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Amyotrophic lateral sclerosis (ALS) is a multisystemic neurodegenerative disorder. Given

that peripheral blood mononuclear cells (PBMCs) serve as a “window to the central

nervous system” we aimed to answer whether endoplasmic reticulum (ER) stress in

ALS-PBMCs is related to disease aggressiveness. We studied ER stress in the PBMCs of

49 patients with ALS and 31 age- and sex-matched healthy controls. The expression of

a main ER stress marker, activating transcription factor 6 (ATF6), was significantly higher

in ALS compared to controls, but did not correlate with age, disease severity, disease

duration and disease progression rate. When ATF6 expression levels were plotted

against relative D50 (rD50)-derived disease phases derived from the D50 ALS model,

two distinct clusters of patients were observed: cluster 1, with progressively increasing

ATF6 expression levels and cluster 2, which demonstrated stable ATF6 expression over

the disease course. Individuals in the two clusters did not significantly differ in terms

of ALS Functional Rating Scale-Revised (ALSFRS-R), disease aggressiveness, disease

duration and subtype. However, patients with the increasing ATF6 level were significantly

younger, indicating that aging processes might be related to ER stress in ALS. Our data

suggest that the reaction to ER stress during disease course may be compromised in

older patients with ALS.

Keywords: endoplasmic reticulum stress, activating transcription factor 6, unfolded protein response, peripheral

blood mononuclear cells, aging, progression

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal multisystemic neurodegenerative disorder

characterized by motor neuron degeneration as well as cognitive and behavioral deficits.

Identifying factors that contribute to rapid progression may prove valuable for the development

of therapeutic options. Disease progression was related to deficiencies in protein degradation and

axonal transport mechanisms in ALS mouse models (Nardo et al., 2013). Moreover, several studies

indicate that endoplasmic reticulum (ER) stress is involved in the pathogenesis of ALS (Atkin

et al., 2008; Prell et al., 2012). ER stress occurs when ER homeostasis is disturbed and misfolded

proteins accumulate in the ER. To cope with this stress, cells activate the unfolded protein response

(UPR). In doing so, the activating transcription factor 6 (ATF6) is cleaved in the Golgi apparatus

and the resulting N-terminal fragment (p50-ATF6α) translocates to the nucleus. Here, it regulates

genes related to protein quality control, protein translocation, folding and additional components of
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the ER associated protein degradation pathway (Xiang et al.,

2017). Similar to ATF6, other UPR markers, such as X-Box-

Binding Protein 1, inositol requiring enzyme-1 get activated

during ER stress (Rahman et al., 2017). All of these components

of the UPR work in concert to help ameliorate ER stress.

However, ongoing and chronic ER stress can lead to cell death

via apoptosis.

Given the multisystemic nature of ALS, disease processes are

also reflected in the periphery. Peripheral blood mononuclear

cells (PBMCs) undergo changes in immunophenotype, decreased

mtDNA gene expression, increased nitrative stress and calcium

dysregulation (Curti et al., 1996; Mantovani et al., 2009; Nardo

et al., 2009; Ladd et al., 2014). The advantages of low invasiveness

for the patient, the consequent greater availability of samples

for large clinical studies and the simple laboratory procedures

involved make PBMCs a promising biomarker in ALS. The aim

of the study was two-fold: First, to determine whether activated

UPR can be observed in PBMCs from ALS patients. Second, to

evaluate if ER stress is related to disease progression.

MATERIALS AND METHODS

The study was approved by the local ethics committee of

the Jena University Hospital (number: 3633-12/12) and all

subjects gave written informed consent. The study was conducted

according to the principles of the Helsinki Declaration of 1975,

as revised in 1983. Patients with systemic infection (increased

leucocytes, increased c-reactive protein) were not included. In

total, 49 patients with sporadic definite, probable, laboratory-

supported probable, or possible ALS (diagnosed according to the

revised El Escorial criteria as having at least possible ALS), and

31 age- and sex matched healthy controls were enrolled. Disease

severity was assessed with the revised ALS Functional Rating

Scale (ALSFRS-R). Disease progression was modeled using the

D50 model (Poesen et al., 2017). The model is based on the

observation that progression of ALS is not linear; after symptom

onset the ALSFRS-R does not drop immediately but decays

slowly first. Then a period of uniform progression follows and

with increasing disability, ALSFRS-R seems to reach a plateau

again. The transition between two states, i.e., full health to

maximum disease, was described as: y =Amax + (Amin−Amax)

1 + e (x − D50) dx. More simply, we used the known limits of

the ALSFRS-R: y = 48 + e (x − D50) dx. We set the following

constraints: Amax = 48 (maximum ALSFRS-R before onset);

Amin = 0 (theoretical minimum ALSFRS-R); D50 = time point

when ALSFRS-R drops to 24; dx = slope of ALSFRS-R decrease.

Here, D50 is a summative descriptor of disease aggressiveness.

The relative D50 (rD50) describes individual disease course

covered in reference to D50. rD50 is an open-ended reference

point where 0 signifies disease onset and 0.5 indicates the

time-point of halved functionality. Using rD50 allows sampling

ALS as an entity, because the different disease courses of patients

are aligned in a normalized framework. It is important to notice

that rD50 describes continuous disease phases and is not equal to

disease duration.

PBMC samples were isolated and prepared as described

before (Liu et al., 2016). After blocking with 1% bovine serum

albumin, the filters were incubated overnight with the primary

ATF6 antibody (Thermo Fisher PA-5, 1:500) and GAPDH (Cell

Signaling, 1:1,000). Secondary antisera comprised horseradish

peroxidase conjugated goat anti-rabbit IgG (Santa Cruz sc-2030,

1:2,000). Immunoreactivity was visualized using an enhanced

chemiluminescence ECL detection system (BioRad, Germany).

