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Reaction wood (RW) formation is an innate physiological response of woody plants to 

counteract mechanical constraints in nature, reinforce structure and redirect growth toward 

the vertical direction. Differences and/or similarities between stem and root response to 

mechanical constraints remain almost unknown especially in relation to phytohormones 

distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static 

non-destructive mid-term bending treatment were analyzed. The distribution of tension 

and compression forces was �rstly modeled along the main bent stem and root axis; 

then, anatomical features, chemical composition, and a complete auxin and cytokinin 

metabolite pro�les of the stretched convex and compressed concave side of three different 

bent stem and root sectors were analyzed. The results showed that in bent stems RW 

was produced on the upper stretched convex side whereas in bent roots it was produced 

on the lower compressed concave side. Anatomical features and chemical analysis 

showed that bent stem RW was characterized by a low number of vessel, poor ligni�cation, 

and high carbohydrate, and thus gelatinous layer in �ber cell wall. Conversely, in bent 

root, RW was characterized by high vessel number and area, without any signi�cant 

variation in carbohydrate and lignin content. An antagonistic interaction of auxins and 

different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/

development in stem and root to facilitate upward/downward organ bending. The observed 

differences between the response stem and root to bending highlight how hormonal 

signaling is highly organ-dependent.

Keywords: bending stress, auxins, cytokinins, metabolite pro�ling, UHPLC-MS/MS

INTRODUCTION

Mechanical stimuli (e.g., rain, wind, gravity, soil impedance, wounding, and bending) can 
considerably in�uence plant growth and development. Plants have developed sensory mechanisms 
to detect mechanical perturbations and to induce a suite of responses (anatomical, physiological, 
biochemical, biophysical, and molecular) collectively termed “thigmomorphogenesis” (Ja�e and 
Forbes, 1993; Braam, 2005; Dumroese et  al., 2019). �igmomorphogenesis can be  considered 
as an adaptive response allowing individual plants to mitigate mechanical stress that occurs 
in their natural environment.
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Over the past decades, di�erent typologies of mechanical 
stress (in term of duration, targeted plant organ, or plant 
developmental stage) have been used to investigate 
thigmomorphogenic response in a wide range of plant species. 
Meanwhile, this phenomenon was documented in all types of 
plants, indicating its wide conservation (Ja�e and Forbes, 1993). 
Several short-time scale studies indicate a transient cessation of 
plant growth upon a mechanical stimulus. Conversely, continued 
long-term stem �exing led to an increase in root/shoot dry 
weight ratios, without a�ecting root length or total biomass, 
compared to un�exed plants (Garner and Björkman, 1999).

Beyond the macroscopically visible morphogenic changes, 
mechanical stress also a�ects wood mechanical properties 
(Chiatante et  al., 2003; Montagnoli et  al., 2020). In general, 
vascular cambium of trees growing in a windy environment 
produces a speci�c wood called “�exure wood” (FW) by increasing 
secondary xylem production and decreasing the elastic modulus 
in comparison to normal wood (NW) formed in absence of 
stimulus. In windy natural settings, bending occurs in a 
non-symmetric way, with the leeward portion of the stem 
experiencing more compression stress and the windward part 
more tension stress. Hence, what is really FW? �e anatomy 
and speci�c functions of FW are poorly understood, but it 
needs to function in both compression and tension, due to the 
alternating sway, to reduce the risk of mechanical failure of the 
stem (Telewski, 1989; Kern et al., 2005; Koehler and Telewski, 2006).

Gymnosperms and angiosperms have evolved another strategy 
to counteract the bending constraint with secondary growth, 
which implies the asymmetrical formation of the so-called 
reaction wood (RW). �is secondary xylem tissue is anatomically 
di�erent from the NW and from the opposite wood (OW), 
commonly located on the opposite side of RW and characterized 
by properties between NW and RW (Timell, 1986). It, contrary 
to FW, does not form in response to swaying but due to 
displacement of the stem or root for times much longer than 
the presentation time (minimal time to produce a response) 
of gravitropism (Gardiner et  al., 2016).

In gymnosperms, the RW is referred to as compression 
wood (CW) and develops on the lower side of leaning stems 
or branches, whereas, in dicotyledonous angiosperms, it 
forms on the upper side and is called tension wood (TW; 
Du and Yamamoto, 2007).

TW (more contractile) is o�en characterized by the formation 
of a gelatinous layer within the �ber cell wall (G-�bers) thought 
to be  poorly ligni�ed, and mainly composed of cellulose with 
the potential additions of arabinogalactan and xyloglucan 
di�ering from the normal �ber cell wall (Nishikubo et  al., 
2007; Bowling and Vaughn, 2008). Conversely, the typical CW 
contains more lignin, and has a �atter micro�bril angle and 
lower cellulose content than NW and TW, being thus 
characterized by a high rigidity (Pilate et  al., 2004). Stems 
and roots subjected to similar mechanical forces may develop 
extremely di�erent RW. Indeed, in poplar, bending induces 
TW formation on the “upper” convex (tension) side of the 
stem or branch (Du and Yamamoto, 2007). Conversely, in 
poplar root, De Zio et  al. (2016) for the �rst time observed 
that a CW similar to gymnosperm stems was formed in the 
“lower” concave (compression) side a�er bending.

Authors observed many similarities between FW and RW 
(CW or TW) formed in both gymnosperms and angiosperms 
(Butter�eld and Li, 2000; Kern et  al., 2005). However, the 
e�ect of elementary stresses (swaying, compression, and tension 
loadings) on wood anatomy, structure, and function is not 
completely known.

In the last 2  decades, computer modeling has helped to 
understand how mechanical forces are loaded on plant organs 
showing patterns coherent with direct measurement and able 
to explain the induced alterations (Danjon et  al., 2005; Yang 
et  al., 2014, 2016; Montagnoli et  al., 2020). It is evident that 
tension and compression loadings induce complex signal 
transduction pathways that involve other factors such as 
phytohormones, which are still poorly understood, especially 
at the root level (Du and Yamamoto, 2007).

Functional role of auxin in plant response to mechanical 
stress has been an active area of research on woody stems. 
However, �ndings on the relationship between endogenous 
auxin levels and the formation of CW or TW are still scarce 
and sometimes contradictory, thus remaining to be  elucidated 
(Du and Yamamoto, 2007). Hellgren et  al. (2004) found that 
the formation of TW and CW in poplar and pine bent stems, 
respectively, are not mediated by changes in the indole-3-acetic 
acid (IAA) level in the cambial tissues. On the contrary, Funada 
et  al. (1990) and Du et  al. (2004) detected higher amount of 
endogenous IAA at the side of the cambial region forming 
CW. In line with these �ndings, we also found that compression 
forces induce wood formation with the intermediation of high 
IAA levels (De Zio et  al., 2016), which could act as a spatial 
regulator of cambial activity, enhancing cell division rate and 
conferring key positional information to the cells of the 
cambial zone surrounding tissues for di�erentiation/RW 
initiation. Unlike IAA, the role of cytokinins (CKs) in RW 
formation has seldom been investigated (Little and Pharis, 
1995; Mellerowicz et  al., 2001). In planta, CKs occur in four 
principal forms: (i) the nucleotides (iPRMP, tZR5MP, cZRMP, 
and DHZMP) which are produced by de novo biosynthesis 
and then converted to other derivatives; (ii) the free bases 
(iP, tZ, cZ, and DHZ) which are considered to have the 
highest activity together with (iii) the ribosides (iPR, tZR, 
cZR, and DHZR) which are also preferably transport; and 

