
Reaction Systems, Transition Systems,
and Equivalences

Jetty Kleijn1, Maciej Koutny2, �Lukasz Mikulski3,
and Grzegorz Rozenberg1,4(B)

1 LIACS, Leiden University, P.O. Box 9512, 2300 Leiden, RA, The Netherlands
{h.c.m.kleijn,g.rozenberg}@liacs.leidenuniv.nl

2 School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
maciej.koutny@ncl.ac.uk

3 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
87-100 Toruń, Poland

lukasz.mikulski@mat.umk.pl
4 Department of Computer Science, University of Colorado Boulder, 430 UCB,

Boulder, CO 80309-0430, USA

Abstract. Reaction systems originated as a formal model for processes
inspired by the functioning of the living cell. The underlying idea of this
model is that the functioning of the living cell is determined by the inter-
actions of biochemical reactions and these interactions are based on the
mechanisms of facilitation and inhibition. Since their inception, reaction
systems became a well-investigated novel model of computation. Follow-
ing this line of research, in this paper we discuss a systematic framework
for investigating a whole range of equivalence notions for reaction sys-
tems. Some of the equivalences are defined directly on reaction systems
while some are defined through transition systems associated with reac-
tion systems. In this way we establish a new bridge between reaction
systems and transition systems. In order to define equivalences which
capture various ways of interacting with an environment, we also intro-
duce models of the environment which evolve in a finite-state fashion.

Keywords: Reaction system · Living cell · Natural computing
Interactive computation · Transition system
Behavioural equivalences · Bisimulation · Context controller

1 Introduction

Natural computing is an interdisciplinary research area concerned with human-
designed computing inspired by nature and with computing taking place in
nature (see, e.g., [22,29]). The former strand investigates models and compu-
tational techniques inspired by nature, while the latter investigates, in terms
of information processing, phenomena taking place in nature. Clearly, the two
research strands are not disjoint.

c© Springer Nature Switzerland AG 2018
H.-J. Böckenhauer et al. (Eds.): Hromkovič Festschrift, LNCS 11011, pp. 63–84, 2018.
https://doi.org/10.1007/978-3-319-98355-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98355-4_5&domain=pdf


64 J. Kleijn et al.

Biomolecular computation is a topic of intense research in natural computing.
Within the former strand this research focuses on constructing, either in vitro
or in vivo, various building blocks of computing devices, as well as on design-
ing novel, nature inspired algorithms. Within the latter strand this research is
concerned with establishing how biocomputations drive natural processes.

The original motivation behind reaction systems (see, e.g., [8,12,17]), the
subject of this paper, falls into this second strand of research. Reaction systems
were proposed as a formal model for the investigation of the functioning of the
living cell, where this functioning is viewed in terms of formal processes result-
ing from interactions between biochemical reactions taking place in the living
cell. The key feature of these interactions is that they are driven by two mecha-
nisms, facilitation and inhibition: the (products of the) reactions may facilitate
or inhibit each other. The basic model of reaction systems abstracts from vari-
ous (technical) features of biochemical reactions to such extent that it becomes
a qualitative rather than a quantitative model. However, it takes into account
the basic bioenergetics (flow of energy) of the living cell, see [24], and it also
takes into account that the living cell is an open system and its behaviour is
influenced by its environment.

Although the model of reaction systems was inspired by biology, the research
on reaction systems is driven by both biological considerations (see, e.g.,
[2,3,6,7,10,18,19]) and considerations concerned with the understanding of com-
putations taking place in reaction systems which formalise dynamic processes
instigated by the interactions of biochemical reactions in the living cell (see,
e.g., [8,11,13,14,16,20,30–32]). As a matter of fact, reaction systems turned
out to be an interesting novel model of interactive computation.

This paper follows this computational line of research and its goal is to
present a systematic framework for considering various notions of behavioural
equivalence for reaction systems. Within this framework we consider equiv-
alences defined directly on reaction systems as well as equivalences defined
through transition systems associated with them. In this way we establish a new
bridge to transition systems which are central constructs of theoretical com-
puter science used extensively to investigate behaviours of dynamic processes
(see, e.g., [1,4,23,26]).

By associating various sorts of transition systems with reaction systems and
then by considering various notions of equivalence for these transition systems,
we capture a wide range of properties of dynamic processes taking place in
reaction systems.

Reaction systems are models of interactive computations, the interaction of
a reaction system with its environment constitutes a key feature of this model.
In order to account for these interactions in our framework, we introduce models
of environment that evolve in a finite-state fashion.

The paper is self-contained in the sense that (1) it introduces basic notions
concerning reaction systems and their dynamic processes (together with the
original biological motivation), and (2) it introduces basic notions concerning
transition systems.



Reaction Systems, Transition Systems, and Equivalences 65

The paper is organised as follows.
In Sects. 2 and 3 we recall basic notions of reaction systems to be used in this

paper, also recalling the original biological motivation.
In Sect. 4 we consider two basic equivalences defined directly on reaction

systems:

– the standard functional equivalence which is local in the sense that it com-
pares the effect of two systems on individual states (there are finitely many
of them), and

– the new process equivalence which is global in the sense that it compares the
sets of processes of two systems (there are infinitely many of them).

Both equivalences considered in Sect. 4 are quite restrictive, and so in Sect. 5
we consider two ways of making these equivalences less restrictive:

– by comparing two systems only w.r.t. processes that begin in a designated
set of possible initial states, and

– by making only some entities visible to an outside observer.

In Sect. 6 we recall basic notions of transition systems to be used in this paper,
and then in Sect. 7 we establish a method of associating transition systems with
reaction systems.

Reaction systems are models of interactive computing, the interaction of a
system with its environment is the central feature of processes of reaction sys-
tems. As a preparatory step for incorporating this interaction in equivalence
notions, in Sect. 8 we formalise an intuitive concept of a ‘finite-state’ environ-
ment, i.e., an environment which evolves in a finite-state fashion. It is an interme-
diate between the two sorts of environments mostly considered in the literature:
all possible contexts are allowed and no context is allowed (i.e., a reaction system
is considered to be a ‘closed’ system). The resulting formal constructs are called
context controllers and they can control the environment either totally indepen-
dently of reaction systems (operating in it) or in a fashion that is dependent
on (aware of) the current states of reaction systems. Incorporating context con-
trollers into the behaviour of reaction systems leads to new definitions of their
processes.

In Sect. 9 we consider equivalences defined not directly on reaction systems,
but rather through transition systems associated with them.

The notion of bisimulation is a central notion of the theory of concurrent sys-
tems [26,27,35] for comparing their dynamic behaviours. In Sect. 10 we transfer
this notion to reaction systems using their representations by transition systems.

The discussion in Sect. 11 concludes this paper.

2 Reactions and Reaction Systems

In this section and in Sect. 3, we recall the basic notions of reaction systems
needed in this paper. Most of them are taken from [5,12,16].



