent if [STS(PROC(A))]A
en

= [STS(PROC(B))]B
en

.

We denote this respectively by A +CIPROC B and A +PROC B.

It turns out that ci-process enabling equivalence implies enabling equivalence.

Proposition 4.2. A +CIPROC B implies A + B, for all consistent reaction systems A and B over the

same background set.

270 J. Kleijn et al. / Reaction Systems and Enabling Equivalence

Proof:

Let A = (S,A), B = (S,B), and let X be any subset of S such that enA(X) (such a subset

exists since A is consistent). Then there exists a context-independent process π of A with initial

state X satisfying [STS(π)]A
en

= XY where Y = resA(X). Hence, by A +CIPROC B, there ex-

ists a context-independent process π′ of B such that [STS(π′)]B
en

= XY . Thus, by the definition of

[STS(CIPROC(B))]B
en

, we have enB(X) and resB(X) = Y = resA(X). ⊓⊔

As the next example demonstrates, the reverse implication does not hold.

Example 4.3. Consider reaction system A1 = (S, {a}) with background set S = {1, 2, 3} and one

reaction:

a : {3} , {1, 2} → {2, 3}

and reaction system A′
1 = (S, {a′, b′}) with the same background set S and two reactions:

a′ : {3} , {2} → {2}

b′ : {3} , {1} → {3}

By Proposition 4.1, we have A1 + A′
1.

(a)

3 2, 3

∅X

3

2, 3

X

∅21, 3

(b)

(c)

3 2, 3

λλ

λ

3

2, 3

λ

λλλ

λ

(d)

Figure 6. The context-independent transition system of reaction system A1 in Example 4.3 (a), and the

context-independent transition system of reaction system A′

1
(b), where the X stand for any subset of the

background set other than those depicted explicitly. Also, the ci-enabling transition system of A1 (c), and the

ci-enabling transition system of A′

1
(d). Note that the bottom left state in (c), and the top right state in (d) have

several omitted duplicates. The middle state in (c) and the middle state in the top row in (d) are initial states

that correspond to {2, 3} (which, as initial state, is not the state that directly follows the state at which the set of

reactions of A1 and A′

1
, respectively, is enabled).

J. Kleijn et al. / Reaction Systems and Enabling Equivalence 271

The context-independent transition systems of A1 and A′
1 are given in Figure 6(a, b). From these

(see Proposition 2.2), it is easily seen that

{3}{2, 3}{3}{2, 3} ∈ [STS(CIPROC(A′
1))]

A′

1

en \ [STS(CIPROC(A1))]
A1

en
.

Hence A1 6+CIPROC A′
1. ♦

The discriminating power of ci-process enabling equivalence is greater than that of process en-

abling equivalence.

Proposition 4.4. A +PROC B iff A + B, for all consistent reaction systems A and B over the same

background set.

Proof:

Let A = (S,A), B = (S,B), and D = (S,D) ∈ {A,B}. For k = 1, 2, let STS
D
k be the set of all

sequences in [STS(PROC(D))]D
en

of length k. Since D is a consistent reaction system, STS
D
1 6= ∅ 6=

STS
D
2 . We then observe that, by the definition of [STS(PROC(D))]D

en
, for every X ⊆ S we have:

enD(X) ⇐⇒ X ∈ STS
D
1 . (1)

Moreover, by the definition of [STS(PROC(D))]D
en

, for every X ⊆ S satisfying enD(X) we have:

resD(X) = PD =
⋂

XY ∈STSD
2

Y . (2)

(=⇒) Suppose that A +PROC B. Then STS
A
k = STS

B
k , for k = 1, 2.

Let X ⊆ S. Then, by (1) and STS
A
1 = STS

B
1 , we have enA(X) iff enB(X). Moreover, if enA(X)

(and so also enB(X)), then resA(X) = resB(X), which follows from (2) and STS
A
2 = STS

B
2 . Hence

A + B.

(⇐=) We first observe that the empty sequence belongs to [STS(PROC(B))]B
en

, as π = (∅,∅) is an

interactive process of B. Suppose then that A + B and X1 . . . Xn ∈ [STS(PROC(A))]A
en

(n ≥ 1). We

proceed by induction on n to show that X1 . . . Xn ∈ [STS(PROC(B))]B
en

.