Abbreviations: BS, Bending sector; CKs, Cytokinins; CZ, Cambial zone; cZ, 

cis-Zeatin; cZ7G, cis-Zeatin-7-glucoside; cZ9G, cis-Zeatin-9-glucoside; cZOG, cis-

Zeatin O-glucoside; cZR, cis-Zeatin riboside; cZR5'MP, cis-Zeatin riboside-5'-

monophosphate; cZROG, cis-Zeatin riboside O-glucoside; DHZ, Dihydrozeatin; 

DHZ7G, Dihydrozeatin-7-glucoside; DHZ9G, Dihydrozeatin-9-glucoside; DHZOG, 

Dihydrozeatin O-glucoside; DHZR, Dihydrozeatin riboside; DHZRMP, Dihydrozeatin 

riboside-5'-monophosphate; DHZROG, Dihydrozeatin riboside O-glucoside; IAA, 

Indole-3-acetic acid; IAAsp, IAA-Aspartate; IAGlu, IAA-Glutamate; iP, 

N-Isopentenyladenine; iP7G, N6-Isopentenyladenine-7-glucoside; iP9G, N6-

Isopentenyladenine-9-glucoside; iPR, N6-Isopentenyladenosine; iPRMP, N6-

Isopentenyladenosine-5'-monophosphate; FW, Flexure wood; oxIAA, 2-Oxindole-

3-acetic acid; OW, Opposite wood; PCA, Principal component analysis; RW, 

Reaction wood; SPE, Solid-phase extraction; tZ, trans-Zeatin; tZ7G, trans-Zeatin-

7-glucoside; tZ9G, trans-Zeatin-9-glucoside; tZOG, trans-Zeatin O-glucoside; tZR, 

trans-Zeatin riboside; tZR5'MP, trans-Zeatin riboside-5'-monophosphate; tZROG, 

trans-Zeatin riboside O-glucoside.
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(iv) the glucosides which are temporary (O-glycosylation) or 
permanent (N-glycosylation) storage of inactivated forms 
(Spíchal, 2012). �e O-glucoside, together with the ribosides, 
represents the form less susceptible to degradation by cytokinin 
oxidase and readily converted to the free base forms (Kieber 
and Schaller, 2014). Among the free bases, cZ is believed to 
have a lower activity compared to tZ or iP, which are generally 
considered the most biologically active CKs positively controlling 
overall plant growth (Schafer et  al., 2015).

Despite the well-established functions of CKs in cell division, 
tracheid di�erentiation, and lignin biosynthesis (Aloni et  al., 
2006), no direct relation between CKs and RW formation was 
found in bent stem. Conversely, in the bent root, we  found 
that speci�c and distinct CK types/forms in the vascular tissue 
control RW formation toward the compressed side (De Zio 
et  al., 2016, 2019). Although evidence on the involvement of 
plant hormones has been provided (Trupiano et  al., 2012b; 
Miyashima et  al., 2013; Ursache et  al., 2013; De Zio et  al., 
2016), di�erences and/or similarities existing between poplar 
bent roots and stems, especially in relation to the di�erent 
intensity of tension and compression forces perception, 
remain unknown.

In the present study, firstly we assume that static bending 
in woody root and stem would induce an asymmetrical 
distribution of mechanical forces along the different stretched 
and compressed sides and sectors (bent sector and above/
below the bent sector). Secondly, the different forces perceived 
by the two bent organs would produce also an asymmetrical 
phytohormones accumulation, able to trigger the formation 
of RW with differentiated characteristics in anatomical traits 
and chemical composition. To test our hypotheses, the woody 
Populus nigra plant responses to static, non-destructive, 
mid-term bending treatment was investigated along the stem 
and root axes, in stretched and compressed sides, by (i) 
developing a theoretical model to assess the type and 
magnitude of mechanical forces distribution, and (ii) analyzing 
anatomical features, chemical composition, and IAA and 
CKs metabolites profiling.

MATERIALS AND METHODS

Plant Material and Bending Conditions
Static non-destructive mid-term (5 months) bending constraint 
was applied to 2  year-old P. nigra plants (n  =  5). �e root 
bending simulation was performed by tying taproots around 
right angle curved steel nets, as previously described in De 
Zio et  al. (2016). �e same bending angle (~90°) and similar 
supporters were used to impose the stress at stem level of 
other �ve poplar plants (Supporting information 1). All plants 
were grown for 5  months in a growth chamber at 22°C and 
60–70% humidity with a 16  h photoperiod simulated by LED 
lights (�420–�740) and a photosynthetically active radiation of 
350  μmol  m−2  s−1 (Light Meter HD2302.0, Delta Ohm, Caselle 
di Selvazzano, Italy), ensuring controlled conditions.

At the end of the 5-months of bending treatment, a detailed 
spatial sampling and analysis was performed. Firstly, from both 

root and stem were taken three longitudinal sectors, each 5 cm 
long: (1) above bending sector (ABS), corresponding to the 
region just above the bending zone; (2) bending sector (BS), 
representing the point of maximum bending; and (3) below 
bending sector (BBS), corresponding to the region just below 
the bending zone. In the case of bent roots, ABS was localized 
at 12–17  cm distant from the root collar, BS at 17–22  cm, 
and BBS at 22–27  cm. Distances were inverted in the case of 
stem (ABS at 22–27 cm, BS at 17–22 cm, and BBS at 12–17 cm). 
Secondly, each region (ABS, BS, and BBS) was further divided 
lengthwise into two parts to collect both the convex (CX) and 
concave side (CE; Supplementary Figure S1). Immediately 
upon collection, the samples were frozen in liquid nitrogen 
and stored at −80°C for chemical analysis and hormone pro�ling 
or �xed in formalin-acetic acid-alcohol (FAA, 5:5:90) for 
anatomical investigations.

Models of Bending Forces Distribution
Mechanical forces distribution along the bent stem and root 
models was performed by Mecway finite element analysis 
package (version 9.0; Mecway, 2014), considering the diameter 
and wood mechanical property of the two organs. At the 
beginning (ti) and at the end (tf) of the bending treatment, 
stem and root diameters of 15 plants were measured by 
using ImageJ 1.41o software (Wayne Rasbanb, National 
Institute of Health, United  States). As already described in 
Fourcaud et  al. (2008) and in Montagnoli et  al. (2020), 
plant material was considered isotropic, uniform, and 
elastoplastic with a density of 1,000  kg/m3, with Young’s 
modulus of 5  GPa and a Poisson’s ratio of 0.3. Bending 
stress was applied to a total axis length of 15  cm through 
a forced displacement at the narrow end of the stem or 
root. Tension and compression forces were calculated 
considering the mesh average characterized by a total of 
15 sections (1  cm each). Plant diameters from five adjacent 
sections were used to compose a specific organ sector (ABS, 
BS, and BBS) and, comprehensively, were used to construct 
a 2D section of the organ. A 3D model was derived by 
revolving the 2D section on this longitudinal axis.