66 J. Kleijn et al.

The formal notion of a reaction reflects the basic intuition of a biochemical
reaction – it will take place if all its reactants are present and none of its inhibitors
is present; when a reaction takes place it creates its products.

Definition 1. A reaction is a triple b = (R, I, P ) such that R, I, P are finite
nonempty sets with R ∩ I = ∅.

The sets R, I, P are called the reactant set of b, the inhibitor set of b, and
the product set of b, respectively – they are also denoted as Rb, Ib, and Pb,
respectively. If R, I, P ⊆ Z for a finite set Z, then we say that b is a reaction in
Z and we use rac(Z) to denote the set of all reactions in Z – note that rac(Z)
is finite.

Since R and I are nonempty and disjoint, a finite set Z as above must have
at least 2 elements – we refer to such finite sets as background sets.

To describe the effect of a set of reactions on a state (of a biochemical system),
we first define the effect of a single reaction.

Definition 2. Let Z be a background set, let X ⊆ Z, and let b ∈ rac(Z). Then
b is enabled by X, denoted by enb(X), if Rb ⊆ X and Ib ∩ X = ∅. The result
of b on X, denoted by resb(X), is defined by resb(X) = Pb if enb(X), and
resb(X) = ∅ otherwise.

Here the finite set X is a formal representation of a state (i.e., the set of
biochemical entities currently present in the given biochemical system). Then b
is enabled by X if X separates Rb from Ib, meaning that all reactants from Rb

are present in X and none of the inhibitors from Ib is present in X. When b is
enabled by X, it contributes its product Pb to the successor state; otherwise it
does not contribute anything to the successor state.

The effect of a set of reactions on a state is cumulative, which is formally
defined as follows.

Definition 3. Let Z be a background set, let X ⊆ Z, and let B ⊆ rac(Z). The
result of B on X, denoted by resB(X), is defined by resB(X) =

⋃
{resb(X) | b ∈

B}.

Note that if the transition from a current state X to its successor is deter-
mined only by the results of reactions (i.e., there is no influence of the environ-
ment, which we will consider later on), then the successor state consists only of
the entities produced by the reactions enabled in the current state. This implies
that in the transition from the current state to its successor state an entity
from X vanishes unless it is sustained/produced by a reaction. This is the non-
permanency property which reflects the basic bioenergetics of the living cell: with-
out a flow/supply of energy the living cell disintegrates, but the use/absorption of
energy by the living cell is realised through biochemical reactions (see, e.g., [24]).
Thus an entity vanishes within one state transition unless it is produced by a
reaction. This non-permanency property is a major difference between reaction
systems and models considered in the theory of computation (see, e.g., [1] and



Reaction Systems, Transition Systems, and Equivalences 67

[21]). Also finite duration of entities in reaction systems – corresponding to their
presence in several consecutive states – which takes into account decay time, is
considered in the literature (see, e.g., [6]).

There is another notable aspect of Definition 3. If a, b are two reactions from
B enabled by X, then both of them will take place even if Ra ∩ Rb �= ∅. Hence
there is no notion of conflict between reactions even if they need to share reac-
tants. This is the property of the threshold nature of resources: either an entity
is available and then there is enough of it, or it is not available. The threshold
nature of resources (no conflict) property is a major difference with structural
models of concurrency, such as, e.g., Petri nets [28]. This property reflects the
level of abstraction adopted for the formulation of the basic model of reaction
systems: one does not count concentrations of entities/molecules to infer from
these which reactions can/will be applied. One operates on a higher level of
abstraction: assuming that the cell is running/functioning, the aim is to under-
stand the ongoing processes. This level of abstraction can be compared with the
level of abstraction of the standard models of computation in computer science,
such as Turing machines and finite automata. These standard models turned
out to be very successful in understanding computational processes running on
electronic computers, and yet nothing in these models takes into account the elec-
tronic/quantitative properties of the underlying hardware. It is simply assumed
that the underlying electronics/hardware functions ‘well’ and then the goal is to
understand processes running on (implemented by) this hardware. Similarly, we
want to understand the processes resulting from interactions in the living cell
and at this stage we abstract from the underlying ‘hardware properties’ of the
living cell. Thus: the basic model of reaction systems is qualitative rather than
quantitative – in particular, there is no counting.

With the formal notion of a reaction and its effect on states established, we
can now proceed to formally define reaction systems as an abstract model of the
interactions of biochemical reactions in the living cell.

Definition 4. A reaction system is an ordered pair A = (S,A), where S is a
background set and A is a nonempty finite subset of rac(S).

The set S is called the background set of A, and its elements are called the
entities of A – they represent molecular entities (e.g., atoms, ions, molecules)
that may be present in the states of the biochemical system (e.g., the living cell).
The set A is called the set of reactions of A; clearly A is finite (as S is finite).

The subsets of S are called the states of A. Given a state X ⊆ S, the result
of A on X, denoted by resA(X), is defined by resA(X) = resA(X).

Thus a reaction system is essentially a set of reactions. We also specify the
background set which consists of entities needed for defining the reactions and for
reasoning about the reaction system (see the definition of an interactive process
below). There are no ‘structures’ involved in reaction systems (such as, e.g., the
tape of a Turing machine). Finally, note that this is a strictly finite model – the
size of any state is a priori restricted (by the size of the background set).



68 J. Kleijn et al.

3 Processes of Reaction Systems

The model of reaction systems formalises the ‘static structure’ of the living cell
as the set of all reactions that can take place in the cell (together with the set
of underlying entities). Since the original motivation behind this model was to
understand the functioning of living cells, one is really interested in the processes
instigated by the interactions of these reactions. They are formalised as follows.

Definition 5. Let A = (S,A) be a reaction system.
An interactive process in A is an ordered pair π = (γ, δ) of finite sequences

such that γ = C0, . . . , Cn and δ = D0, . . . , Dn, for some n ≥ 1, where
C0, . . . , Cn ⊆ S, D0, . . . , Dn ⊆ S, and Di = resA(Di−1 ∪ Ci−1), for all
i ∈ {1, . . . , n}.

The sequence γ is the context sequence of π, the sequence δ is the result
sequence of π, and the sequence τ = W0, . . . , Wn, where, for all i ∈ {0, . . . , n},
Wi = Ci ∪ Di, is the state sequence of π, with W0 = C0 ∪ D0 the initial state
of π. We let STS (π) denote the state sequence of π. By PROC (A) we denote
the set of interactive processes of A and, for X ⊆ S, PROCX(A) is the set of
interactive processes of A with initial state X.

The dynamic process formalised by an interactive process π begins in its
initial state. The reactions of A enabled by this initial state W0 produce the
result set D1, which together with the context set C1 forms the successor state
W1 = resA(W0) ∪ C1. This formation of successor states is iterated: Wi =
resA(Wi−1) ∪ Ci, resulting in the state sequence STS (π) = W0, . . . , Wn.

