Reactions and rearrangements of triterpenoids —3-Epitaraxerol and its transformation products

J Banerji*^a, A Chatterjee^b, M Saha^c, K P Dhara^a, S Kanrar^a, P Mukherjee^d, A Neuman^e & T Prangé^e

^aDepartment of Chemistry, ^bCentre of Advanced Studies on Natural Products, University College of Science, 92, Acharya

Prafulla Chandra Road, Calcutta 700 009, India

^cDepartment of Chemistry, Ananda Mohan College, Calcutta 700 009, India

^dKanailal Vidyamandir, Chandannagore 712 136, India

^eChimie Structurale Biomoleculaire (URA 1430, CNRS), UFR Biomedicale, 74 rue M. Cachin, 93012 Bobigny Cedex,

France

Received 12 March 1999; accepted 16 July 1999

An interesting rearrangement has been observed with 2,14-taraxeradiene 1 using *m*-chloroperbenzoic acid. With this reagent compound 1, in methylene chloride, affords olean- 2α -epoxy-12-ene- 15α -ol 3 (confirmed by X-ray crystallographic analysis) through the intermediate 2α , 14α -diepoxytaraxerane 4. The latter 4 has also been isolated from the same reaction mixture. This backbone rearrangement from the Δ^{14} -taraxarene skeleton 4 to Δ^{12} -oleanane structure 3, with C15- α -ol, confirms α -orientation of the epoxy ring formed at Δ^{14} in 4. Subsequent opening of the intermediate oxirane at Δ^{14} therefore must occurr *via* the generation of an incipient carbonium ion at C(14) to allow the migration of C(13)CH₃ to C(14) from the same α -phase. Compound 4 also undergoes rearrangement to olean-12-ene- 2α , 3β , 15α -triol 5 with boron trifluoride etherate in methylene chloride.

Epoxide ring opening induced transformations with pentacyclic triterpenoids have been reported¹⁻⁸ in the literature. The present paper describes a series of interesting reactions and rearrangements starting with 2,14-taraxeradiene 1 which was obtained by the dehydration of epitaraxerol 2, a major constituent⁹ of *Euphorbia antiquorum* L. (Euphorbiaceae). This is the first report on the isolation of compound 2 from this plant.

2, 14-Taraxeradiene 1 on treatment with *m*chloroperbenzoic acid in methylene chloride at 27° C for 5 hr yielded 2α , 14α -diepoxytaraxerane 4 and olean- 2α -epoxy-12-ene- 15α -ol 3.

Compound 4, $C_{30}H_{48}O_2$ (M⁺ 440), mp 185-87°C (benzene), $[\alpha]_D^{27^\circ}$ + 4.2° (EtOH) could be isolated in 25% yield. It showed characteristic bands for epoxy groups (C-O-C, symmetric stretching) at 1275 and 1270 cm⁻¹ in the infrared spectrum. The important structural features were evident in the 300 MHz ¹H NMR spectrum. This indicated the presence of three epoxy protons. One epoxy proton appeared at δ 3.16 (1H, dd, *J*=6.0 and 3.8 Hz). The remaining two epoxy protons resonated at δ 3.02 (1H, d, *J*=6.6 Hz) and 2.76 (1H, d, *J*=3.8 Hz). The coupling constants proved that the epoxy protons appearing at δ 3.16 and 2.76 were *vicinal* in character. The signal at δ 2.76

