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A simple dynamic systems analysis is used to give examples of strong, weak overdriven, and 
weak underdriven oblique detonations. Steady oblique detonations consisting of a 
straight lead shock attached to a solid wedge followed by a resolved reaction zone structure 
are admitted as solutions to the reactive Euler equations. This is demonstrated for a 
fluid that is taken to be an inviscid, calorically perfect ideal gas that undergoes a two-step 
irreversible reaction with the first step exothermic and the second step endothermic. 
This model admits solutions for a continuum of shock wave angles for two classes of solutions 
identified by a Rankine-Hugoniot analysis: strong and weak overdriven waves. The other 
class, weak underdriven, is admitted for eigenvalue shock-wave angles. Chapman-Jouguet 
waves, however, are not admitted. These results contrast those for a corresponding one- 
step model that, for detonations with a straight lead shock, only admits strong, weak 
overdriven, and Chapman-Jouguet solutions. 

I. INTRODUCTION 

Revived interest in hypersonic flight has generated in- 
terest in devices that employ oblique detonations. An ob- 
lique detonation is defined as a combustion process that is 
induced by an oblique shock. Most recent discussion of 
oblique detonations has been motivated by the oblique det- 
onation wave engine (ODWE), which has been proposed 
to propel the National Aerospace Plane (NASP), and the 
ram accelerator, which has been used to accelerate projec- 
tiles to high speeds. 

Figure 1 gives a diagram of the type of oblique deto- 
nation to be studied here along with the coordinate system. 
We consider an incoming unreacted gaseous mixture at 
supersonic Mach number Me> 1, which encounters a 
straight shock, inclined at angle fi to the horizontal, which 
is attached to a curved wedge. The mixture reacts down- 
stream of the shock in the reaction zone. We consider the 
special case in which the flow has variation in the direction 
normal to the shock, taken to be the x direction, but no 
variation in the direction parallel to the shock, taken to be 
they direction. The origin is taken to be the wedge tip. The 
streamlines are taken to form an angle 8 with the horizon- 
tal. At complete reaction, f3 relaxes to a constant value, 
which we call the wedge angle. The flow has symmetry 
about the horizontal plane. 

Rankine-Hugoniot (RH) analysis has been commonly 
used to restrict the potential equilibrium states which may 
be obtained in an oblique detonation (Siestrunck et al.,’ 
Larisch,2 Gross and Chinitz,3 Gross,4 Oppenheim et aL,5 
Chernyi,6 and Pratt et aL7). The RH analysis allows de- 
termination of both fi, 8 shock and detonation polars. For 
Me= 10 and specific heat ratio y=7/5, Fig. 2 shows such 
polars for an inert oblique shock, Q=O, and a complete 
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reaction oblique detonation, Q=25, where Q is a dimen- 
sionless heat release to be defined later. Following Pratt 
et al., we use the final value of the Mach number normal to 
the shock, M,, and analogies with inert oblique shock no- 
menclature to classify oblique detonations. For shock an- 
gles below a critical value fi < &, there is no real solution 
to the RH equations. For fl=&, there is one solution that 
corresponds to the Chapman-Jouguet (CJ) solution of 
one-dimensional theory. For B=fia, at complete reaction 
the normal Mach number is sonic, M,= 1. For fi > &,, two 
solutions are obtained. The solution corresponding to the 
smaller wedge angle has a supersonic normal Mach num- 
ber, M,> 1, at complete reaction and is known as a weak 
underdriven solution. Its counterpart with the higher 
wedge angle is known as a weak overdriven solution if 
P < Pdetach and a strong solution if fi>fiddetach For both weak 
overdriven and strong solutions, the final normal Mach 
number is subsonic, M, < 1. Here, fidetach is the shock angle 
corresponding to the wedge angle eddetach beyond which 
there is no attached shock solution. The nomenclature 
“weak” and “strong” is suggested by oblique shock theory 
and is not consistent with the nomenclature of one- 
dimensional detonation theory. 