An interactive process may be visualised by a three-row representation, where
the first row represents the context sets and is labelled by ‘γ’, the second row
represents result sets and is labelled by ‘δ’, and the third row represents states
and is labelled by ‘τ ’. Such a representation looks as follows:

γ : C0 C1 . . . Cn−1 Cn

δ : D0 D1 . . . Dn−1 Dn

τ : W0 W1 . . . Wn−1 Wn

(1)

Note that the context sequence γ together with the initial state W0 uniquely
determine π, because γ and D0 uniquely determine π (through the result function
resA). The context sequence formalises the fact that the living cell is an open
system in the sense that its behaviour is influenced by its environment (the ‘rest’
of a bigger system).

If, for all i ∈ {0, . . . , n}, Ci ⊆ Di, then we say that π is context-independent :
whatever Ci adds to Di, has already been produced by the system (is included
in the result Di) or perhaps Ci adds nothing at all (Ci = ∅). If π is context-
independent, then (in its analysis) we may as well assume that each Ci, for
i ∈ {0, . . . , n}, adds nothing, hence the context sequence consists of empty sets
Ci only. Clearly, if π is context-independent, then the initial state W0 = D0

determines π by the repeated application of resA.



Reaction Systems, Transition Systems, and Equivalences 69

When reaction systems were introduced, the definition of an interactive pro-
cess assumed that D0 = ∅. This is not the case anymore and also in this paper
this condition is dropped, in this way a suffix (of length at least 2) of an inter-
active process is also an interactive process. As a consequence we assume that
in a context-independent interactive process also C0 = ∅.

We will use CIPROC (A) to denote the set of context-independent interactive
processes of A and CIPROCW0(A) to denote the set of context-independent
interactive processes of A with initial state W0.

4 Direct Equivalences

In this section we consider equivalences for reaction systems defined directly
through their reactions and interactive processes. First we recall the standard
functional equivalence that was introduced right from the start in [17] for reac-
tion systems.

Definition 6. Reaction systems A and B with the same background set S are
(functionally) equivalent, denoted by A ∼ B, if resA(X) = resB(X) for all
X ⊆ S.

Note that, strictly speaking, we should have written ∼S in the above defini-
tion. However to simplify our notation we will use ∼ whenever this will not lead
to confusion.

The concept of interactive processes induces in a natural way the following
notion of equivalence for reaction systems.

Definition 7. Reaction systems A and B with the same background set are pro-
cess equivalent, denoted by A ∼PROC B, if PROC (A) = PROC (B).

The relation ∼PROC is clearly an equivalence relation. Moreover, it turns out
that ∼ which is defined locally (just on all subsets of the background set) and
∼PROC which is defined globally (over all, infinitely many, processes) coincide.

Proposition 1. Let A and B be reaction systems with the same background set
S. Then A ∼PROC B if and only if A ∼ B.

Proof. Suppose that A ∼PROC B. Thus PROC (A) = PROC (B). Let X ⊆ S and
consider a process π ∈ PROC (A) with initial state X and context sequence ∅, ∅.
Thus the result sequence of π is X, resA(X). Since π is also an interactive process
in B, it follows that resB(X) = resA(X). Hence, for each X ⊆ S, resB(X) =
resA(X) and consequently A ∼ B.

Now suppose that A ∼ B. Hence, resA(X) = resB(X) for all X ⊆ S, which
directly implies that A ∼PROC B. 	


Similarly, we can also show that one does not need the full information from
the interactive processes of reaction systems to establish their (process) equiva-
lence – it suffices to consider only their state sequences.



70 J. Kleijn et al.

Proposition 2. Let A and B be reaction systems with the same background set
S. Then A ∼ B if and only if STS (PROC (A)) = STS (PROC (B)).

Proof. The only-if-direction follows immediately from Proposition 1.
So let us assume that STS (PROC (A)) = STS (PROC (B)). Let X ⊆ S

and consider π ∈ PROC (A) with some initial state W and context sequence
∅, S,X, ∅. Then STS (π) = W,S,X, resA(X). Hence there exists an interac-
tive process π′ ∈ PROC (B) such that STS (π′) = W,S,X, resA(X). This implies
that resB(X) ⊆ resA(X). There also exists an interactive process in B with state
sequence W,S,X, resB(X). Consequently W,S,X, resB(X) is the state sequence
of an interactive process in A, which implies that resA(X) ⊆ resB(X). It fol-
lows that resB(X) = resA(X). Hence, for each X ⊆ S, resB(X) = resA(X) and
consequently A ∼ B. 	


Corollary 1. Let A and B be reaction systems with the same background set.
Then A ∼ B if and only if A ∼PROC B if and only if STS (PROC (A)) =
STS (PROC (B)).

5 Relaxing Direct Equivalences

The conditions for equivalence as captured by ∼ and ∼PROC may be rightly
regarded as too restrictive, because this equivalence entails ‘always the same
effect’ of the reactions of the two reaction systems under consideration. In this
section we formulate several different ways of relaxing this constraint.

Initial States

The first idea to relax ∼PROC is to compare reaction systems only with respect
to interactive processes that begin in certain designated states.

Definition 8. Let A and B be reaction systems with the same background set S.
Let Z be a nonempty subset of 2S. Then A and B are process equivalent w.r.t.
Z, denoted by A ∼Z B, if PROCX(A) = PROCX(B) for every X ∈ Z.

The relation ∼Z is clearly an equivalence relation. Moreover, ∼2S is nothing
but ∼PROC . What is perhaps rather unexpected, is that process equivalence is
guaranteed for two reaction systems whenever they are equivalent with respect
to some nonempty set of initial states. Any subset Z ⊆ 2S such that A ∼Z B is
thus a ‘test subset’ for process equivalence.

Proposition 3. Let A and B be reaction systems with the same background set
S. Then A ∼PROC B if and only if there exists a nonempty Z ⊆ 2S such that
A ∼Z B.

Proof. Since ∼PROC=∼2S , we only need to prove the if-direction of the state-
ment. Assume that Z is a nonempty subset of 2S such that A ∼Z B. Let X ∈ Z
and let Y be an arbitrary subset of S. Consider the interactive process π in A



Reaction Systems, Transition Systems, and Equivalences 71

with context sequence ∅, S, Y, ∅ and result sequence X, resA(X), ∅, resA(Y ).
From A ∼Z B and X ∈ Z, it follows that π is also an interactive process in B
and so resA(Y ) = resB(Y ). Hence, resB(Y ) = resA(Y ), for each Y ⊆ S, and
consequently A ∼ B. Thus, by Proposition 1, A ∼PROC B. 	


Thus we may conclude that restricting the set of potential initial states has
no effect on the equivalences considered so far.

Corollary 2. Let A and B be reaction systems with the same background set
S. Then A ∼ B if and only if A ∼PROC B if and only if A ∼Z B for some
nonempty Z ⊆ 2S.