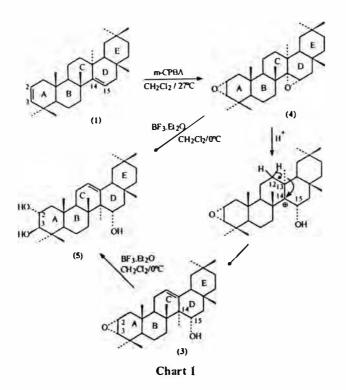
was assigned to the C₃-proton which coupled only with the proton at C_2 . Hence the signal at δ 3.16 should originate from the C2-proton which experienced coupling with the proton at C_3 (J=3.8 Hz) and also with one of the adjacent methylene protons at C_1 (J=6.6 Hz). The other proton at C_1 showed ~ 90° dihedral angle relationship with the C_{2} proton. From steric consideration, as evident from the molecular model, the reagent can approach the C2-C3 double bond only from the α -phase as otherwise it would experience steric hindrance from the β-axial methyl groups at C_{10} and C_4 positions. The epoxy proton at C15 which coupled only with one of the vicinal methylene protons at C_{16} appeared at δ 3.02. The oxirane ring formation at C14-C15 position must be α -oriented due to facile approach of the reagent from the more exposed α -phase owing to the boat conformation assumed by the unsaturated ring D.

The 75.5 MHz ¹³C NMR spectrum (including APT experiment) (**Table I**) of compound 4 revealed the presence of nine sp³-secondary carbons, six sp³-tertiary carbons, seven sp³-quaternary carbons and eight sp³-primary carbons. The four epoxy carbons appeared at 68.6 (C₁₄), 61.6 (C₃), 57.1 (C₂) and 52.3 (C₁₅) ppm.

The fragments arising from the molecule on

		Table I — ¹³ C NMR spectral data of epitaraxerol, epitaraxeryl acetate, compounds 1, 3, 4, 5 and β -amyrin (Chemical shifts in ppm)								
	Carbon	Epi-	Epi taraxeryl	Taraxeryl		,	Compound 3	Compound 5	β-Amyrin	
	number	Taraxerol	acetate	acetate						
٧	C(1)	37.8	37.8	37.8	39.9	39.2	40.2	47.4	38.7	
	C(2)	22.6	23.6	23.4	121.4	52.3	52.5	69.1	27.3	
	C(3)	79.1	81.1	81.1	138.3	61.6	61.6	78.2	78.9	
	C(4)	38.8	38.0	37.9	37.6	36.9	36.1	37.6	38.8	
	C(5)	55.7	55.8	55.7	52.5	46.2	46.1	50.7	55.3	
	C(6)	18.9	18.8	18.8	20.0	18.1	19.1	20.2	18.5	
	C(7)	33.2	33.3	33.2	33.2	33.1	34.7	34.7	32.8	
	C(8)	39.1	39.1	39.1	39.1	39.4	33.1	33.1	38.8	
	C(9)	49.4	49.3	49.3	48.0	47.1	46.6	48.2	47.7	
	C(10)	38.0	37.7	37.6	34.5	32.8	32.5	37.4	37.0	
-+	C(11)	17.5	17.6	17.6	17.2	17.0	23.5	23.7	23.6	
	C(12)	36.8	36.8	36.7	36.8	33.0	123.3	123.5	121.8	
	C(13)	37.8	37.8	37.8	37.2	36.5	146.0	146.0	145.1	
	C(14)	158.2	158.2	158.0	158.1	68.6	41.1	41.4	41.8	
	C(15)	116.9	117.0	116.9	116.9	57.1	68.3	68.3	26.2	
	C(16)	33.8	33.8	33.7	33.9	30.0	30.6	36.8	27.0	
	C(17)	35.8	35.7	35.8	35.8	32.4	31.1	31.1	32.5	
	C(18)	49.0	49.1	48.9	48.9	48.1	48.0	47.9	47.4	
	C(19)	41.5	41.4	41.3	40.6	39.6	46.4	46.3	46.9	
	C(20)	28.8	28.9	28.8	28.9	30.9	31.1	35.1	31.1	
	C(21)	35.2	35.3	35.2	35.2	34.5	35.4	35.6	34.8	
1.00	C(22)	37.6	37.5	37.5	37.8	37.6	37.6	37.8	37.2	
	C(23)	28.0	28.0	28.0	31.8	28.0	28.1	24.0	28.2	
	C(24)	15.4	16.6	16.5	22.9	22.1	22.3	23.3	15.5	
	C(25)	15.4	15.5	15.5	15.4	18.3	17.9	21.1	15.6	
	C(26)	25.9	25.9	26.0	25.8	23.0	16.7	17.1	16.9	
	C(27)	29.9	29.9	29.9	29.9	31.1	19.6	19.9	26.0	
	C(28)	29.9	29.9	29.9	29.9	24.4	28.9	23.9	28.4	
	C(29)	33.4	33.4	33.4	33.4	33.5	33.3	33.3	33.3	
	C(30)	21.3	21.3	21.3	21.4	23.4	23.6	23.6	23.7	
	-CH3-C-O	_	21.2	21.3		-	-		_	
	-CH3-C-O	_	171.0	171.0					_	