The two-dimensional steady flow can be further char- 
acterized by the hyperbolic or elliptic character of the gov- 
erning partial differential equations. With the total Mach 
number M calculated from the velocity magnitude, the 
equations are elliptic if M < 1 and hyperbolic if M > 1. The 
subsonic to supersonic transition takes place at Bsss which is 
slightly less than &&&. Strong solutions terminate at a 
subsonic point, M < 1. Weak overdriven solutions termi- 
nate at either subsonic or supersonic points: for 
&.J <B <&s, M > 1; for Pss <B < &detach~ 44 < 1. Generally, 

&S -fiddetach; consequently the range of weak overdriven 
solutions with M < 1 is small. Weak underdriven solutions 
terminate at supersonic points, M > 1. 

The conditions under which these solution classes, 
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FIG. 1. Schematic of an oblique detonation with a straight shock at- 
tached to a curved wedge. 

each of which satisfies the conservation principles and en- 
tropy inequality, could exist in nature is a question that has 
not been completely answered. A first step is to consider 
the resolved steady reaction zone structures and examine 
solution trajectories from an initial state to an equilibrium 
state in phase space. For a given kinetic scheme, this will 
disqualify certain classes of solutions. Those that remain 
should be subjected to the more rigorous test of hydrody- 
namic stability. What should result is a knowledge of the 
initial and boundary conditions that are necessary for a 
solution to exist. Based on analogies with inert theory that 
show that the existence of a strong or weak oblique shock 
depends on the downstream boundary conditions, it is hy- 
pothesized that there may be boundary conditions for each 
class of oblique detonation to exist. Given that, in the 
course of its travels, both an ODWE and ram accelerator 
may encounter boundary conditions suitable for each class 
of oblique detonation, it stands to reason that each class 
should be subjected to systematic study. 

With this philosophy in mind, Powers and Stewart’ 
have carried out a study of steady reaction zone structures 
associated with oblique detonations in which the reaction 
is one-step and irreversible. With such a kinetic model and 
for an oblique detonation that includes a straight lead 

FIG. 2. Inert [Q(O,O)=O] and complete reaction [Q( 1,1)=25] polars 
(Iw,= lO,y=7/5). 
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shock, it was shown that the reactive Euler equations ad- 
mit strong, weak overdriven, and CJ solutions but do not 
admit weak underdriven solutions. 

In the present study, we generalize the model of Ref. 8 
to allow for a two-step irreversible reaction with the first 
step exothermic and the second endothermic. For com- 
pleteness, we present examples for all three classes of ob- 
lique detonations. However, our primary purpose is to dem- 
onstrate that weak underdriven oblique detonations are 
admissible solutions. To this end, a specifically designed and 
particularly simple geometry and model are employed. The 
wedge geometry is chosen so as to guarantee an attached 
straight shock. The model has the same functional form as 
models that are commonly used to simulate the combus- 
tion of real materials; it is a two-dimensional extension of a 
model used by Fickett and Davis9 (pp. 153-173) to predict 
one-dimensional weak or eigenvalue detonations. As sug- 
gested in Ref. 8, use of this model leads to a two- 
dimensional complement of the eigenvalue detonation. 

The plan of this paper is as follows. First, the model 
equations are presented. These are reduced to a set of or- 
dinary differential equations by assuming there are no 
changes in the direction tangent to the shock. Exact ex- 
pressions are then written for strong and weak overdriven 
oblique detonations in the hypersonic limit. Away from the 
hypersonic limit, numerical integration of ordinary differ- 
ential equations gives the reaction zone structure. Exam- 
ples of strong, weak overdriven, and weak underdriven ob- 
lique detonations are presented. It is shown for this system 
that there is no trajectory in phase space to a complete 
reaction state for a CJ oblique detonation. 

II. MODEL EQUATIONS 

We adopt many of the assumptions and nomenclature 
of Fickett and Davis.g The model equations are taken to be 
the two-dimensional steady Euler and species evolution 
equations for a reactive calorically perfect ideal gas. These 
are expressed in dimensionless conservative form: 

(1) 

& (pu2+P) +g (puv) =o, -01 

(3) 

(4) 

(5) 

(6) 

J. M. Powers and K. A. Gonthier 2083 



e=l/(y-1)(P/p)-E(/Zlq1+/22q2), (7) 

P=pT. (8) 

The variables contained in Eqs. (l)-( 8) are the den- 
sity p, Cartesian velocity components u and u, pressure P, 
temperature T, internal energy e, and reaction progress 
variables /2, and &. The Cartesian position coordinates are 
x and y. The parameter E is defined as the reciprocal of the 
square of the free-stream Mach number (E= l/&J. Other 
dimensionless parameters are the ratio of specific heats 3/, a 
kinetic constant K, the heats of reaction q1 and q2, and the 
activation energies O1 and 0,. 