At this point it is worthwhile to observe that also in the case of a restricted
set of potential initial states, the state sequences of those interactive processes
that are taken into consideration are sufficient to establish (process) equivalence.
In fact, even one initial state is sufficient.

Proposition 4. Let A and B be reaction systems with the same background
set S. Let X ⊆ S be such that STS (PROCX(A)) = STS (PROCX(B)). Then
A ∼ B.

Proof. The statement can be proved along the lines of the proof of the if-direction
of Proposition 2 where the choice of an initial state was an arbitrary one. 	


In combination with the definition of state sequences of processes, Proposi-
tion 3 and Corollary 2, this leads to the following result.

Corollary 3. Let A and B be reaction systems with the same background set
S. Then A ∼ B if and only if A ∼PROC B if and only if STS (PROCX(A)) =
STS (PROCX(B)) for some X ⊆ S.

Observable Entities

Another possibility to relax ∼PROC is to relate it to a subset of the background
set of the reaction systems under consideration. Intuitively, such subset is the
part of the background set that is ‘visible’ to an observer.

First we need some notation.
As usual, for any set U , we use U∗ to denote the set of finite sequences of

elements from U ; the empty sequence is denoted by λ.
Let U and W be finite sets such that U ⊆ W . The projection function

projW,U from (2W )∗ onto (2U )∗ is defined as follows.

– For W ′ ⊆ W , projW,U (W ′) = W ′ ∩ U .
– This is lifted to sequences of sets in a homomorphic way:
projW,U (W1W2 . . . Wm) = projW,U (W1)projW,U (W2) . . . projW,U (Wm), for
every sequence W1 . . . Wm with m ≥ 1 and Wi ⊆ W , for i ∈ {1, . . . , m},
and projW,U (λ) = λ.



72 J. Kleijn et al.

In what follows, we may omit the subscript W whenever it is clear from the
context – then we simply write projU .

Definition 9. Let A and B be reaction systems with the same background set S
and let Y ⊆ S. Then A and B are Y -projection equivalent, denoted by A ∼Y B,
if proj Y (STS (PROC (A))) = projY (STS (PROC (B))).

The relation ∼Y is clearly an equivalence relation. Note that all reaction
systems over the background set S are ∅-projection equivalent. Moreover, by
Corollary 1, ∼S is nothing but ∼PROC .

Proposition 5. Let A and B be reaction systems with the same background set
S, and let X ⊆ Y ⊆ S. Then A ∼Y B implies A ∼X B.

Proof. Follows directly from the definitions. 	


It should be noted here, that in contrast to process equivalence (with respect
to some set of designated initial states), projection equivalence is phrased in
terms of state sequences rather than the interactive processes themselves. A
main reason for doing this is that projection of interactive processes would also
involve a projection of the context (thrown in by the environment).

Initial States and Observable Entities

To conclude this section, we define an equivalence relation for reaction systems
by combining the restriction to designated initial states and the projection onto
a subset of the background set.

Definition 10. Let A and B be reaction systems with the same background set
S. Let Z be a nonempty subset of 2S and let Y ⊆ S. Then A and B are Y -
projection equivalent w.r.t. Z, denoted A ∼Y

Z B, if proj Y (STS (PROCX(A))) =
projY (STS (PROCX(B))), for every X ∈ Z.

The relation ∼Y
Z is an equivalence relation and ∼S

2S=∼PROC .

Proposition 6. Let A and B be reaction systems with the same background set
S. Let X ⊆ Y ⊆ S and let ∅ �= W ⊆ Z ⊆ 2S. Then A ∼Y

Z B implies A ∼X
W B.

Proof. Follows directly from the definitions. 	


6 Transition Systems

Transition systems are a central and important model in the theory of compu-
tation. They form an established way [1,4,23] of capturing the behaviour of a
dynamic system. Often infinite behaviour (e.g., given in the form of a language
consisting of sequences of action symbols) can be represented by a finite transi-
tion system. Transition systems have been used as a semantical model for both
sequential and concurrent systems.



Reaction Systems, Transition Systems, and Equivalences 73

Transition systems provide a means of defining and checking behavioural
equivalence of different systems. There are several different ways in which
behavioural equivalence of two transition systems can be expressed, depend-
ing on the application area and the desired degree of behavioural closeness. One
possibility is to consider two transition systems equivalent if the languages they
generate are the same [1,23]. Another, much more demanding, possibility is to
consider two transition systems equivalent if there is a bisimulation relation
between their states which is preserved by simulating transitions [26,27,35].

After introducing transition systems (in this section) and relating reaction
systems and transition systems (in the next section), we will consider bisimula-
tion-based notions of equivalence for reaction systems.

It should be mentioned here that there is a direct relationship between reac-
tion systems and transition systems that has been studied in the literature, see
e.g., [16,20]. One can simulate finite transition systems by reaction systems and
one can simulate reaction systems by finite transition systems, see e.g., [5,16].
Also the state space of a rs A = (S,A) is a finite directed graph (transition
system) with states of A and its nodes and edges determined either by the result
function resA (in case of context-independent interactive processes) or by the
joint effect of resA and the context sets (in case of unrestricted interactive pro-
cesses). The isomorphism problem for these graphs and its relationship to the
functional equivalence was studied in [20].

In a nutshell, a transition system is a directed graph, where the nodes repre-
sent global (system) states and the arcs (transitions) can be labelled with infor-
mation about the actions/conditions associated with the changes of the state of
the system. An evolution of the system (from a certain state) corresponds to
a directed path through the graph from the node corresponding to the given
state. Thus evolutions can be understood and analysed by looking at ordered
sequences of states and (labels of) transitions. Transition systems may be ‘ini-
tialised’, which means that they have a distinguished initial state from which all
possible evolutions of the system start.

Definition 11. 1. A transition system is an ordered pair T = (Q,V ), where Q
is a finite set and V ⊆ Q × Q.

2. An initialised transition system is a triple T = (Q,V, q0) such that (Q,V ) is
a transition system and q0 ∈ Q.

Definition 12. Let L be a finite set.

1. A labelled transition system over L is an ordered pair T = (Q,V ), where Q
is a finite set and V ⊆ Q × L × Q.

2. An initialised labelled transition system over L is a triple T = (Q,V, q0) such
that (Q,V ) is a labelled transition system over L and q0 ∈ Q.

The set of state sequences of a transition system T = (Q,V ), denoted by
sts(T ), is the set of all finite sequences θ = q0, q1, . . . , qn (n ≥ 0) of elements of
Q such that (qi, qi+1) ∈ V for all 0 ≤ i < n. Moreover, we denote by stsq(T ) the
set of all state sequences of T which start from a given state q.



74 J. Kleijn et al.

7 Associating Transition Systems with Reaction Systems

In order to capture a range of behavioural equivalences for reaction systems,
we first introduce a representation of their interactive processes as well as their
context-independent interactive processes in terms of a suitable class of transi-
tion systems. Then, we will also associate other transition systems with a given
reaction system, reflecting different views one might adopt when observing its
behaviour in context.