electron impact were observed at m/z 440 (100%, M^+), 234, 219 and 206. The mass spectrum confirmed the structure of compound **4** as 2,14-diepoxytaraxerane.


4

Compound **3**, $C_{30}H_{48}O_2$, M⁺ 440, $[\alpha]_D^{27^\circ}$ + 32.7 (EtOH), mp 190-93°C (benzene-ethyl acetate, 1:1), was isolated in 10% yield after repeated thin layer chromatography. It showed significant peaks at 3540 (hydroxyl) and 1270 cm⁻¹ (epoxy) in the IR spectrum. The 300 MHz ¹H-NMR spectrum of compound **4** revealed the presence of two epoxy protons at δ 3.19

(1H, dd, J=6.6 and 3.8 Hz) and 2.80 (1H, d, J=3.8 Hz). These were assigned to the C₂ and C₃-protons respectively. A doublet of doublet appeared at δ 4.19 (1H, J=11.5 Hz and 5.3 Hz). The downfield shift together with the coupling constant values confirmed this signal to be due to C₁₅-H which was attached to the carbon bearing hydroxyl function and coupled with both the adjacent non-equivalent methylene protons at C₁₆. A triplet at δ 5.29 (1H, J=3.7 Hz) showed the presence of an olefinic proton. On the basis of the ¹H NMR spectrum the structure of this

rearrangement product could be established as olean- 2α -epoxy-12-ene-15 α -ol 4.

This structure was further corroborated from the 75.5 MHz¹³C NMR data (including APT experiment) of compound 3. During the formation of 3 from 1 an interesting backbone rearrangement of the taraxerane skeleton to oleanane framework was observed (Chart 1). A significant change in the chemical shift values occurred involving rings C and D. The assignments of the carbon chemical shifts of compounds 1, 4, 3 and 5 were made by comparison with epitaraxerol, epitaraxeryl acetate, taraxeryl acetate and β -amyrin⁹ (Table I). The APT experiment demonstrated the presence of eight sp³-secondary carbons, six sp³-

tertiary carbons, six sp³-quaternary carbons, eight sp³primary carbons, one sp²-quaternary carbon and one sp²-tertiary carbon. The epoxy carbons C₂ and C₃ resonated at δ 52.5 and 61.5 ppm respectively. The C₁₅-carbon, bonded to a hydroxyl group, appeared at 68.3 ppm while the olefinic carbons C₁₂ and C₁₃ were observed at 123.3 and 146.0 ppm respectively.

The molecular ion peak appeared at m/z 440. The base peak at m/z 234 (due to Retro-Diels Alder collapse in ring C) together with significant ion fragments at m/z 219 and 206 were in conformity with structure 3.