Equations ( 1 )-( 4) represent the conservation of mass, 
x momentum, y momentum, and energy, respectively. 
Equations (5)-( 6) are species evolution equations that in- 
corporate an Arrhenius depletion model. A two-step reac- 
tion mechanism is employed, A +B+ C, in which the first 
reaction is exothermic and the second reaction is endother- 
mic. The subscripts “1” and “2” correspond to the first and 
second reaction, respectively. Here, ill and /2, both range 
from zero before reaction to unity at complete reaction. 
Species mass fractions Yj are related to 1, and il, by the 
formulas YA= l-1,, YB=dl-d2, and Yc=&. Equations 
(7)-( 8) are the caloric and thermal state equations. Equa- 
tion (7) suggests the adoptation of the dimensionless net 
chemical heat release Q  as a function of d1 and d2: 
Q&n,) =&a +a,qz. 

Initial preshock conditions are specified as 

p=L u= &sin 8, v= &OS/?, 

P=e, ;l1=0, &=O. 

Equations (l)-(S) have been scaled such that, in the 
hypersonic limit (E+ 0)) the postshock pressure, density, 
and velocities are all 0( 1) quantities and the effects of 
reaction are restricted to O(E) or less. There are two length 
scales: the reaction zone lengths of the exothermic and 
endothermic reactions. The reaction zone length associated 
with the endothermic reaction is chosen as the reference 
length scale. In terms of dimensional variables (indicated 
by the notation “-” > and dimensional preshock ambient 
conditions (indicated by the subscript “O”), the dimen- 
sionless variables are defined by 

p=C 
F ii 

p=- 
PO @PO ’ u=rm) 

v=&9 x=g-Jg-& y=,&. 

(10) 

Remaining dimensionless parameters are defined by the 
following relations: 

PO41 &if2 G  
ql=p,, f&=-z--, K=T, 

PO k2 

Here, E, and E2 are the activation energies, and & and z2 
are the kinetic rate constants. 

III. PRELIMINARY ANALYSIS 

Equations (l)-(6) are simplified by assuming there 
are no changes in the direction tangent to the shock, hence, 
a/ay=O. Using the subsequent result that pu is invariant 
and eliminating e and T by use of Eqs. (7) and (8), the 
system reduces to the following set of ordinary differential 
equations: 

g (pu2+P) =o, 

dv 
-=o 
dx ’ 

+; (u2+v2) +; =o, 1 (15) 

da1 l--/21 
-=K - 
dx u (16) 

(17) 

Consequences of these assumptions are that u depends only 
on x, and v is a constant through both the shock and 
reaction zone; hence, the entire flow field is irrotational. 

Using the initial conditions (9), Eqs. (12)-( 15) can 
be integrated to yield algebraic RH equations that are valid 
through both the shock and reaction zone: 

pu= Sysinfi, (18) 

pu2+P=y sin2 fi+e, (19) 

u= ficos/3, (20) 

1 P 
- ---+Q&,/z,) Y--lP 

+; (u2+y cos2fi) +$ 

(21) 

When Q(L1,L2)=0, Eqs. (18)-(21) reduce to stan- 
dard inert oblique shock equations. This is expected as it 
can be formally shown from Eqs. ( 1 )-( 8) that through an 
inert shock, modeled as infinitely thin, reaction has no time 
to take place, and the jump in reaction progress is zero. 

Equations ( 18)) ( 19)) and (2 1) can be solved for p, u, 
and P as functions of il,, a2. These relations are presented 
in a form equivalent to that of Gross:4 
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p(ad2) = ( 1 +y( 1/e)sin2 fif dm -’ 

) (y+1)(1/e)sin2fi ’ 

where 

(22) 

2((a,,a2) = fish wp(a,,a,>, (23) 

p(a1,a2) =c+y sin2 P[ 1- iip(a,,a2) I. 

For small Q, the “-” root of Eq. (22) is a perturbation of 
the shocked state, and the “+” root is a perturbation of 
the unshocked state. The two branches are thus called the 
shocked and unshocked branches, respectively. 