The first part of the next definition assumes – similarly to the assumption
underlying the definition of interactive processes – that the environment can
provide any subset of the background set at any time of the execution of a reac-
tion system. The transitions of the transition system associated with a reaction
system capture the change of a state of the reaction system resulting from the
reactions taking place at that state and the context thrown in by the environ-
ment. The second part of the definition assumes that the environment never
provides any entities.

Definition 13. Let A = (S,A) be a reaction system.

1. The (full) transition system of A is an ordered pair TS (A) = (Q,V ) such
that Q = 2S and V = {(X, resA(X) ∪ C) | X,C ∈ 2S}.

2. The context-independent transition system of A is an ordered pair
CITS (A) = (Q,V ) such that Q = 2S and V = {(X, resA(X)) | X ∈ 2S}.

The two transition systems from Definition 13 share their nodes, and
CITS (A) is a subgraph of TS (A), but they are never equal (e.g., (S, S) is always
a transition in TS (A), but not in CITS (A)). Neither of the two transition sys-
tems is initialised, as any subset of the background set S can be the first state
of an interactive process or a context-independent process of A.

Following the well-established approach that the directed paths of a transition
system provide the semantics of the dynamic system it is associated with, we
can establish the soundness of the definitions of TS (A) and CITS (A) by relating
the state sequences of the interactive processes of A to the state sequences of
the two kinds of transition systems.

Proposition 7. Let A = (S,A) be a reaction system and X ⊆ S.

1. sts(TS (A)) = STS (PROC (A)).
2. sts(CITS (A)) = STS (CIPROC (A)).
3. stsX(TS (A)) = STS (PROCX(A)).
4. stsX(CITS (A)) = STS (CIPROCX(A)).

Proof. All statements follow directly from the definitions. 	


Developing a satisfactory notion of a transition system capturing the
behaviour of a reaction system is not a straightforward task. The reason is that
in the standard treatment, the states of a transition system do not have any
internal structure and the interactions between a system and its environment



Reaction Systems, Transition Systems, and Equivalences 75

are represented as actions, such as messages or signals. In the case of reaction
systems, however, the states do have structure (they are sets of entities) and
the interaction with the environment (context) takes the form of sets of entities
which are added to the current state of the system.

It is instructive to note that the state sequences defined by the directed paths
of the (unlabelled) transition system TS (A) record vertex based attributes rather
than arc based attributes (as is usually the case in process algebras [26,35]). This
is natural for models of biological systems where the behaviours are perceived
through changes of states and in general it is not possible to record the contexts
thrown in by the environment.

8 Structuring Context

In the literature on reaction systems, one mostly considers two extreme variants
of context sequences, viz., there are either no restrictions imposed (as captured
by the full transition systems of reaction systems), or no context is provided (as
captured by the context-independent transition systems of reaction systems). A
fundamental research topic is how to find interesting cases in-between these two
extremes – in other words, the question is how to structure contexts? An exam-
ple of an attempt to answer this question is provided by research on reaction
systems with durations [6] where, for a given reaction system, the relevant con-
text sequences are determined by a ‘bigger’ reaction system in which the original
reaction system is embedded.

In this paper, we structure the environment and contexts it provides by
assuming that it exhibits a finite-state behaviour. This will be captured by con-
text controllers of two kinds: (1) controllers which throw in contexts irrespective
of the current state of the reaction system (as proposed in [25] for model check-
ing, where they were called context automata), considered in Subsect. 8.1; and
(2) more general controllers which throw in contexts depending also on the cur-
rent system state of the reaction system (introduced for the first time in this
paper), considered in Subsect. 8.2.

8.1 State-Oblivious Context Controllers

Definition 14. A state-oblivious context controller over a background set S is
an edge-labelled directed graph E = (Q,V ) such that Q is a finite nonempty set
and V ⊆ Q × 2S × Q. We assume that, for every node q ∈ Q, there are C ⊆ S
and q′ ∈ Q such that (q, C, q′) ∈ V.

Note that a state-oblivious context controller over S is a labelled transition
system over 2S . The additional condition that each node of E has an outgoing
edge means that E is always able to throw in a context.

Interactive processes generated under the control of state-oblivious context
controllers are defined as follows.



76 J. Kleijn et al.

Definition 15. Let A = (S,A) be a reaction system, and E = (Q,V ) a state-
oblivious context controller over S.

An interactive process in A controlled by E and initiated at (q,X) ∈ Q × 2S

is an ordered pair π = (γ, δ) of finite sequences such that, for some n ≥ 1, γ =
C0, . . . , Cn and δ = D0, . . . , Dn, where C0, . . . , Cn,D0, . . . , Dn ⊆ S. Moreover,
there are q0, . . . , qn ∈ Q satisfying:

– (q, C0, q0) ∈ V and D0 = resA(X),
– (qi, Ci+1, qi+1) ∈ V for i = 0, . . . , n − 1, and
– Di = resA(Ci−1 ∪ Di−1) for i = 1, . . . , n.

The state sequence of π is STS (π) = X,W0,W1, . . . , Wn, where Wi = Ci ∪
Di for i = 0, . . . , n.

Note that the state sequence of π begins with X rather than W0 as was the
case previously. We refer to (q,X) as the origin of π. The intuition behind it is
that when A begins in state X, the state of E is q.

We use PROC (q,X)(A, E) to denote the set of all interactive processes in A
controlled by E and initiated at (q,X), and PROC (A, E) to denote the set of all
interactive processes in A controlled by E , i.e.,

PROC (A, E) =
⋃

(q,X)∈Q×2S

PROC (q,X)(A, E) .

One can visualise the last definition using the progression in terms of columns
now also incorporating the state of the context controller, following the origin
(q,X) which provides the initial parameters in the last definition:

q q0 q1 . . . qn−1 qn
γ : C0 C1 . . . Cn−1 Cn

δ : D0 D1 . . . Dn−1 Dn

τ : X W0 W1 . . . Wn−1 Wn

(2)

Note that, for every 1 ≤ k < n:

((Ck, . . . , Cn), (Dk, . . . , Dn)) ∈ PROC (qk−1,Wk−1)(A, E) .

In other words, a suffix of an interactive process is also an interactive process.
The motivation behind the above extended notion of interactive process (and

one which is particularly needed in the case of state-aware context controllers
introduced below) is to be able to have a clear concept of extended states and
state sequences in which not only sets of entities are present, but also states of
the controller. By an extended state sequence we mean (q,X),W ′

0,W
′
1, . . . , W

′
n,

where W ′
i = (qi+1, Ci ∪ Di) for i = 0, . . . , n. Such a treatment also allows one to

easily define a transition system representation of state sequences of interactive
processes.