Anatomical Investigations
Each bent root and stem sector (ABS, BS, and BBS) �xed in 
FAA was dehydrated using a graded ethanol series (10, 30, 
50, 70, 95, and 100%) and embedded using the Technovit 
7,100 resin system (Heraeus Kulzer, Wehrheim, Germany) based 
on 2-hydroxyethyl-methacrylate.

Samples were sectioned into cross-sections (12  μm thick) 
using a sliding microtome. Finally, sections were stained in 
Toluidine Blue O (Parker et  al., 1982) for 1  min. Sections 
were photographed using an Olympus BX63 light microscope 
equipped with an Olympus DP72 camera. Images were analyzed 
by ImageJ 1.41o so�ware (Wayne Rasbanb, National Institute 
of Health, United  States). In order to de�ne the convex and 
the concave sides precisely, a 45°C rotated graphic crosswise 
object was applied, having the center of the primary xylem 
stele as the anchor point. In the convex and concave sides of 
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three bent stem and root sectors, the following parameters 
were measured: cambial cell number (CCN), cambial zone 
thickness (CZT; μm), vessel wall thickness (VWT; μm), �ber 
wall thickness (FWT; μm), relative xylem thickness (RXT%), 
relative phloem thickness (RPT%), relative vessel area (RVA), 
relative vessel number (RVN), speci�c vessel area (SVA), and 
speci�c vessel number (SVN). Measurements were carried out 
in the areas formed a�er the application of bending 
(Supplementary Figure S1) following calculation reported in 
De Zio et  al. (2016).

Lignin and Carbohydrate Determination
Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) 
was used to analyze lignin and carbohydrate content of bent 
woody root and stem samples. For the analysis, 50 μg (±10 μg) 
of ball-milled (MM400, Retsch, Germany) wood powder was 
applied to a pyrolyzer equipped with an auto sampler (PY-2020iD 
and AS-1020E, Frontier Lab, Japan) connected to a GC/MS 
(Agilent 7890A/5975C; Agilent Technologies AB, Sweden). �e 
pyrolysate was separated and analyzed according to Gerber 
et  al. (2012). A�er chromatograms processing, peaks were 
automatically classi�ed and integrated. Classi�cation de�ned 
peaks into syringyl (S), guaiacyl (G), and p-hydroxyphenyl 
(H)-type lignin, carbohydrates (C), according to the highest 
abundant m/z channel.

Phytohormones Measurement
Indole-3-acetic acid (IAA) metabolites and CKs were extracted 
from 20  mg of fresh weight stem/root material (each pooled 
from �ve poplar plants), as described in De Zio et  al. (2019). 
Vacuum-dried auxin and cytokinin fractions were dissolved 
in 10% methanol and stored at −20°C until ultra-high-
performance liquid chromatography/tandem mass spectrometry 
(UHPLC-MS/MS) analysis.

Separation and determination of compounds was performed 
using a 1,290 In�nity LC system and 6,490 Triple Quadrupole 
LC/MS system (Agilent Technologies). Auxins mass analysis 
was done according to Novák et  al. (2012), while CKs mass 
analysis was carried out in accordance with Novák et al. (2008). 
IAA metabolites were expressed as pg.  mg−1 of dry weight, 
while CKs as pmol  g−1 of dry weight. MassHunter so�ware 
(version B.05.02; Agilent Technologies) was used to determine 
the concentrations of all examined compounds, using stable 
isotope dilution method.

Statistical Analysis
When needed, variables were square root or log transformed, 
to ensure normal distributions and equal variances for the 
use of parametric statistics. As anatomical data did not follow 
the normal distribution, nonparametric statistics were applied. 
�e Kruskal-Wallis multiple-comparison test was used to compare 
anatomical measurements for the two plant organs (stem and 
root), sectors (ABS, BS, and BBS), and sides (CX and CE). 
�e Mann-Whitney U-test was used for pairwise comparison 
of anatomical measurements among root sectors for each of 
the two sides and to compare convex and concave sides within 

each sector. A 95% signi�cance level was applied to analysis 
with nonparametric methods. For phytohormones analysis, a 
one-way ANOVA was used to compare di�erent plant organs 
(stem and root), sectors (ABS, BS, and BBS), and sides (CX 
and CE). Post-hoc LSD-tests were conducted to detect overall 
di�erences between convex and concave sides for each sector 
of each plant organ. Analyses were applied on a 95% signi�cance 
level. All statistical analysis was carried out using statistical 
so�ware package SPSS 17.0 (SPSS Inc., Chicago IL, United States).

Finally, in order to investigate variance among di�erent 
analytical dataset obtained from each sector of both the organs, 
we  performed a principal components analysis (PCA). �e 
main anatomical parameters (CCN, RXT, and RPT) and 
phytohormones (IAA and CK free forms – cZ, cZR, tZ, tZR, 
iP, iPR, and DHZ), together with total lignin amount, were 
analyzed by using FactoMineR package in R (Husson et  al., 
2014; R Core Team, 2020).

RESULTS

Mechanical Force Distribution Model
�e modeling of mechanical force distribution along bent stem 
and root axis showed maximum values of compression and 
tension forces in BS compared to ABS and BBS sectors of 
both organs (Figure  1). In general, the magnitude was higher 
for compression forces, rather than tension; both of them were 
greatest in the BS and were dissipated away from it, showing 
higher values in BBS than ABS.

All forces increased from the initial (ti) to the �nal (tf) 
phase of the bending application with di�erent intensities 
depending on the sector analyzed (Figure  1). In stem, from 
ti to tf, tension forces increased in the ABS and BS, remaining 
almost unchanged in the BBS, while compression forces greatly 
increased in the ABS and BBS and were similar in the BS.

In root, tension forces strongly increased in the BS, whereas 
remained almost unchanged in the ABS and BBS; compression 
forces increased slightly in the BS, 3-fold in the ABS, and 
unchanged in the BBS (Figure  1).

Anatomical Traits
Cross-sectional anatomical analysis of the bent stems showed 
that CCN did not di�er among sectors, and for the ABS 
was lower in the convex side than in the respective concave 
side. No di�erences were detected among sectors and sides 
for the thickness of CZT (Table  1). �e RXT did not di�er 
among the three sectors while was larger in the convex side 
of both ABS and BS than the respective concave sides 
(Figure  2 and Table  1). �e speci�c vessel number (SVN) 
and vessel wall thickness (VWT) did not di�er among sectors, 
but it was higher in the concave side of ABS than in the 
respective convex side. �e relative phloem thickness (RPT) 
did not di�er between the two sides within each speci�c 
sector but showed the highest and the lowest values in the 
concave BBS and ABS, respectively, and intermediate value 
in the BS (Table  1). �e �bers wall thickness (FWT) did 
not di�er between the two sides within each speci�c sector 
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and showed a lower value in convex BS only compared to 
BBS. In addition, �ber cell walls of convex ABS and BS 
were characterized by the formation of gelatinous layer 
(G-layer; magni�cation in Figure  2). Speci�c vessel area 
(SVA) did not di�er among sides within each speci�c sector 
but showed the highest and the lowest value in the both 
sides of BBS and ABS, respectively (Table  1).