With the pressure, density, and velocity fields param- 
etrized by A, and A2, Eqs. (16) and (17) can be expressed 
in the form 

da1 ~=.w,,a,), al(o).=o, 

da2 z=f2w2), a,(o) =o. 

(25) 

Equations (25) and (26) are integrated numerically to find 
A2 and A2 as functions of x; thus Q, and subsequently p, P, 
U, e, and T, can be calculated throughout the reaction 
zone. 

IV. HYPERSONIC LIMIT 

In the hypersonic limit (E-O), a closed form asymp- 
totic solution can be obtained. In this limit, the chemical 
energy release only slightly disturbs the flow, which has a 
large kinetic energy. Equations (22)-(24) solved in this 
limit to O(E) yield 

Y+l p(a,,a2) =--E (y+U2 
(y-l)ysin2B Q(w~)+ ( 

2Y 
74 1 J 

(27) 

u(al a2) = fi(Y--l)sinP 
’ 

(y+l) 

(Y-1) 
+’ Sysinp aw,) ++ZL 1 - , (28) 

wd2) = 
2y sin2 p 

Y+l 
(29) 

In Eqs. ( 16) and ( 17) at O( 1 ), the argument of the expo- 
nential function is zero, and the velocity u has its constant 
O( 1) postshock value. Thus these equations may be inte- 
grated to give the O( 1) reaction zone structure explicitly: 

(30) 4=1-p -a), ( 
a2=1- I+*~) i 

i 
(y+l)x 

XexP -Syo 
1 

(K=l), (31) 

~~=qsi)+*)+(&l) 

K(Y+ 1)X 
Xexp - fi(y- 1) sin/3 (Kzl)* (32) 

When the reaction progress field (30)-( 32) is substituted 
into Eqs. (27)-(29), one obtains the pressure, velocity, 
and density fields to O(E). 

The value of the asymptotic solution lies in its use as an 
independent check of the numerical solution of Eqs. (22)- 
(26). Subsequent results will show that the asymptotic and 
numerical solutions show the same trends. Furthermore, it 
can be easily verified that, when a sufficiently small step 
size is chosen for the numerical integration, that in the 
limit as e-0, the difference between the asymptotic and 
numerical solution approaches zero at O(E) and is 
bounded at O(2) as expected. 

V. RESULTS 

In this section, we give results, not restricted to the 
hypersonic limit, for P, A, phase portraits for several values 
of fi and their relation to oblique detonation polars, stream- 
lines, and characteristics, an example of oblique detonation 
structure for each solution class: I, strong; II, weak over- 
driven; and III, weak underdriven, and an illustration of 
the behavior of the weak underdriven solution as q2 is var- 
ied with the net complete reaction heat release Q( I,1 ) held 
constant. 

In all calculations, except the last, which considers 
variable q2, we take E= l/100 (so that the incoming Mach 
number is lo), y=7/5, ~=l, 01=02=0, qr=lOO, and 
q2= -75. For case I, we take a representative angle, B 
= 80”. For case II, we take a representative angle, fi= 60”. 
For case III, an eigenvalue wave angle is found to be /3=E 
=52.77”. For these three cases, the respective labels I, II, 
and III are adopted. Phase portraits are also presented 
at the detachment wave angle for this system, 
fi=pdetach= 65.65”, at the subsonic to supersonic transition 
wave angle, /3=fiss=65.53”, for a representative shockless 
structure with turning angle fl=60”, for a representative 
structure for which there is no trajectory to complete re- 
action, fi=50”, and for the CJ wave angle for which there 
is also no trajectory to complete reaction, /3=&=37.02”. 

A. Phase space portraits and detonation polars 

Equations (25) and (26) were integrated numerically 
using a Runge-Kutta technique. Results are summarized 
in the P, 1, phase plane shown in Fig. 3. The variables p, 
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FIG. 3. P,, A., phase plane. 