We introduce two kinds of transition systems for reaction systems controlled
by state-oblivious context controllers. The first does not distinguish between



Reaction Systems, Transition Systems, and Equivalences 77

entities thrown in by the environment and those produced by reaction system,
and the second (to be used in Sect. 10) takes account of the contexts produced
by controllers.

Definition 16. Let A = (S,A) be a reaction system and E = (Q,V ) be a state-
oblivious context controller over S.

1. The transition system of A controlled by E is an ordered pair TS (A, E) =
(Q′, U) such that
– Q′ = Q × 2S, and
– U is the set of all ordered pairs ((q,X), (q′,X ′)) ∈ Q′ ×Q′ such that there

exists (q, C, q′) ∈ V satisfying X ′ = C ∪ resA(X).
2. The labelled transition system of A controlled by E is an ordered pair

LTS (A, E) = (Q′, U) such that
– Q′ = Q × 2S, and
– U is the set of all triples ((q,X), C, (q′,X ′)) ∈ Q′ × Q′ such that there

exists (q, C, q′) ∈ V satisfying X ′ = C ∪ resA(X).

For TS (A, E), a state sequence starting at a node (q,X) is obtained by taking
the node sequence defined by a path originating at (q,X) and then deleting the
first components (i.e., the states of E). The set of all such sequences is denoted
by sts(q,X)(TS (A, E)), and then

sts(TS (A, E)) =
⋃

(q,X)∈Q×2S

sts(q,X)(TS (A, E))

is the set of all state sequences of reaction system A controlled by E .

Proposition 8. Let A = (S,A) be a reaction system, and E = (Q,V ) be a
state-oblivious context controller over S.

1. sts(q,X)(TS (A, E)) = STS (PROC (q,X)(A, E)) for every (q,X) ∈ Q × 2S.
2. sts(TS (A, E)) = STS (PROC (A, E)).

Proof. Both statements follow directly from the definitions. 	


Both the full transition system of A = (S,A) and the context-independent
transition system of A may, in essence, be obtained using suitable state-oblivious
context controllers, as follows.

– Let E full = ({q}, {(q, C, q) | C ∈ 2S}) be a state-oblivious context controller
with exactly one state. Then TS (A) can be obtained from TS (A, E full) by
replacing each node (q,X) by X.

– Let Ecind = ({q}, {(q, ∅, q)}) be a state-oblivious context controller with
exactly one state. Then CITS (A) can be obtained from TS (A, Ecind) by
replacing each node (q,X) by X.

It can be shown that the state sequences of transition systems defined as above
coincide with those defined in the standard way.



78 J. Kleijn et al.

8.2 State-Aware Context Controllers

The totally arbitrary nature of the context sequences in interactive processes
and, on the other hand, the extreme restriction of such sequences in context-
independent interactive processes means that it is rather natural to allow and
then analyse ways of varying the degree of such constraints. We have already
made a first step in the previous sub-section. Now we will go one step further, by
allowing a controller to access the current system state in order to decide what
context to throw in. Such a feature is useful in modelling mutual interactions
between (biological) systems and their surrounding environment.

Whereas a state-oblivious context controller had its ‘own’ set of states which
were used to provide the desired contexts depending on its current state, a state-
aware context controller will have states structured as ordered pairs (h,X), where
h ∈ H is as previously a state of the controller, and X represents the current
state of the reaction system being controlled. This simple device allows one to
make the generation of contexts dependent on the current state of the reaction
system.

Definition 17. A state-aware context controller over a background set S is an
edge-labelled directed graph E = (Q,V ) such that, for some finite nonempty
set H, Q = H × 2S and V ⊆ Q × 2S × Q, the following hold:

– For every q ∈ Q, there exist C ⊆ S and q′ ∈ Q such that (q, C, q′) ∈ V .
– If ((h,X), C, (h′,X ′)) ∈ V then

• C ⊆ X ′, and
• ((h,X), C, (h′, C ∪ X ′′)) ∈ V , for every X ′′ ⊆ S.

Intuitively, the first condition means that the controller always provides some
context and the last condition means that the controller provides only contexts
and cannot block reactions of any reaction system operating under it from pro-
ducing their products.

The notion of an interactive process is now defined as follows.

Definition 18. Let A = (S,A) be a reaction system, and E = (Q,V ) be a
state-aware context controller over S.

An interactive process in A controlled by E and initiated at q = (h,X) ∈ Q
is an ordered pair π = (γ, δ) of finite sequences such that, for some n ≥ 1, γ =
C0, . . . , Cn and δ = D0, . . . , Dn, where C0, . . . , Cn,D0, . . . , Dn ⊆ S. Moreover,
there are qi = (hi, Ci ∪ Di) ∈ Q for i = 0, . . . , n satisfying:

– (q, C0, q0) ∈ V and D0 = resA(X).
– (qi, Ci+1, qi+1) ∈ V for i = 0, . . . , n − 1.
– Di = resA(Ci−1 ∪ Di−1) for i = 1, . . . , n.

The state sequence of π is STS (π) = X,W0,W1, . . . , Wn, where Wi = Ci ∪
Di for i = 0, . . . , n.



Reaction Systems, Transition Systems, and Equivalences 79

Note that (as was the case in Definition 15) the state sequence of π begins
with X.

We use PROC q(A, E) to denote the set of all interactive processes in A
controlled by E and initiated at q, and PROC (A, E) to denote the set of all
interactive processes in A controlled by E , i.e.,

PROC (A, E) =
⋃

q∈Q

PROC q(A, E) .

Transition systems of A controlled by E are defined analogously to those
introduced for state-oblivious context controllers.

Definition 19. Let A = (S,A) be a reaction system, and E = (Q,V ) be a
state-aware context controller over S.

1. The transition system of A controlled by E is an ordered pair TS (A, E) =
(Q,U), where U is the set of all ordered pairs ((h,X), (h′,X ′)) ∈ V such that
there exists ((h,X), C, (h′,X ′)) ∈ V satisfying X ′ = C ∪ resA(X).

2. The labelled transition system of A controlled by E is an ordered pair
LTS (A, E) = (Q,U), where U is the set of all triples ((h,X), C, (h′,X ′)) ∈ V
such that X ′ = C ∪ resA(X).

For TS (A, E) and q = (h,X) ∈ Q, the sets stsq(TS (A, E)) and sts(TS (A, E))
of state sequences are defined similarly as in the case of a transition system of
A controlled by a state-oblivious context controller.

Proposition 9. Let A = (S,A) be a reaction system, and E = (Q,V ) be a
state-aware context controller over S.

1. stsq(TS (A, E)) = STS (PROC q(A, E)) for every q ∈ Q.
2. sts(TS (A, E)) = STS (PROC (A, E)).

Proof. Both statements follow directly from the definitions. 	


State-aware context controllers are more general than the state-oblivious
ones, in the sense that the former can be used to simulate the latter. Con-
sider, for example, a reaction system A = (S,A) controlled by a state-oblivious
context controller E = (Q,V ). Then sts(TS (A, E)) = sts(TS (A, E ′)), where
E ′ = (Q × 2S , V ′) is a state-aware context controller with V ′ comprising all
triples ((q,X), C, (q′,X ′ ∪ C)) such that X,X ′ ⊆ S and (q, C, q′) ∈ V .