Cross-sectional anatomical analysis of the root showed that 
the CCN and RXT did not show any signi�cant di�erence 
among sectors, whereas the CZT and RPT, in the concave 
side, were higher in both BS and BBS than in the ABS (Figure 2 
and Table  1). However, all previous parameters (CCN, CZT, 
RXT, and RPT) measured in the concave side of both BS and 
BBS were higher than in the respective convex side (Figure  2 
and Table  1). SVN and VWT did not di�er within sectors 
and showed the lowest and highest values only on the convex 
side of the ABS and BS, respectively, with intermediate value 
in the BBS (Table  1). FWT did not show any signi�cant 
di�erence among sides and sectors, whereas the SVA di�ered 
only between di�erent sectors on the concave sides showing 

low, middle, and high value in ABS, BS, and BBS, respectively 
(Table  1).

Carbohydrate and Lignin Content
�e comparison of Py-GC/MS data among di�erent bent stem 
sectors showed that carbohydrates were higher in the convex 
side of BS than BBS and unchanged in ABS, whereas in the 
concave sides, they were higher in ABS than BBS and unchanged 
in BS (Figure  3A). Total lignin in the convex sides was lower 
in BS than BBS, due to a lowest S-type lignin, and unchanged 
in ABS (Figure 3B). No variations were observed along di�erent 
sectors of concave sides. Furthermore, within sectors, convex 
ABS and BS were characterized by higher carbohydrates amount 
and lower total lignin content compared to the opposite concave 
sides (Figures 3A,B); variations resulted mainly due to a lower 
amount in G- and S-type lignin, whereas H-types remained 
unchanged (Figure  3B).

In case of bent root, results revealed that in the concave 
side, carbohydrates were lower in ABS than BBS and unchanged 
compared to BS (Figure  3C) whereas in the convex side, no 

A

B

FIGURE 1 | Model of the mechanical forces distribution along P. nigra bent stem and root. Mechanical forces distribution along the stem (A) and root (B) main axis, 

at the beginning (ti) and the end (tf) of bending treatment. Average value (MPa) of the mechanical force magnitudes are indicated on the corresponded concave 

(negative values – compression) and convex (positive values – tension) sides of three bent sectors (ABS, BS, and BBS). ABS, above bending sector; BS, bending 

sector; BBS, below bending sector.
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signi�cant change was found. Total lignin showed an opposite 
trend in the concave sides, being higher in ABS than BBS 
and unchanged compared to BS, while it was completely unvaried 
in the convex side (Figure  3D). �e change in lignin content 
was mainly due to the alternation in S-lignin type amount. 
Convex and concave sides of all three sectors showed similar 
carbohydrate content (Figure  3C). Lignin content increased 
only in the concave ABS compared to the opposite convex 
side and unchanged in the two sides of BS and BBS. �e 
increase in total lignin amount in the concave ABS was due 
to an increase of G- and S-type lignin (Figure  3D).

Phytohormones Measurement
Hormone pro�le showed speci�c distribution patterns of IAA 
and CKs and related metabolites in the three sectors of two 
bent organs (stem and root), underlining di�erences among 
them and between the convex and concave side of each sector 
(Figures  4, 5).

In bent stems sectors, the comparison of IAA content showed 
that in both convex and concave sides, IAA was higher in BS 
and BBS than ABS and remained unchanged between the two 
sides of all three bent sectors (Figure  4A, light gray).

IAGlu, in the convex sides, was below the limit of detection 
(<LOD) in ABS, while increased in BS and BBS (Figure  4B, 
light gray). In the concave sides, it followed the same IAA 
trend, but reached the maximum in BBS. Between stem sides, 
IAGlu was lower in the convex ABS and higher in convex BS 
compared to the concave opposite side, while no variation 
was observed between the two sides of BBS.

�e IAAsp resulted <LOD in both sides of BS and BBS 
and high in those of ABS, reaching the maximum in the 
concave side (Figure  4C, light gray).

�e oxIAA did not show any variation among sectors but 
it was low in all convex side in respect to the concave side 
(Figure  4D, light gray).

In bent root, IAA amount was lower in the convex BS and 
BBS sides than opposite concave sides and convex ABS. 
Furthermore, no signi�cant variations were observed among 
concave side sectors and within the convex and concave ABS 
(Figure  4A, dark gray).

�e comparison of IAGlu, among sectors, revealed that in 
convex side was lower in BS and BBS than ABS while in 
concave side was higher in BS than ABS and unchanged 
compared to BBS. Furthermore, within sectors, it was lower 
in the concave ABS and higher in the concave BS compared 
to the opposite side, while values were comparable in the two 
sides of BBS (Figure  4B, dark gray).

Analyzing IAAsp amount, among sectors of the convex and 
concave sides, an opposite gradient was observed. In detail, 
in the convex side, it was lower BS and BBS than ABS, while 
in the concave side, it was higher in BBS than ABS and BS. 
Furthermore, between sides, it was lower on the concave ABS 
and higher in the concave BBS compared to the opposite sides, 
while similar values were found between BS sides (Figure  4C, 
dark gray).

As for the catabolic product oxIAA, in the convex side, it 
was higher in ABS and BS than BBS, while in the concave 
side, oxIAA showed the highest value in BS. Between sides, 
it decreased only in the concave ABS compared to the opposite 
side (Figure  4D, dark gray).

Distribution of di�erent CKs between sectors and sides of 
the bent stem and root were analyzed in detail (Figure  5). 
CKs were speci�cally categorized according to their side-chain 
structure into tZ-, cZ-, DHZ-, and iP-types (Figures  5A,C), 

TABLE 1 | Stem and root anatomical traits.