P, and u for structures with a lead shock are calculated 
using the shocked branch of Eq. (22). The flow is shocked 
from the inert state at 0 to the Neumann point N. For 
strong solutions such as case I, where &+rach </3<90”, as 
the reaction progresses, the pressure decreases from its 
value at N to a pressure minimum and then increases to its 
final value at the strong point S. The phase space trajecto- 
ries are topologically equivalent for weak overdriven solu- 
tions such as case II, for both fiss <fi<&&& and 
E<fl<&s. In such cases, the trajectory begins at 0, is 
shocked to N, and terminates at WO. There is also nothing 
topological to distinguish the trajectories at either 
P=Pdetach or fi=fiss, which are also plotted in Fig. 3. As 
the difference between &)det& and fisss is small, the differ- 
ence in the two trajectories has been slightly exaggerated so 
they can be distinguished on this scale. 

The case I trajectory, O-N-S, and case II trajectory, 
0-N-WO, are also plotted in fi, 6 space on the polars of 
Fig. 4. On each trajectory, the fluid reacts with the exo- 
thermic reaction dominant until the heat release reaches a 
local maximum, Q,,, at which point the endothermic re- 

01 c I.. I,, . * 1.3 I I I 3 3 I .-. .2-I I,, 1:: LL211. ! 
0 10 20 30 40 50 

0 (degrees) 

FIG. 4. Inert (Q=O), intermediate (Q=44.8), and complete reaction 
(Q=25) polars along with strong (case I), weak overdriven (case II), 
and weak underdriven (case III) phase trajectories. 

action dominates until complete reaction when Q=25. In 
these and all cases studied, Q,,, was nearly constant at 
44.8. 

The behavior of the P, ill trajectories can be predicted 
by using Eqs. ( 12)-( 17) to explicitly solve for the pressure 
derivative: 

dP (y- 1 )pu2[q, CdWdx) +q,(d/2,/dx) ] -=e 
dx u2-rWp) 

. (33) 

Using Eqs. (22)-(24) to evaluate p, u, and P downstream 
of the shock along with Eqs. (16) and (17) to evaluate 
reaction progress derivatives, it is easily shown that just 
past the shock, dP/dx < 0. It is also seen that u > 0; thus, 
from Eq. (16), it is deduced that 1, is a monotonically 
increasing function of x. Thus pressure variations with x 
and il, are qualitatively similar. The predicted pressure 
minimum is a consequence of the quantity 
q1 (d&/dx) + q2 (dL,/dx) = dQ/dx reaching zero at an in- 
terior point of the reaction zone. As the reaction progress 
derivatives for the irreversible reaction scheme are always 
positive; this zero can only be reached if one reaction is 
exothermic and the other endothermic. 

As p is reduced from 90”’ it is possible to predict a 
continuum of strong solutions until fl=&r& and a con- 
tinuum of weak overdriven solutions from fi)=&&& until 
a certain eigenvalue wave angle p=p is reached. At fi=B, 
the solution trajectories reach a saddle critical point, la- 
beled P for pathological, in P, /2, phase space. At P, dQ/dx 
and u2- yP/p are simultaneously zero; i.e., the heat release 
rate approaches zero as the local Mach number approaches 
unity. It is also seen that the quantity A in Eq. (22) is 
simultaneously zero. Thus integration can be continued on 
either the shocked or unshocked branch of Eq. (22). In- 
tegration along the shocked branch carries the trajectory to 
a final weak overdriven state WO, while if the unshocked 
branch is selected, the solution proceeds to completion to 
the weak underdriven point WU. The case III trajectory, 
0-N-P-WU, is plotted in Figs. 3 and 4. 

For solutions with fi >B, which remain on the un- 
shocked branch, a complementary family of solutions ex- 
ists. One such trajectory from 0 to WU is shown in Fig. 3. 
The physical justification for the unshocked solution is not 
clear-cut as there is no distinct initiation mechanism and 
the equations are’ subject to the cold boundary difficulty. 

For B <B, there is no trajectory to complete reaction. 
In P, il, phase space, one family of such trajectories is in 
the neighborhood near il,=O. These trajectories originate 
at N or’0 and progress to a termination point T where the 
flow reaches a local sonic state at a point where the heat 
release rate dQ/dx is nonzero. A complementary family of 
trajectories exists in the neighborhood of ;1,= 1. These 
originate at the complementary T and terminate at either 
WO or WU. A representative trajectory for /3=50” is plot- 
ted in Fig. 3. For the parameters of these example prob- 
lems, &-= 37.02” <p; consequently, there is no complete 
reaction CJ trajectory. The trajectory for the CJ angle is 
also plotted in Fig. 3. 
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B. Streamlines and characteristics 