In the base case, we have X1 ∈ STS
A
1 . Hence, by (1), enA(X1). Thus, by A + B, enB(X1).

We then observe that π = (X1,∅) is an interactive process of B such that STS(π) = X1. This and

enB(X1) means that [STS(π)]B
en

= X1.

In the induction step we assume that X1 . . . XnXn+1 ∈ [STS(PROC(A))]A
en

and X1 . . . Xn ∈
[STS(PROC(B))]B

en
. The latter means that there is an interactive process π = (γ, δ) of B such that

[STS(π)]B
en

= X1 . . . Xn and STS(π) = ξXn, for some sequence ξ. We then consider two cases.

Case 1: enA(Xn). Then, by the definition of [STS(PROC(A))]A
en

, there is an interactive process

π′ = (γ′, δ′) of A such that STS(π′) = ξ′XnXn+1. Hence resA(Xn) ⊆ Xn+1. We then observe that,

by A + B, enB(Xn) as well as resB(Xn) = resA(Xn) ⊆ Xn+1. Let π′′ = (γ Xn+1, δ resB(Xn)).
We observe that π′′ is an interactive process of B such that

STS(π′′) = ξXn(Xn+1 ∪ resB(Xn)) .

272 J. Kleijn et al. / Reaction Systems and Enabling Equivalence

Hence, by resB(Xn) ⊆ Xn+1 and enB(Xn) and the induction hypothesis, we obtain:

[STS(π′′)]B
en

= [STS(π)]B
en
Xn+1 = X1 . . . XnXn+1 .

Case 2: ¬enA(Xn). Then, by the definition of [STS(PROC(A))]A
en

, we have enA(Xn+1). Hence,

by A + B, we also have enA(Xn+1). Let π′′ = (γ S Xn+1, δ resB(Xn) ∅). We observe that π′′ is

a valid interactive process of B. Moreover, we have STS(π′′) = STS(π)SXn+1, and so, by ¬enB(S)
and enB(Xn+1) and the induction hypothesis, we obtain:

[STS(π′′)]B
en

= [STS(π)]B
en
Xn+1 = X1 . . . XnXn+1 .

In this way, we have shown that [STS(PROC(A))]A
en

⊆ [STS(PROC(A))]B
en

And, similarly, we can

show that [STS(PROC(A))]A
en

⊇ [STS(PROC(A))]B
en

. Hence A +PROC B. ⊓⊔

Enabling transition system equivalence

Next we relate enabling equivalence to the transition systems of reaction systems.

Example 4.5. Consider reaction system A = (S, {a, b, c}), as in Example 2.1, with background set

S = {1, 2, 3, 4} and three reactions:

a : {4} , {3} → {4}

b : {1, 4} , {3} → {2}

c : {4} , {2, 3} → {1}

and reaction system Â = (S, {â, b̂, ĉ}) with the same background set and three reactions:

â : {4} , {3} → {4}

b̂ : {1, 4} , {3} → {1}

ĉ : {4} , {2, 3} → {2}

Then we have A + Â and A +CIPROC Â (as the only state where both sets of reactions are enabled

is {1, 4}), but the context-independent transition systems of A and Â, depicted in Figure 7, are not

only different, but structurally different. Note also that if we could see the initial state of the context-

independent processes of reaction systems, then the reaction systems A and Â would no longer be

equivalent. This distinction can easily be seen by starting both reaction systems in state {4}. ♦

As a result, providing a characterisation of ci-process enabling equivalence using transition sys-

tems calls for a new transition system representation of ci-enabling processes, as described next.

The ci-enabling transition system of a reaction system A = (S,A) is a tuple CITSen(A) =
(Q, V, ℓ,Q′), where Q is a finite set of nodes, V ⊆ Q × Q is a set of arcs, ℓ : Q → 2S ∪ {λ} is

a labelling of the nodes, and Q′ ⊆ Q is a nonempty set of initial nodes, such that the following hold:

J. Kleijn et al. / Reaction Systems and Enabling Equivalence 273

(a)

4 1, 4

1, 2, 42, 4

X

∅

4 1, 4

1, 2, 42, 4

X

∅

(b)

Figure 7. The context-independent transition system of A (a), and the context-independent transition system

of Â (b). The X stands for any subset of the background set other than those depicted explicitly.