The intensity of the bands was obtained and adjusted to GAPDH

expression.

All statistical analyses were performed with the SPSS software

package (Version 23). Data are given as mean ± standard

deviation. Independent sample t-tests and Mann-Whitney U

tests were used to conduct between-group comparisons for

normally and non-normally distributed data, respectively.

Correlation was tested using Pearson’s correlation for normal

distribution and Spearman’s correlation for non-normal

distributed data. The optimal cut off level for dichotomizing

values for the determination of sensitivity and specificity was

selected as the situation maximizing the Youden index. The

receiver operating characteristic (ROC) curve was used for a

graphic visualization of the variation in the cutoff values. All

values are given as mean and standard deviation. Significance

level was set to p < 0.05.

RESULTS

PBMCs from 49 ALS patients and 31 age- and sex-matched

healthy controls were studied. Clinical characteristics are

provided in Table 1. The cleaved form of ATF6 was significantly

increased in ALS relative to healthy controls (p = 0.001;

Figure 1A). ROC curve to discriminate ALS from healthy

controls for ATF6 is displayed in Figure 1B (area under the

curve = 0.79, p < 0.001, sensitivity 87%, specificity 45%).

ATF6 expression levels did not correlate with disease severity

(ALSFR-R score), disease duration (onset since first ALS motor

symptom), progression rate [(48-current ALSFRS-R)/disease

duration in months] and disease aggressiveness (D50). Further,

no significant differences in expression levels were observed

between patients with either bulbar or limb onset. In Figure 1C,

ATF6 expression levels are plotted against rD50-derived disease

TABLE 1 | Clinical characteristics.

Controls ALS

Sex (n, %) f 14 45.1 21 42.8

m 17 54.9 28 57.2

Age (mean, SD) 60 12 60 12

ALSFRS-R total (mean, SD) 35 8.1

Onset type (bulbar/limb) 18/31 36.7/63.3%

Disease duration (mean,

SD, months)

28 18

Progression rate 0.59 0.49

D50 48 31

rD50 0.34 0.15

ATF6–50 kDa 0.007 0.014 0.063 0.085

ALSFRS-R, Revised ALS Functional Rating Scale; Disease duration: onset since first

ALS motor symptom; Progression rate: (48-current ALSFRS-R)/disease duration in

month; D50: time point when ALSFRS-R drops to 24; rD50, relative D50 describes

individual disease course covered in reference to D50; ATF6-50 kDa: mean expression of

ATF6 adjusted to GAPDH.
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FIGURE 1 | Expression of the active form of activating transcription factor 6 (ATF6) in human peripheral blood mononuclear cells (PBMCs). (A) Representative

western blots of the active form of ATF6 (left) and the mean expression of ATF6 in amyotrophic lateral sclerosis (ALS) and controls (with 95% CI, right; quantification

of protein level by densitometry, adjusted to GAPDH). (B) Receiver operating curves (ROCs) to discriminate ALS from healthy controls ATF6. (C) The expression of

ATF6 is plotted against disease phases relative D50 (rD50). Cluster 1 (red squares) shows increasing expression levels and cluster 2 (green circles) a stable

expression across disease phases.

phases. Two distinct clusters of patients were observed: cluster 1,

with progressively increasing expression levels and cluster 2,

which demonstrated stable expression over the disease course.

Individuals in the two clusters did not significantly differ in

terms of ALSFRS-R, D50, rD50, disease duration and subtype.

However, patients in cluster 1 (mean age = 49 ± 11 years)

were significantly younger than those in cluster 2 (mean

age = 61 ± 13 years; p = 0.03).

DISCUSSION

Wedemonstrate here that the UPR pathway viaATF6 is activated

in PBMCs from ALS patients. This is in line with former studies

in animal models and human ALS (Atkin et al., 2008; Prell et al.,

2012). Peripheral blood cells dynamically reflect multisystemic

changes in the proteostasis pathways in ALS. PBMC of ALS

patients showed differential expression of cytoplasmic and ER

chaperones (Nardo et al., 2011). A recent study of PBMCs

in a ALS cohort, comparable to our cohort, also observed

an upregulation of other UPR elements, namely the spliced

XBP1 and GRP78 (Vats et al., 2018). However, so far the UPR

in PBMCs was not studied in relation to disease progression and

disease phases. Although animal models suggest that ER stress

is linked to disease progression (Nardo et al., 2013), we observed

no association between expression levels of active ATF6 and

disease progression. The cluster with increasing ATF6 across

disease phases was significantly younger, indicating that aging

processes may be related to ER stress in ALS. In general, the

ability to respond to environmental stress decreases with age,

which is reiterated by the involvement of a perturbed UPR in

numerous age-related conditions. For instance, in nematodes

and mammals, the ability to activate the UPR in response to

stress declines during the aging process (Higuchi-Sanabria et al.,

2018). This favors the aggregation of misfolded proteins and

ultimately cell death. Conversely, augmentation of the UPR

can actually protect neuronal cells during stress and improve

longevity (Tanaka et al., 2000; Ko et al., 2002; Saxena et al.,

2009; Taylor and Dillin, 2013). Our data suggest that the UPR

(via ATF6) is diminished as ALS progresses in older patients.

We hypothesize that in aged patients with ALS, the UPR is

probably less effective than in younger patients. These findings

suggest that the influence of age on disease pathology and

severity cannot be ignored. In terms of clinical trials a potential

neuroprotective effect (e.g., chaperone inducing therapy) and the

stratification of patients have to take age-related deterioration

of the ER-stress response into account. Longitudinal studies are

necessary to prove our hypothesis of diminished UPR in older

ALS patients.
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