9 Equivalences Based on Transition Systems

The full transition systems associated with reaction systems lead in a natural
way to an equivalence notion:

Definition 20. Let A and B be reaction systems with the same background
set. Then A and B are transition system equivalent, denoted by A ∼TS B,
if TS (A) = TS (B).



80 J. Kleijn et al.

Both ∼PROC and ∼TS are equivalences defined in terms of states. They are
based on manifestations of behaviour expressed in terms of interactive processes
and transition systems respectively. In general for a given reaction system, there
will be loss of behavioural information when one focusses solely on the state
sequences of its interactive processes, or of its transition system: in general it
will not be clear for a given state, what has been produced from a previous state
and what has been thrown in as context. We will later remove this restriction
and consider labelled transition systems associated with reaction systems.

Clearly, ∼TS is an equivalence relation. Moreover, it turns out that two reac-
tion systems that have the same associated transition system, are also process
equivalent and, moreover, are equivalent in the classical sense.

Proposition 10. Let A and B be reaction systems with the same background
set. Then A ∼ B if and only if A ∼PROC B if and only if A ∼TS B.

Proof. Follows immediately from Corollary 1, Proposition 7, and the definition
of the set of state sequences sts(T ) of a transition system T . 	


10 Bisimulation-Based Behavioural Equivalence

In the previous sections, transition systems associated with reaction systems as
well as the environments in which they operate were basically concerned with
state sequences. This means, implicitly, that we made no distinction between
entities produced by reaction systems and those in contexts thrown-in by the
environment. We will now reassess the way of observing behaviours and introduce
new equivalences between reaction systems.

We base our discussion in this section on the well-known notion of bisimu-
lation between transition systems. Such a notion has been successfully applied
to capture a range of equivalence notions for communicating computing systems
[26,27,35]. A standard way of introducing bisimulation-based equivalence is to
consider two labelled transition systems, LTS = (Q,V ) and LTS ′ = (Q′, V ′),
and then find a bisimulation relation B ⊆ Q×Q′ aiming at identifying equivalent
(or bisimilar) states. What is required is that if (q, q′) ∈ B, then all transitions
from q can be simulated by transitions from q′ which lead to bisimilar states, and
vice versa (i.e., if (q, a, r) ∈ V , then there is a (q′, a, r′) ∈ V ′ such that (r, r′) ∈ B,
and vice versa). The notion of equivalence obtained in this way does not depend
on a specific relation B as there is always the largest bisimulation1 relation for
a given pair of transition systems. Moreover, two initialised transition systems
are bisimulation equivalent if their initial states are bisimilar.

We now make two general observations. First, bisimulation-based equiva-
lences are usually label-based, and the states of the transition systems have no
structure. This, of course, is no longer the case for reaction system behaviours,

1 Since the union of two bisimulation relations is also a bisimulation relation, there is
always the largest (in the set inclusion sense) bisimulation relation for a given pair
of transition systems.



Reaction Systems, Transition Systems, and Equivalences 81

where states are sets of entities. Second, since we decided to accept that contexts
thrown-in by the environment can be observed, the arcs of transition systems
representing reaction systems and their environments should now be labelled
with sets of entities. As a consequence of these two observations, in this section
we will use labelled transition systems rather than transition systems of reaction
system controlled by context controllers.

By using bisimulation-based equivalence, we expect to capture precisely what
it means that two systems ‘react’ in an ‘equivalent’ manner to stimuli provided
by a given context controller.

The next definition considers two reaction systems and a context controller
over a common background set. Moreover, a set Y identifies entities considered
as ‘observable’.

Definition 21. Let A and B be reaction systems with the same background
set S, E be a state-oblivious or state-aware context controller over S, and Y ⊆ S.

A Y -bisimulation for LTS (A, E) = (Q,V ) and LTS (B, E) = (Q,U) is a
relation B ⊆ Q × Q such that if ((h,X), (h′,X ′)) ∈ B, then the following hold:

– X ∩ Y = X ′ ∩ Y .
– If ((h,X), C, (ĥ, X̂)) ∈ V , then there is a ((h′,X ′), C ′, (ĥ′, X̂ ′)) ∈ U such that

C ∩ Y = C ′ ∩ Y and ((ĥ, X̂), (ĥ′, X̂ ′)) ∈ B.
– If ((h′,X ′), C ′, (ĥ′, X̂ ′)) ∈ U , then there is a ((h,X), C, (ĥ, X̂)) ∈ V such that

C ∩ Y = C ′ ∩ Y and ((ĥ, X̂), (ĥ′, X̂ ′)) ∈ B.

The above formalisation of bisimulation-based equivalence leads to a range
of meaningful equivalences based on the idea of bisimulation, which are capable
of capturing subtle aspects of the ‘reactiveness’ of A and B.

Proposition 11. Let A and B be reaction systems with the same background
set S, E be a state-oblivious or state-aware context controller over S, and Y ⊆ S.
Then there exists a Y -bisimulation BY

A,B,E for LTS (A, E) and LTS (B, E) such
that B ⊆ BY

A,B,E , for every Y -bisimulation B for LTS (A, E) and LTS (B, E).

Proof. Follows directly from the definitions. 	


Note that BY
A,B,E is well-defined since B = ∅ is always a Y -bisimulation.

Thus BY
A,B,E is the largest Y -bisimulation for LTS (A, E) and LTS (B, E). It

allows one to establish, for example, which initial states for A and B controlled
by E are equivalent (bisimilar) when one is interested in obtaining equivalent
reactive behaviour assuming that only entities in Y are observable.

Proposition 12. Let A, B, and C be reaction systems with the same background
set S, E be a state-oblivious or state-aware context controller over S, and Y ⊆ S.
Then (q, q′′) ∈ BY

A,C,E , for all (q, q′) ∈ BY
A,B,E and (q′, q′′) ∈ BY

B,C,E .

Proof. Follows directly from the definitions. 	


The above result states that bisimilarity is transitive while the next one states
that it is preserved by making the set of observable entities smaller.



82 J. Kleijn et al.

Proposition 13. Let A and B be reaction systems with the same background
set S, E be a state-oblivious or state-aware context controller over S, and Z ⊆
Y ⊆ S. Then BY

A,B,E ⊆ BZ
A,B,E .

Proof. Follows directly from the definitions. 	


Note that the notion of bisimulation-based equivalence introduced in this
section is immediately extendable to equivalence based on a set of context con-
trollers rather than a single one.

11 Discussion

In this paper we proposed a framework for considering equivalences of reaction
systems. The following aspects of this paper are ‘immediate’ candidates for a
follow-up line of research.