• If enA(PA) then:

– Q = Q′ = 2S

– V = {(X, resA(X)) | X ⊆ S}

– ℓ(X) = X , for all X such that enA(X); otherwise ℓ(X) = λ.

• If ¬enA(PA) then:

– Q = 2S ⊎ {⊥} and Q′ = 2S

– V = {(X, resA(X)) | X ⊆ S ∧ ¬enA(X)} ∪ {(X,⊥) | X ⊆ S ∧ enA(X)}
∪ {(⊥, resA(PA))}

– ℓ(X) = X , for all X such that enA(X); ℓ(⊥) = PA; otherwise ℓ(X) = λ.

The state sequences STS(CITSen(A)) of CITSen(A) are defined by

STS(CITSen(A)) = {ℓ(Y1 · · ·Yn) | Y1 · · ·Yn is a path in CITSen(A) with Y1 ∈ Q′} .

Basically, CITSen(A) is the context-independent transition system of A enriched with labels (and in

the second case an additional state ⊥). The empty sequence λ is used as a ‘silent’ label to hide those

states that do not enable the full set of reactions A (or are not the followers of such states). Moreover,

a distinction is made between whether or not the set consisting of all products of the reactions of A
(i.e., PA) enables all reactions of A. If not (the second case above), V connects all states X of A with

the result of A on X provided that not all reactions of A are enabled by X; otherwise X is connected

to ⊥ (that represents resA(X) = PA) which in turn is connected to resA(PA).
Note that in this (second) case PA is labelled with λ, while ⊥ is labelled with PA. Having the inter-

mediate state ⊥ makes it possible to distinguish between on the one hand the situation when PA is the

initial state or has been obtained from only a subset of the available reactions, and on the other hand

the situation when PA has been the result of executing all the reactions of A.

The soundness of the definition of ci-enabling transition system follows from the next result, where

A +CITS B means that STS(CITSen(A)) = STS(CITSen(B)).

274 J. Kleijn et al. / Reaction Systems and Enabling Equivalence

Proposition 4.6. A +CIPROC B iff A +CITS B, for all consistent reaction systems A and B over the

same background set.

Proof:

It suffices to observe that STS(CITSen(D)) = [STS(PROC(D))]D
en

, for D ∈ {A,B}, which follows

directly from the definitions. ⊓⊔

Thus this result provides also a finite means for checking whether two infinite sets of sequences

are the same.

Example 4.7. Figure 8 shows the ci-enabling transition systems of the reaction systems from Exam-

ple 4.5. Clearly, we have STS(CITSen(A)) = STS(CITSen(Â)). Moreover, Figure 6(c, d) shows the

ci-enabling transition systems of the reaction systems from Example 4.3. ♦

(a)

λ 1, 4

1, 2, 4λ

λ

λ

λ

λ 1, 4

1, 2, 4λ

λ

λ

λ

(b)

Figure 8. The ci-enabling transition system of reaction system A in Example 4.5 (a), and the ci-enabling

transition system of Â (b). The rightmost top states stand for several duplicates. The middle state in (a) and the

state in the second row in (b) are initial states that correspond to {1, 2, 4} (which, as initial state, is not the state

that directly follows the state at which the set of reactions of A and Â, respectively, is enabled).

So far it was implicitly assumed that both the initial states and context sequences are unknown

to any observers of processes of reaction systems. A detailed analysis of the implications of relaxing

these constraints is beyond the scope of the present paper. That such analysis is justified follows

from our last result that the enabling process equivalence with visible context sequences has more

discriminating power than other equivalences defined so far.

To show this, let A and B be two reaction systems with the same background set. Then A +
viscxt

PROC B
if for all interactive processes, π = (γ, δ) and π′ = (γ, δ′) with the same initial state, of respectively

A and B, we have [STS(π)]A
en

= [STS(π′)]B
en

.