STEM ROOT

Sector Sector

Anatomical parameter Side ABS BS BBS ABS BS BBS

CCN CX 3.42 ± 0.37* 4.72 ± 0.52 4.29 ± 0.53 4.31 ± 0.29 4.46 ± 0.29* 4.42 ± 0.23*

CE 4.65 ± 0.32* 4.56 ± 0.67 4.08 ± 0.35 4.62 ± 0.16 5.62 ± 0.40* 5.65 ± 0.47*

CZT CX 14.04 ± 1.69 18.65 ± 3.00 17.27 ± 1.93 24.28 ± 1.78 25.18 ± 2.13* 22.37 ± 1.63*

CE 18.17 ± 2.81 21.82 ± 3.20 18.01 ± 1.48 26.87 ± 1.52b 32.72 ± 1.88a,* 35.45 ± 2.70a,*

RXT CX 10.44 ± 1.60* 12.26 ± 1.28* 10.13 ± 2.81 4.94 ± 1.09 5.72 ± 0.92* 6.31 ± 1.06*

CE 6.47 ± 2.09* 5.70 ± 1.21* 7.69 ± 1.00 8.06 ± 0.70 9.67 ± 0.60* 10.23 ± 1.14*

SVN CX 275 ± 51* 303 ± 98 458 ± 54 348 ± 11b 420 ± 28a 396 ± 74a,b

CE 434 ± 13* 258 ± 100 552 ± 48 291 ± 51 332 ± 31 377 ± 41

VWT CX 1.15 ± 0.13* 1.29 ± 0.06 1.36 ± 0.07 1.65 ± 0.12 1.73 ± 0.13 1.76 ± 0.12

CE 1.47 ± 0.15* 1.28 ± 0.11 1.45 ± 0.12 1.74 ± 0.11b 2.03 ± 0.05a 2.04 ± 0.11a,b

RPT CX 8.24 ± 1.19 9.43 ± 0.36 9.31 ± 0.67 16.14 ± 1.36 17.07 ± 1.34* 18.88 ± 0.80*

CE 6.90 ± 1.69b 7.79 ± 0.25a,b 9.10 ± 0.86a 16.75 ± 0.88b 21.66 ± 1.06a,* 21.26 ± 0.77a,*

FWT CX 0.71 ± 0.07a,b 0.63 ± 0.04b 0.79 ± 0.04a 0.88 ± 0.04 0.80 ± 0.04 0.84 ± 0.04

CE 0.77 ± 0.05 0.66 ± 0.06 0.76 ± 0.03 0.97 ± 0.05 0.88 ± 0.05 0.86 ± 0.06

SVA CX 5.59 ± 0.91b 7.82 ± 3.00a,b 14.30 ± 2.39a 30.8 ± 2.9 34.8 ± 1.7 33.2 ± 5.1

CE 9.17 ± 1.21b 8.10 ± 3.07b 22.01 ± 2.43a 25.9 ± 3.6b 31.5 ± 2.3a,b 38.0 ± 2.7a

Anatomical parameters were analyzed for stem and root in the convex (CX) and concave (CE) sides of three bent stem and root sectors (ABS, BS, and BBS). Reported values are 

the mean of �ve replicates (±SE). Bold value indicates signi�cant differences (p < 0.05) between the three bent sectors of the same side (different letters) and between convex and 

concave sides of the same sector (asterisk). ABS, above bending sector; BS, bending sector; BBS, below bending sector; CCN, cambial cell number; CZT, cambial zone thickness; 

RXT, relative xylem thickness; SVN, speci�c vessel number; VWT, vessel wall thickness; RPT, relative phloem thickness; FWT, �ber wall thickness; and SVA, speci�c vessel area.
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specifying the amount of each form/conjugate in the heat maps 
(Figures  5B,D).

In bent stem, total CKs amount was the highest in ABS 
and BS of the convex side (Figure  5A) due to the main 
accumulation of the tZROG, DHZ, and iPR in ABS and the 
tZ, tZR, cZ, cZR, cZOG, and cZROG forms/conjugates in ABS 
and BS (Figure  5B). In the concave side, total CKs was the 
lowest in ABS, due to a low amount in tZ- and cZ-type, 
without any signi�cant di�erences in the accumulation of 
speci�c forms/conjugates (Figures  5A,B).

Between stem sides, tZ and tZR were mainly accumulated 
in the convex ABS and BS with respect to the opposite concave 
site and of DHZ, DHZOG, tZROG, cZR, and iPR only in 
convex ABS (Figure  5B). �us, all CK-types were high in the 
convex ABS and tZ-type in the convex BS (Figure  5A).

In bent root, although total CKs were unchanged between 
and within sectors, the DHZ-type was slightly accumulated 
in the concave BBS (Figure  5C). Furthermore, some speci�c 
forms/conjugates were di�erentially accumulated between and 
within sectors (Figure  5D). In detail, among sectors, in the 
convex side, high iP amount was found in ABS and BS, and 
<LOD in BBS. In the concave side, cZ and iP were higher 
in BS and BBS than ABS (<LOD), together the tZ and tZR5’MP 
in BS and the tZROG and DHZ9G in BBS (Figure  5D). 
Comparing the two sides, the tZR5’MP and the iP resulted 
<LOD in the convex ABS and BBS, respectively. �e iP was 
<LOD also in the concave ABS together the cZ; �nally, the 

tZR5’MP was high in the concave BS and the tZROG and 
DHZ9G in the concave BBS (Figure  5D).

�e ratios of total and active CKs to IAA were also 
calculated (Figure  6) as total, sum of all CK metabolites 
detected, and active CKs, representing the sum of CK bases 
and ribosides. In the convex sides of three bent stem sectors, 
total and active CKs ratios showed the highest value in ABS 
while no variation was observed in the concave sides. In 
bent root, BBS showed the maximum value among sectors 
of the convex sides while no variation was observed between 
those of the concave sides. Similar trends were shown by 
both total and active ratios when analyzing di�erences between 
sides. In the stem, the content of the CKs and IAA resulted 
almost the same in both sides of BS and BBS, whereas in 
the ABS convex, the CKs levels were signi�cantly higher 
(about 2-fold) compared to IAA (Figure  6A). In root, ABS 
and BS showed a similar content of two hormones in both 
root sides, whereas in the BBS concave, the IAA level was 
signi�cantly higher than to that of CKs, especially considering 
the CKs active form (Figure  6B).

Principal Component Analysis of Main 
Stem and Root Traits According to 
Bending Sectors
�e PCA scatter plots of principle component 1 (PC1) and 
2 (PC2) obtained for the three sectors (ABS, BS, and BBS) 

FIGURE 2 | Anatomical bent stem and root cross-sections. Cross-sections of the convex and concave sides of three bent stem and root sectors (ABS, BS, and 

BBS) stained with Toluidine Blue O. Scale bar = 20 μm. Magni�cation shows secondary wood �ber cell wall characteristics. Scale bar = 2 μm.
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of bent stem and root are illustrated in Figure  7. From the 
analysis, in stem, we  found a cumulative percentage of PC1 
and PC2 accounted for 79.7, 82.5, and 65.2% in ABS, BS, and 
BBS, respectively. In particular, it was clear that all CKs, IAA, 
RXT, and RPT were grouped in ABS plot, suggesting that 
these parameters had a positive correlation among themselves. 
Also in BS, we  observed a good closeness of all the vectors 
representing CKs and anatomical variables (RXT, RPT, and 
CCN), meaning their reciprocal high correlation. However, this 
trend is not emerging for BBS in which a correlation among 
some CKs (tZ, tZR, cZR, iP, and iPR), IAA, RPT, and RXT 
is clear.

In root, the PC1 and PC2 cumulative percentage accounted 
for 73.5, 75.2, and 76.9% in ABS, BS, and BBS, respectively. 
In detail, considering data related to ABS, the scenario seems 
similar to what is already described for BBS of the stem: 
anatomical vectors seem to be  correlated with IAA and some 
CKs (tZ, cZ, and iP) vectors. In the case of BS, we  observed 
that CKs and IAA vectors are next to, and thus correlated to, 
all anatomical vectors. Finally, in the case of BBS, some CKs 
(tZ, cZ, and iP) vectors are spread and not closely related to 
anatomical vectors that conversely were grouped together with 
IAA vector.