(1) We have established a new bridge between the theory of reaction systems
and the theory of transition systems by proposing various representations
of reaction systems by transition systems. This should lead to a transfer of
many methods of investigating the behaviour of dynamic systems through
transition systems into the domain of reaction systems. Among the relevant
specific aspects of theory of transition systems that would be good candidates
for a transfer into the realm of reaction systems are: various variants of weak
bisimulation equivalence and testing equivalence, and efficient verification
techniques and tools.

(2) We introduced a formalisation of finite-state environments through state-
oblivious and state-aware context controllers. This naturally leads to a
novel line of research concerning properties of state sequences. The inves-
tigation of properties of state sequences of context-independent processes
of reaction systems resulted in a rich and elegant theory (see, e.g.,
[9,15,20,30,31,33,34]). Reaction systems with context determined by con-
text controllers form a natural next level of a systematic and thorough inves-
tigation of state sequences (clearly, not much can be said when context is
arbitrary as in the general model of reaction systems).

(3) In considering equivalences defined directly on reaction systems, functional
equivalence played a central role in this paper. In [10] we considered the
more subtle enabling equivalence. Incorporating also this equivalence in our
framework is certainly a very natural research topic.

(4) The study of model checking techniques for reaction systems controlled by
state-oblivious context controllers has been initiated in [25]. In this paper, we
introduced the much more general framework of reaction systems controlled
by state-aware context controllers, the ensuing model checking problem is
both important and challenging.

Acknowledgements. The authors are indebted to Robert Brijder and the anonymous
referee for useful comments on this paper.



Reaction Systems, Transition Systems, and Equivalences 83

References

1. Arnold, A.: Finite Transition Systems: Semantics of Communicating Systems.
Prentice Hall, Upper Saddle River (1994)

2. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response.
Fundam. Inform. 131, 1–14 (2014)

3. Azimi, S., Panchal, C., Czeizler, E., Petre, I.: Reaction systems models for the self-
assembly of intermediate filaments. Ann. Univ. Bucharest LXI I(2), 9–24 (2015)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

5. Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems.
Int. J. Found. Comput. Sci. 22(07), 1499–1517 (2011)

6. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In:
Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS,
vol. 6610, pp. 191–202. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20000-7 16

7. Corolli, L., Maj, C., Marini, F., Besozzi, D., Mauri, G.: An excursion in reaction
systems: from computer science to biology. Theor. Comput. Sci. 454, 95–108 (2012)

8. Dennunzio, A., Formenti, E., Manzoni, L.: Extremal combinatorics of reaction
systems. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B.
(eds.) LATA 2014. LNCS, vol. 8370, pp. 297–307. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-04921-2 24

9. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Ancestors, descendants,
and gardens of Eden in reaction systems. Theor. Comput. Sci. 608, 16–26 (2015)

10. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Evolving reaction systems.
Theor. Comput. Sci. 682, 79–99 (2017)

11. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Modelling reaction systems
with Petri nets. In: International Workshop on Biological Processes & Petri Nets,
CEUR-WS Workshop Proceedings, BioPPN-2011, pp. 36–52 (2011)

12. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Reaction systems: a nat-
ural computing approach to the functioning of living cells. In: Hector, Z. (ed.)
A Computable Universe: Understanding and Exploring Nature as Computation,
Chapter 10, pp. 189–208. World Scientific, Singapore (2012)

13. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions defined by reaction sys-
tems. Int. J. Found. Comput. Sci. 22, 167–178 (2011)

14. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Combinatorics of life and death for
reaction systems. Int. J. Found. Comput. Sci. 21, 345–356 (2010)

15. Ehrenfeucht, A., Main, M., Rozenberg, G., Thompson Brown, A.: Stability and
chaos in reaction systems. Int. J. Found. Comput. Sci. 23, 1173–1184 (2012)

16. Ehrenfeucht, A., Petre, I., Rozenberg, G.: Reaction systems: a model of computa-
tion inspired by the functioning of the living cell. In: Konstantinidis, S., Moreira,
N., Reis, R., Shallit, J. (eds.) The Role of Theory in Computer Science World
Scientific, pp. 1–32 (2017)

17. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inform. 75, 263–280
(2007)

18. Ehrenfeucht, A., Rozenberg, G.: Events and modules in reaction systems. Theor.
Comput. Sci. 376, 3–16 (2007)

19. Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theor. Com-
put. Sci. 410, 310–322 (2009)

https://doi.org/10.1007/978-3-642-20000-7_16
https://doi.org/10.1007/978-3-642-20000-7_16
https://doi.org/10.1007/978-3-319-04921-2_24
https://doi.org/10.1007/978-3-319-04921-2_24


84 J. Kleijn et al.

20. Genova, D., Hoogeboom, H.J., Jonoska, N.: A graph isomorphism condition and
equivalence of reaction systems. Theor. Comput. Sci. 701, 109–119 (2017)

21. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Prentice Hall, Upper Saddle River (2006)

22. Kari, L., Rozenberg, G.: The many facets of natural computing. Commun. ACM
51, 72–83 (2008)

23. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384
(1976)

24. Lehninger, A.: Bioenergetics: The Molecular Basis of Biological Energy Transfor-
mations. W.A. Benjamin Inc., Amsterdam (1965)

25. Meski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of
reaction systems. Inf. Sci. 313, 22–42 (2015)

26. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

27. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

28. Reisig, W.: Petri Nets (An Introduction). EATCS Monographs on Theoretical
Computer Science. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-
642-69968-9

29. Rozenberg, G., Bäck, T., Kok, J.: Handbook of Natural Computing. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9

30. Salomaa, A.: Functions and sequences generated by reaction systems. Theor. Com-
put. Sci. 466, 87–96 (2012)

31. Salomaa, A.: On state sequences defined by reaction systems. In: Constable, R.L.,
Silva, A. (eds.) Logic and Program Semantics. LNCS, vol. 7230, pp. 271–282.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29485-3 17

32. Salomaa, A.: Functional constructions between reaction systems and propositional
logic. Int. J. Found. Comput. Sci. 24, 147–160 (2013)

33. Salomaa, A.: Minimal and almost minimal reaction systems. Nat. Comput. 12,
369–376 (2013)

34. Salomaa, A.: Two-step simulations of reaction systems by minimal ones. Acta
Cybern. 22, 247–257 (2015)

35. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, Cambridge (2011)

https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1007/978-3-642-29485-3_17

	Reaction Systems, Transition Systems, and Equivalences
	1 Introduction
	2 Reactions and Reaction Systems
	3 Processes of Reaction Systems
	4 Direct Equivalences
	5 Relaxing Direct Equivalences
	6 Transition Systems
	7 Associating Transition Systems with Reaction Systems
	8 Structuring Context
	8.1 State-Oblivious Context Controllers
	8.2 State-Aware Context Controllers

	9 Equivalences Based on Transition Systems
	10 Bisimulation-Based Behavioural Equivalence
	11 Discussion
	References