Theorem 4.8. Let A and B be two reaction systems with the same background set. Then:

A +
viscxt

PROC B =⇒ A +CIPROC B ⇐⇒ A +CITS B =⇒ A + B ⇐⇒ A +PROC B

and no new implications can be added.

J. Kleijn et al. / Reaction Systems and Enabling Equivalence 275

Proof:

The first implication follows directly from the definition +
viscxt

PROC , and the second from Proposition 4.2.

The first equivalence follows from Proposition 4.6, and the second from Proposition 4.4. Exam-

ple 4.3 shows that that the second implication cannot be reversed. Finally, the first implication cannot

be reversed, as for the reaction systems in Example 4.5, we have A +CIPROC Â and A 6+viscxt

PROC Â.

Indeed, it suffices to take the context sequence ∅∅∅ and consider the interactive process π =

(∅∅∅, {1, 4}{1, 2, 4}{1, 4}) in Â for which we have [STS(π)]Â
en

= {1, 4}{1, 2, 4}{1, 4}. However,

there is no interactive process π′ = (∅∅∅, δ) in A such that [STS(π)]Â
en

= {1, 4}{1, 2, 4}{1, 4},

which can be shown by checking each potential first set in δ. ⊓⊔

5. Concluding remarks

The notion of both static and dynamic equivalence in the domain of reaction systems had been inves-

tigated in, e.g., [17, 19, 16, 12]. In this paper, we investigated the concept of enabling equivalence in-

troduced in [17], which provided a novel way of capturing equivalent evolutions in the living systems.

In particular, we investigated possible ways of incorporating such an equivalence as a replacement of

functional equivalence in the range of equivalence notions introduced in [16].

We have demonstrated that enabling equivalence has clearly different discrimination power when

compared with functional equivalence which played a central role in [16]. We believe that a further

comparison and contrasting of these two approaches to behavioural equivalence in reaction systems is

needed. In particular, we plan to investigate this when context sequences are constrained rather than

arbitrary and are provided, for instance, by the context controllers introduced in [16].

Acknowledgments

First of all we would like to express our gratitude to Giancarlo Mauri for providing us with an overview

of the field as well as pleasant circumstances to pursue our joint endeavours into the realm of reaction

systems. We are grateful to the anonymous reviewers for their constructive feedback leading to an im-

proved presentation of our results. Finally, the research presented in this paper was partially supported

by the Polish National Agency for Academic Exchange.

References

[1] Ehrenfeucht A, Rozenberg G. Reaction systems. Fundam. Inform., 2007. 75(1-4):263–280. URL

❤tt♣✿✴✴❝♦♥t❡♥t✳✐♦s♣r❡ss✳❝♦♠✴❛rt✐❝❧❡s✴❢✉♥❞❛♠❡♥t❛✲✐♥❢♦r♠❛t✐❝❛❡✴❢✐✼✺✲✶✲✹✲✶✺.

[2] Brijder R, Ehrenfeucht A, Main MG, Rozenberg G. A tour of reaction systems. Int. J. Found. Comput.

Sci., 2011. 22(7):1499–1517. doi:10.1142/S0129054111008842.

[3] Corolli L, Maj C, Marini F, Besozzi D, Mauri G. An excursion in reaction systems: From computer

science to biology. Theor. Comput. Sci., 2012. 454:95–108. doi:10.1016/j.tcs.2012.04.003.

276 J. Kleijn et al. / Reaction Systems and Enabling Equivalence

[4] Dennunzio A, Formenti E, Manzoni L. Extremal combinatorics of reaction systems. In: Dediu

A, Martín-Vide C, Sierra-Rodríguez JL, Truthe B (eds.), Language and Automata Theory and Ap-

plications - 8th International Conference, LATA 2014, Madrid, Spain, March 10-14, 2014. Pro-

ceedings, volume 8370 of Lecture Notes in Computer Science. Springer, 2014 pp. 297–307. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲✸✲✸✶✾✲✵✹✾✷✶✲✷❴✷✹.