DISCUSSION

�e modeling of mechanical forces distribution along P. nigra 
L. stem and root axis showed a di�erent intensity of compression 
and tension forces in the concave and convex sides, respectively, 
in all the three sectors ABS, BS, and BBS analyzed. However, 
in bent stem, compression forces increased during time (from 
ti to tf) on concave ABS and BBS, whereas tension forces 
increased on the convex ABS and BS. Con�rming our previous 
�ndings (Trupiano et al., 2012b), bent root showed the highest 
increment of tension forces in the convex side of BS and 
compression forces in the concave side of ABS. �us, based 
on model, in BS, where the maximum of forces intensity was 
recorded, only the tension forces increased during time in 
both organs.

Anatomical features and chemical composition variations 
observed in the convex and concave sides of the three bent 
woody stem and root sectors were strongly related to both 
the type of mechanical forces (compression or tension) and 
the intensity of mechanical force-displacement. In particular 
in bent stem, compression forces induced the development 
of secondary phloem on the concave side of BS and BBS, 
whereas tension forces promoted the formation of RW on 

A C

B D

FIGURE 3 | Carbohydrate and lignin content of P. nigra stem and root. Total carbohydrate and lignin content from CX and CE sides of ABS, BS, and BBS are 

indicated in the (A) and (B) for the bent stem and in the (C) and (D) for the bent root. Percentage value represents the mean of �ve independent samples ±SD 

analyzed by Py-GC/MS. Signi�cant differences (post-hoc LSD-tests, p < 0.05) among the CX sectors are indicated by lower letters whereas those among CE 

sectors by capital letter. Signi�cant differences (post-hoc LSD-tests, p < 0.05) between sides of the same sector are indicated by asterisk. Differences in total lignin 

amount are indicated above the histograms while differences in Syringyl- (S-), Guaiacyl- (G-), and p-Hydroxyphenyl- (H-) types lignin are indicated inside the 

histograms. ABS, above bending sector; BS, bending sector; BBS, below bending sector; CX, convex side; CE, concave side.
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the convex ABS and BS, characterized by low vessel number, 
poor ligni�cations, high carbohydrate, and G-layer in �ber 
cell wall, as widely reported in the literature (reviewed in 
Plomion et  al., 2001).

�is designed asymmetrical structural organization could 
represent the best engineering solution to counteract mechanical 
deformation, and the observed anatomical changes could 
be  important for postural control and to guarantee transport 
in deforming condition (Mellerowicz and Gorshkova, 2012; 
Gril et  al., 2017).

In bent root, the thicknesses of the cambium and phloem, 
as well as the area and number of vessel and their wall thickness, 
were higher in the concave BS and BBS, characterized by the 
highest magnitude of compression forces compared to ABS. 
Indeed, compression forces also triggered a signi�cant increment 
of cambium cell number, xylem, and phloem traits in the 
concave BS and BBS with respect to the convex side. �us, 
according to our previous result (De Zio et  al., 2016), the 
increase of compression forces triggered RW formation, 
characterized by high relative vessel number and area in the 
concave BS and BBS of bent root. Moreover, the Py-GC/MS 
analysis showed high total lignin amount in convex ABS due 
to high accumulation of S- and G-lignin types, but it did not 
reveal any signi�cant di�erences between the two sides in BS 
and BBS, even though a slight tendency toward higher lignin 
content was present in the concave sides. All our previous 

investigation revealed an increase of lignin content in the 
concave BS and BBS a�er 6, 12, 13, and 14 months of bending 
treatment by using Doster and Bostock (1988) method; this 
data, led us to hypothesize that secondary wood of the concave 
BS and BBS has characteristic more similar to gymnosperm 
CW than angiosperm TW (Scippa et  al., 2008; Trupiano et  al., 
2012a, 2014; De Zio et  al., 2016, 2019). �e disagreement 
with our previous data could be  related to the detection limit 
of Py-GC/MS technique or duration of the bending treatment, 
set to 5  months in the preset work. Indeed, evidences showed 
that Py-GC/MS technique is very accurate in distinguishing 
lignin-types (H-, G-, and S-type) sub-structures, while it seems 
inaccurate for the absolute lignin quanti�cation (van Erven 
et  al., 2017). However, it is reasonable to hypothesize that 
observed di�erences could be mainly related to the complexity 
of xylogenesis process in�uenced by seasonality of annual 
rhythm (Plomion et al., 2001). Indeed, our previous investigation 
showed that a�er 6  months of bending (Scippa et  al., 2008; 
De Zio et  al., 2016), lignin slightly increased in the concave 
BS and BBS, whereas it was strongly accumulated a�er 12, 
13, and 14  months of bending (Trupiano et  al., 2012b). �us, 
environmental conditions, specially temperature and photoperiod, 
a�ecting rate and timing of wood formation (cambium division, 
cell expansion, followed by the ordered deposition of a thick 
multilayered secondary cell wall, ligni�cation, and cell death) 
could regulate the intensity of lignin deposition to determine 

A C

B D

FIGURE 4 | Auxin metabolites pro�ling in different bent sides and sectors of P. nigra stem and root. Concentrations of IAA (A), IAGlu (B), IAAsp (C), and oxIAA 

(D) were analyzed by UHPLC-MS/MS. The values are expressed in pg. mg−1 of dry weight (DW). Data represent the mean of three independent extractions ±SD. All 

signi�cant differences (post-hoc LSD-tests, p < 0.05) between the three bent sectors in convex and concave sides are indicated by minuscule and capital letter, 

respectively. Signi�cant differences (post-hoc LSD-tests, p < 0.05) between sides of the same sector are indicated by asterisk and continuous line for root or dashed 

line for stem. ABS, above bending sector; BS, bending sector; BBS, below bending sector; CX, convex side; CE, concave side.
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speci�c anatomical characteristics of the secondary xylem 
(Begum et  al., 2008; Antonova et  al., 2014).

Cambial activity in stem and root resulted di�erently a�ected 
by bending. In detail, in root, the RW formation in the concave 
BS and BBS was accompanied by an increase of cambial cell 
number, whereas, in stem, CCN decreased or was unchanged 
in the convex ABS and BS, respectively. In general, more cambial 
cells indicate more cambial activity and higher growth rate. 
�e increased growth rate was accompanied by an increase in 
cambial cell division and, thus, the number of xylem mother 
cells, able to redesign an anatomical structure optimally tapered 
for hydraulic purpose (Sorce et  al., 2013). Under deforming 
conditions, as those induced by bending, the control of cambial 
cells number and their successive di�erentiation pattern represent 
important traits to regulate vessel number/size to ensure xylem 
hydraulic e�ciency (Sorce et  al., 2013). �erefore, we  can 
hypothesize that the decrease in cambial cell number, observed 

in the convex ABS stem, could be  mainly associated to an 
increase of cambial cell di�erentiation rates rather than an 
absolute decrease in cell division. Furthermore, tension forces, 
here highly perceived, could control cambial cell division/
di�erentiation rate. Conversely, in root, as reported by Montagnoli 
et  al. (2020), both mechanical force types seem to be  equally 
responsible for the unidirectional RW production toward the 
concave BS and BBS and in particular, through the compression-
related stimulation and tension-related inhibition of cambium 
activity on their concave and convex sides, respectively.