Standard expressions for streamlines and characteris- 
tics for two-dimensional steady compressible flow, such as 
those given by Shapiro,” also apply to this reactive flow 
field. The family of streamlines y,(x) and characteristics 
y+ (x) are generated from the known field variables by the 
following expressions: 

(34) Y,(X) = fi 00s B 
x d; 

s- .q u(x)’ 

s 
x 

y*(x)= 
fi cos pu(x”)/aZ(x”) f Jzfqz 

h&x”, - 1 
d;, 

x0 

with 

P(x) 2 

a2(x) =y- p(x) ’ M:(x) =g , 

M2(x) = u2(x> +y co2p 
a2(x) * 

(35) 

Here, j; is a dummy variable; x0 gives the initial x position 
of a particular streamline or characteristic; and a is the 
local sound speed. The streamline for x0=0 is taken to be 
coincident with a solid curved wedge that supports the 
oblique detonation. The characteristics are real when M 
> 1; the characteristics are parallel to the shock when 
M,= 1. 

In the following examples, cases I, II, and III, we will 
plot the streamlines and characteristics in the (;,a orthog- 
onal coordinate system, which is defined to be aligned with 
the incoming flow. The appropriate transformations for 
this system are x^=x sinfi+ycosfi, and y= --x cos/3 
+y sin fi. The trajectories for cases I, II, and III have been 
plotted in Figs. 3 and 4. 

C. Strong, case I 

We give an example of a strong oblique detonation in 
which fl= 80“. For this case, M < 1 and M, < 1 throughout 
the reaction zone. Reaction zone profiles for reaction 
progress, /2r, /2,, and pressure P predicted by both the nu- 
merical and asymptotic methods are shown in Figs. 5(a) 
and 5 (b). The asymptotic and numerical predictions fol- 
low the same trends. Since M< 1, the steady flow field is 
elliptic, there are no real characteristics, and disturbances 
at any location are propagated to the entire flow field. The 
domain of dependency for any point on the shock is the 
entire region between the shock and the wedge. The 
streamlines for the strong solution are shown in Fig. 5 (c). 

D. Weak overdriven, case II 

We next consider a weak overdriven oblique detona- 
tion in which fi=60”. In this case, M> 1 while M, < 1 
throughout the reaction zone. Figures 6(a)-6(c) show the 
reaction zone profiles for /2i, AZ, and P, streamlines and 
characteristics, respectively. The numerical and asymptotic 
predictions are in qualitative agreement and also resemble 
those of the strong oblique detonation case. All character- 