[5] Ehrenfeucht A, Kleijn J, Koutny M, Rozenberg G. Reaction systems: A natural computing approach to

the functioning of living cells. In: A Computable Universe: Understanding and Exploring Nature As

Computation. World Scientific, 2012 pp. 189–208.

[6] Dennunzio A, Formenti E, Manzoni L, Porreca AE. Ancestors, descendants, and gardens of Eden

in reaction systems. Theor. Comput. Sci., 2015. 608:16–26. doi:10.1016/j.tcs.2015.05.046. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳t❝s✳✷✵✶✺✳✵✺✳✵✹✻.

[7] Ehrenfeucht A, Kleijn J, Koutny M, Rozenberg G. Minimal reaction systems. Trans. Computational

Systems Biology, 2012. 14:102–122. doi:10.1007/978-3-642-35524-0_5.

[8] Ehrenfeucht A, Petre I, Rozenberg G. Reaction systems: A model of computation inspired by the func-

tioning of the living cell. In: The Role of Theory in Computer Science: Essays Dedicated to Janusz Brzo-

zowski. World Scientific, 2017 pp. 1–32. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✷✴✾✼✽✾✽✶✸✶✹✽✷✵✽❴✵✵✵✶.

[9] Ehrenfeucht A, Rozenberg G. Events and modules in reaction systems. Theor. Comput. Sci., 2007. 376(1-

2):3–16. doi:10.1016/j.tcs.2007.01.008.

[10] Ehrenfeucht A, Rozenberg G. Zoom structures and reaction systems yield exploration systems. Int. J.

Found. Comput. Sci., 2014. 25(3):275–306. doi:10.1142/S0129054114500142.

[11] Formenti E, Manzoni L, Porreca AE. Fixed points and attractors of reaction systems. In: Beckmann A,

Csuhaj-Varjú E, Meer K (eds.), Language, Life, Limits - 10th Conference on Computability in Europe,

CiE 2014, Budapest, Hungary, June 23-27, 2014. Proceedings, volume 8493 of Lecture Notes in Computer

Science. Springer, 2014 pp. 194–203. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲✸✲✸✶✾✲✵✽✵✶✾✲✷❴✷✵.

[12] Pardini G, Barbuti R, Maggiolo-Schettini A, Milazzo P, Tini S. Compositional semantics and be-

havioural equivalences for reaction systems with restriction. Theor. Comput. Sci., 2014. 551:1–21. doi:

10.1016/j.tcs.2014.04.010.

[13] Salomaa A. Functions and sequences generated by reaction systems. Theor. Comput. Sci., 2012. 466:87–

96. doi:10.1016/j.tcs.2012.07.022.

[14] Salomaa A. On state sequences defined by reaction systems. In: Constable RL, Silva A (eds.), Logic and

Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His 60th Birthday, volume

7230 of Lecture Notes in Computer Science. Springer, 2012 pp. 271–282. doi:10.1007/978-3-642-29485-

3_17.

[15] Salomaa A. Minimal and almost minimal reaction systems. Natural Computing, 2013. 12(3):369–376.

URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✶✶✵✹✼✲✵✶✸✲✾✸✼✷✲②.

[16] Kleijn J, Koutny M, Mikulski L, Rozenberg G. Reaction systems, transition systems, and equivalences.

In: Böckenhauer H, Komm D, Unger W (eds.), Adventures Between Lower Bounds and Higher Altitudes

- Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, volume 11011 of Lecture

Notes in Computer Science. Springer, 2018 pp. 63–84. doi:10.1007/978-3-319-98355-4_5.

[17] Ehrenfeucht A, Kleijn J, Koutny M, Rozenberg G. Evolving reaction systems. Theor. Comput. Sci., 2017.

682:79–99. doi:10.1016/j.tcs.2016.12.031.

J. Kleijn et al. / Reaction Systems and Enabling Equivalence 277

[18] Gray F. Pulse code communications, 1953. US Patent 2 632 058.

[19] Genova D, Hoogeboom HJ, Jonoska N. A graph isomorphism condition and equivalence of reaction

systems. Theor. Comput. Sci., 2017. 701:109–119. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴

❥✳t❝s✳✷✵✶✼✳✵✺✳✵✶✾.