However, it is well-known that mechanical constraints are 
the stimuli and that other factors, such as phytohormones, 
are responsible for controlling the characteristics of either stem 
or root RW.

�e role of auxins in the di�erentiation of vascular tissue, 
during both normal development and mechanical constraint 
is well-documented, although most of the information come 

A C

B D

FIGURE 5 | Amounts of different CK-types/forms and conjugates in P. nigra bent stem and root. The total amount of tZ-, cZ-, DHZ-, and iP-types is illustrated in 

the graph for stem (A) and root (B) and the corresponding level of each CK-form/conjugate in the heat maps (C,D). Different colors in the heat map indicate the 

abundance of each CK-form/conjugate in the different samples (n = 3): green and red colors indicate, respectively, relative high and low abundance while white color 

indicates value below the limit of detection (<LOD). Signi�cant differences (post-hoc LSD-tests, p < 0.05) between the three bent sectors (ABS, BS, and BBS) of the 

same sides (CX or CE) are indicated, respectively, by lower and capital letter, while those between sides of the same sector are indicated by asterisk. ABS, above 

bending sector; BS, bending sector; BBS, below bending sector; CX, convex side; CE, concave side.
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from experiments at stem level involving applications of 
exogenous IAA or IAA-transport inhibitors (Du and Yamamoto, 
2007; Tocquard et al., 2014). Despite CKs having a well-
established function in cell division, increasing cambium 
sensitivity toward auxin, and acting as major regulators of 
wood quality and quantity (Aloni et al., 2006), they have seldom 
been investigated in relation to RW formation.

A widely accepted model suggests that in the bent stem, 
the TW forms in the region de�cient in IAA, whereas CW 
is induced by an increase of auxin concentration (for review, 
see Timell, 1986; Little and Savidge, 1987; Srivastava, 2002). 
However, Hellgren et  al. (2004) demonstrated that TW 
formation was not linked to any alteration in the balance 
of endogenous auxin. Moyle et  al. (2002) proposed that in 
poplar stem, initiation of RW a�er bending stress is caused 
by an altered auxin sensitivity of speci�c cells rather than 
a redistribution of auxin in wood-forming tissues. Moreover, 
it is widely documented that low IAA concentrations result 
in slow di�erentiation, which permits more cell expansion 
before secondary wall deposition, resulting in wide vessels 
and a lower vessel density (Bhalerao and Bennett, 2003; 
Sorce et  al., 2013).

In the present study, we  found that in poplar bent stems 
the concentration of the bioactive auxin (IAA) was not linked 
to any redistribution between the two sides of the three bent 
sectors, although the lowest amount was found in ABS. It is 
possible that light stimulus change synergizes with those produced 
by bending to induce a redistribution of the auxin gradients 
only in cambial cells. �e gradient here hypothesized could 
be  important to enhance �rstly cambial cell division and 

successively their di�erentiation rate to redirect stem growth 
orientation upward, against the gravitational pull and towards 
the light source (Vandenbrink et  al., 2014).

In root, as hypothesized in our previous works (De Zio 
et  al., 2016, 2019), the increased IAA level in the concave 
side could trigger the stress-related anatomical changes in the 
concave BS and BBS, expressed through the RW formation, 
due to an increase of cambial activity (Sundberg et  al., 2000; 
Du et  al., 2004).

�e IAA endogenous levels are tightly controlled through 
biosynthesis, degradation, transport, and conjugate formation 
(Casanova-Sáez and Voß, 2019). Interestingly, in this study, 
IAA metabolites (IAAsp, IAGlu, and oxIAA) closely followed 
the IAA pro�le in all sides and sectors of the two bent organs. 
Despite the functions of IAA, conjugates are still under 
investigation, it has been proposed that they may serve as 
storage and protection against IAA oxidative degradation, where 
an IAA optimum must be guaranteed (Ljung, 2013; Tran and 
Pal, 2014). Normally, IAA conjugates are present in much lower 
quantities compared to oxIAA (Pencík et  al., 2013; Vayssières 
et  al., 2015); in fact, we  noticed, oxIAA  >  IAGlu  >  IAAsp 
concentrations in all three bent stem and root analyzed sectors.

Brunoni et al. (2020) in a feeding experiment using labeled 
IAA, showed that in Norway spruce, IAAsp was the primary 
IAA catabolite originating from de novo synthesis, highlighting 
the production of IAAsp as the favorite route for IAA 
degradation. The group II of GRETCHEN HAGEN 3 (GH3) 
family of acyl-acid-amido synthetases is demonstrated to 
be  active on IAA amount, playing an important role in 
catalysis of conjugation reaction in several species and 

A B

FIGURE 6 | Ratio of total/active CKs to IAA. Stem (A) and root (B) ratio between the total content of CKs and IAA are indicated by black squared (total CKs/IAA) 

while ratio between the content of CKs active forms (sum of CK bases and ribosides) and IAA are indicated by gray diamonds (active CKs/IAA). Error bars indicate 

SD (n = 3). Signi�cant differences (Student’s t test, p < 0.05) between the three bent sectors (ABS, BS, and BBS) along CX and CE sides are indicated by lower and 

capital letter, respectively, while those between sides of the same sector are indicated by asterisk. ABS, above bending sector; BS, bending sector; BBS, below 

bending sector; CX, convex side; CE, concave side.
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different growth conditions (Ludwig-Müller, 2011). In 
Arabidopsis thaliana, iaasp is a major conjugate, formed by 
AtGH3.1–6, while IAAGlu formation is mediated by AtGH3.17 
(Staswick et  al., 2005). In addition, AtGH3.6, AtGH3.5, and 
AtGH3.17 are possible targets of the ARF8 auxin response 
factor (Tian et  al., 2004).

Teichmann et  al. (2008) demonstrated that GH3::GUS was 
strongly induced in response to poplar stem bending, concluding 
that auxin conjugation is involved in adjusting wood development 
in response to stress.

According to these evidences, an asymmetrical modulation 
of speci�c GH3 genes in the three bent sectors and sides, that 

in turn control asymmetrical IAA-amino acid conjugates 
accumulation, could contribute to the modulation of speci�c 
signaling pathways and anatomical alteration we  observed in 
the di�erent sectors of two bent organs.

Depending on how the hormonal response pathways are 
integrated and on how their biosynthesis and metabolism are 
related, signals triggered by IAA may be enhanced or dampened, 
thus yielding additive/synergistic or competitive e�ects.

Another important hormone group, the CKs, could be  a 
key signal to maintain appropriate levels of auxin biosynthesis 
(Jones and Ljung, 2011) but they have seldom been investigated 
in relation to RW formation (De Zio et  al., 2019).