--- asymptotic 

_-a 
~~~..-.------------------ 

1 

case I 
p=SOQ 

- numerbl 
-_ asymptotic 

(b) 

A 
Y 

. . ..- streamlines 

FIG. 5. (a) Predictions of the reaction progress variables for a strong 
oblique detonation. (b) Predictions of pressure for a strong oblique det- 
onation. (c) Streamlines for a‘strong oblique detonation. 

istics of the “ +” family that originate on the wedge surface 
intersect the shock at a downstream location. The domain 
of dependency for a given point on the shock is limited to 
points upstream of the “+” characteristic that intersect 
this point. 

E. Weak underdriven, case III 

We finally consider a weak underdriven (eigenvalue) 
oblique detonation, which for the parameters of this study, 
occurs at /3=E=52.77”. In this case, M> 1, while M, is 
subsonic near the shock and supersonic downstream of the 
shock. Figures 7(a)-7(c) show the reaction zone profiles 
for /2t, L.,, and P, streamlines and characteristics, respec- 
tively. For small x the structure is similar to the weak 
overdriven structure. Upon reaching the pathological point 
P, the structure changes dramatically. The pressure P does 
not reach a local minimum but monotonically decreases to 
its value at complete reaction. The streamlines behave sim- 
ilarly to those of the previous two cases. 

The characteristics behave much differently. Charac- 
teristics of the “+” family that originate at the wedge 
surface near the wedge tip intersect the shock. At a critical 
location on the wedge surface, which occurs when M,= 1, 
the “+” characteristic is parallel to the lead shock. Char- 
acteristics that originate on the wedge surface past this 
point do not intersect the lead shock. Thus the domain of 
dependency for any point on the shock is limited to a finite 
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FIG. 6. (a) Predictions of the reaction progress variables for a weak 
overdriven oblique detonation. (b) Predictions of pressure for a weak 
overdriven oblique detonation. (c) Streamlines and characteristics for a 
weak overdriven oblique detonation. 

width zone near the shock and is upstream of a given “+” 
characteristic. Points in the domain downstream of the 
sonic characteristic do not influence the upstream flow; 
consequently, there is a wider variety of solutions possible, 
not shown here, that are consistent with a flow character- 
ized by a straight shock. 

F. Effect of variable relative endothermicity 

Figure 8 demonstrates the effect of variable relative 
endothermicity on the eigenvalue wave angle fi. To obtain 
this plot, we simultaneously adjust the value of both q1 and 
q2 such that the global heat release at complete reaction is 
maintained at Q( 1,l) =25. For - 75<q2 < 0 (and, simul- 
taneously, lOO>q, > 25) as q2 is increased toward 0, B de- 
creases. When q2=0, the point P becomes coincident with 
the CJ point, and fi=&=37.02”. For 0 <q2<25,25 > q,>O 
both reactions are exothermic, there is no eigenvalue solu- 
tion, and the CJ solution is the limiting solution. Solutions 
outside this range were not studied. Thus, in this range, the 
model only predicts strong, weak overdriven, and CJ solu- 
tions. This result is consistent with the results obtained in 
Ref. 8 where qz=O. 
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FIG. 7. (a) Numerical prediction of the reaction progress variables for a 
weak underdriven oblique detonation. (b) Numerical prediction of pres- 
sure for a weak underdriven oblique detonation. (c) Streamlines and 
characteristics for a weak underdriven oblique detonation. 

VI. FINAL REMARKS 

This study has demonstrated the critical role that the 
kinetic scheme can play in determining admissible oblique 
detonation structures. For the kinetic scheme of this study, 
the CJ state has relatively little significance. It provides 
only an overly conservative lower bound for the wave an- 
gle, with the true boundary more restrictive. One can in- 
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FIG. 8. Eigenvalue wave angle 3 as a function of heat released in second 
reaction q2 with global heat release Q( 1,l) held constant. 
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duce for reaction schemes with more complex kinetics that et al. l4 have considered hydrodynamic stability and related 
the necessary conditions for admissible solutions become questions for weak overdriven oblique detonations using 
correspondingly more complex. one-step kinetics. 

Though the flow physics are different, these oblique 
detonation flows have a remarkably similar mathematical 
structure to such classical flows” as ( 1) one-dimensional 
Rayleigh flow, or (2) one-dimensional inert flow with area 
change. For instance, flow at the pathological point P is 
analogous to a one-dimensional inert flow simultaneously 
reaching an area minimum and a local sonic state. The 
one-dimensional inert flow is able to relax to a variety of 
downstream boundary conditions when one allows either a 
normal shock to stand in the duct or downstream rarefac- 
tions. Consequently, we hypothesize that there is a wider 
range of oblique detonation solutions available when one 
allows for either a more complex structure with additional 
shocks or rarefactions. 
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The stability of these waves is open to question. Powers 
and Stewart’ have given an example of the structural sta- 
bility of irrotational weak overdriven oblique detonations. 
They showed straightening the curved wedge only changes 
the flow field by introducing a small amount of vorticity 
near the wedge surface and that far from the wedge, the 
solution remains the same, with a straight shock and 
curved streamlines. Since the weak overdri,ven solutions of 
this study are perturbations of those of Ref. 8, these too 
may be structurally stable to changes in the wedge shape. 
The weak underdriven case presented here is structurally 
unstable. Any parametric change would result in no steady 
solution with a single attached shock. The weak under- 
driven solution may still be of value, however, if, for in- 
stance, ( 1) the solution is a degenerate case of a solution 
with a more complicated shock or rarefaction structure, or 
(2) effects not modeled here, such as diffusive transport 
effects, have the consequence of being stabilizing influ- 
ences. Grismer and Powers” have shown that the oblique 
detonations of Ref. 8 are numerically stable for one partic- 
ular numerical method. Again, since the weak overdriven 
solutions of this study are perturbations of those studied in 
Ref. 11, they should also be numerically stable. Recent 
studies by Buckmaster,12 Jackson et aL,13 and Lasseigne 
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