FIGURE 7 | Model summarizing correlation among anatomical, phytohormonal and lignin dataset in bent stem and root. The correlation among main anatomical 

parameters (CCN, RXT, and RPT – red vectors), phytohormones (IAA – green vectors; CKs free forms – cZ, cZR, tZ, tZR, iP, iPR, and DHZ – blue vectors) and total 

lignin content (Lignin – purple vectors) were analyzed by using Principal Component Analysis (PCA). Scatter plots show data variability within each sector (ABS, BS 

and BBS) of bent stem and root. Data were computed by using FactoMineR package in R and plotted by the two �rst principal components (PC1 and PC2). Vectors 

indicate direction and strength of each variable to the overall distribution. CCN, cambial cell number; CKs, cytokinins; cZ, cis-zeatin; cZR, cis-zeatin riboside; DHZ, 

dihydrozeatin; IAA, indole-3-acetic acid; iP, N-isopentenyladenine; iPR, N6-isopentenyladenosine; RXT, relative xylem thickness; RPT, relative phloem thickness; tZ, 

trans-zeatin; tZR, trans-zeatin riboside.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


De Zio et al. Poplar Reaction Wood: Stem Vs. Root

Frontiers in Plant Science | www.frontiersin.org 13 December 2020 | Volume 11 | Article 590985

Our investigation showed that in poplar bent stems, all 
CK-types were high in the convex ABS and the tZ-type in 
the convex BS; only in the convex ABS, total and active CKs/
IAA ratio was signi�cantly more elevated (about 2-fold) relatively 
to the opposite concave side. In bent roots, although no 
variations were observed between di�erent sides and sectors, 
the total DHZ-type slightly increased in the concave BBS where 
the CKs/IAA ratio signi�cantly decreased compared to the 
opposite convex side.

Considering that distinct CKs types/forms are abundant in 
di�erent sides and sectors of the two organs, each CK type 
could have speci�c roles in some important processes, such 
as cell division/proliferation, cell elongation/di�erentiation, and 
xylogenesis (Svacinová et  al., 2012). In particular, in poplar 
bent stem, we  may hypothesize that the increase of CKs free 
bases observed in the convex ABS and BS, together with other 
forms readily converted to the free base, could have a key 
role in the control of TW formation, especially in ABS, in 
which the CKs/IAA ratio was particularly elevated. Indeed, in 
an Arabidopsis thaliana quadruple isopentenyltransferases (ipts) 
mutant, defective for genes encoding free tZ and iP biosynthetic 
enzymes, a loss of vascular cambium activity and a lack of 
secondary xylem was observed (Matsumoto-Kitano et al., 2008). 
Also Immanen et  al. (2016), exploring the e�ect of enhanced 
CKs signaling on vascular architecture, observed a dramatically 
increased of secondary development in poplar stem.

Conversely, in root, the lack of detection of tZR5’MP in 
the convex ABS could be  consistent with the reduced levels 
of all tZ-type forms. �e tZR5MP and tZROG in the concave 
BS and BBS, respectively, could help to maintain the optimal 
tZ-type levels providing the source for free base conversion 
(Antoniadi et  al., 2015). In Arabidospis root, tZ regulates the 
amount of PIN auxin e�ux proteins (PIN1, 3 and 7) to create 
an auxin signaling maximum in protoxylem cells (Bishopp 
et  al., 2011a,b). Auxin here accumulated is in turn able to 
promote the transcription of AHP6, a negative regulator of 
cytokinin signaling. �e AHP6-mediated inhibition of cytokinin 
signaling, con�nes the cytokinin response to the procambial 
cells, de�ning vasculature patterning (Mahonen et  al., 2006; 
Bishopp et  al., 2011a). �us, we  may suggest that IAA and 
CKs spatial changes here observed could be  important to 
control speci�cation of vascular pattern (protoxylem identity) 
also in poplar woody roots.

Finally, the accumulation of DHZ9G form in the concave 
BBS of bent root, an irreversible N-glucosylation inactivation 
of DHZ (Kieber and Schaller, 2014; Schafer et al., 2015), could 
be  an indication that DHZ-types, compared to the tZ-type, 
might have here a secondary role in RW formation and in 
gravitropic response (Kollmer et al., 2014). Indeed, here, where 
also the lowest CK/IAA ratio was found, especially considering 
the CKs active form, an antagonistic interaction of these two 
major hormone groups could be  proposed to regulate critical 
aspects of root organogenesis/development and to facilitate 
downward organ bending and, thus, gravitropic response (Aloni 
et  al., 2006; Waidmann et  al., 2019). According to Waidmann 
and Kleine-Vehn (2020), cytokinins seem to be  con�rmed a 
central antigravitropic determinant.

CONCLUSION

Static non-destructive mid-term bending triggered the formation 
of a RW in both P. nigra stem and root, each with speci�c 
characteristics due to the intensity and type of mechanical 
forces perceived and related signaling activated in the convex 
and concave sides of three bent stem and root sectors (ABS, 
BS, and BBS).

Summarizing all information, in bent stem, the high tension 
forces in the convex ABS and BS tended to form RW characterized 
by low vessel number, poor ligni�cations, high carbohydrate, 
and G-layer in �ber cell wall. In the bent root, con�rming 
our previous results, the increase of compression forces in the 
concave BS and BBS triggered RW formation, characterized 
by high relative vessel number and area. However, here, we did 
not notice any signi�cant variation in total lignin amount, 
probably for the duration of bending treatment or the detection 
technique limit, thus, in this respect, more in-depth analysis 
is necessary to better assess the observed discrepancy.

�ese structural organizations may represent the best 
engineering solution to guarantee postural plant control and 
water transport in deforming condition and to prepare the 
bent stem and root to move towards and away, respectively, 
axial negative-gravitropic growth.

�e observed di�erences between stem and root response 
to bending highlight how hormonal signaling is highly organ-
dependent. Reasonably, the light, gravity and bending signals 
could synergize in modulating phytohormone gradients in the 
stem, which is di�erent from that produced by the alone 
alteration of gravity bending-induced in root. In detail, an 
antagonistic interaction of CKs and IAA, with opposite trends 
in bent stem and root, seems to regulate organ-speci�c response 
to mechanical constraints. In stem, the CKs free bases could 
have a key role in the control of unidirectional RW formation, 
whereas the IAA could be  speci�cally and asymmetrically 
accumulated only in the cambium zone to induce an earlier 
and more rapid RW production than in the bent root. Conversely, 
in root, a key role of IAA in the promotion of cambial cell 
division and RW initiation was con�rmed. Here, a proper 
active reserve of tZ-type could provide the source for the free 
base conversion important to control vascular cell type identity 
and development. �us, CKs are con�rmed as central 
antigravitropic determinant to facilitate upward/downward organ 
bending in the altered condition of growth orientation.

Further research should be conducted to investigate di�erences 
between swayed (dynamic bending) and �xed (static bending) 
compression and tension forces loading on trees. �is information 
could be critical for understanding how plants maintain/improve 
their structural integrity in natural mechanical stress conditions 
(wind, snow, and rain loadings).
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