Structure 3 was unequivocally confirmed from its X-ray crystallographic analysis (Figure 1). The three rings B, D and E were in chair conformation (trans) while the two other rings were somewhat distorted (Table II). All the ring junctures were trans except ring E which was cis with respect to ring D. The angular methyl groups at C_8 , C_{10} and C_{17} were β while the epoxy bridge at C_2 - C_3 , the angular methyl at C_{14} and the hydroxyl group at C_{15} were α . The epoxide group had the same effect as a double bond in flattening ring A compared to ring C. This backbone rearrangement to the Δ^{12} -oleanane skeleton 3 from 2,14-taraxeradiene 1 could only be explained via the formation of 4 where both C2-C3 and C4-C5-epoxides are α -oriented. Under the reaction conditions only the C_{14} - C_{15} -epoxide ring opened up leading to the α oriented C₁₅-hydroxyl function with the generation of an incipient carbonium ion at C_{10} . Methyl migration occurred from C_{13} to C_{14} , from the same α -phase, with subsequent loss of proton from C_{12} .

 2α , 14α -Diepoxytaraxerane **4** on treatment with boron trifluoride etherate in methylene chloride at 0°C for three hr underwent rearrangement to olean-12-en- 2α , 3β , 15α -triol **5**.

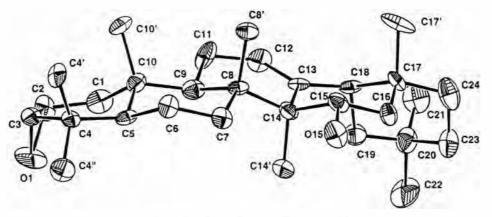


Figure 1—Ortep diagram of compound 3

Ring A	q ² 0.37670	ph ² -71.34036	q ³ 0.29871	q 0.48076	th 51.58685	Conformation* Env ¹⁰
В	0.12071	-87.98132	-0.53387	0.54734	161.25984	Chair
С	0.40111	18.21580	0.34727	0.53056	49.11476	Env ⁸
D	0.12415	-5.63761	-0.48872	0.50425	165.74712	Chair
Е	0.12343	21.19201	-0.50923	0.52398	166.37500	Chair

*Env = Envelope, superscript denotes the atom out of the plane defined by the others.

Product 5, $C_{30}H_{50}O_3$, (M⁺ 458), $[\alpha]_{D}^{27^{\circ}} + 56.7^{\circ}$ (EtOH), mp 134-35°C (benzene), was isolated in 10% yield by preparative thin layer chromatography. In the 300 MHz 'H NMR spectrum of 5 a broad 3-proton signal (D₂O exchangeable) appeared at δ 2.4 indicating the presence of three hydroxyl groups in the moelcule. A doublet at δ 3.62 (1H, J=10.5 Hz) was assigned to C₃-H while the multiplet at δ 3.74 was due to C₂-methine proton. The coupling constant of the C_3 -proton (10.5 Hz) confirmed that the C_2 and C3-protons were trans-diaxially oriented. Thus, the C₂-OH was oriented as α -equatorial and C₃-OH as β equatorial. The C15-proton resonated as a doublet of doublet at δ 4.21 (J=11.3 and 5.1 Hz) while the olefinic proton at C12 appeared as an ill-resolved signal at δ 5.30. All these data established the structure of 5 as olean-12-en- 2α , 3β , 15α -triol.

Further confirmation of the structure was provided by the 75.5 MHz ¹³C NMR data (including APT experiment) (**Table I**). The carbons comprising rings C, D and E of compound 5 showed chemical shifts similar to those observed for compound 3 while significant changes were discernible for the chemical shifts for rings A and B carbons due to the opening of epoxide ring at C_2 and C_3 .

Compound 5 was also obtained from olean- 2α epoxy-12-ene-15 α -ol 3 in 30% yield when treated with boron trifluoride etherate under similar condition. Hence, in the case of 2α , 14 α -diepoxytaraxerane 4 the triol 5 must have been formed *via* the product 3.

Experimental Section

General. Melting points were determined in an electrically heated melting point bath and are uncorrected. The infrared spectra were recorded using KBr pellets on a Perkin-Elmer 782 spectrometer, ¹H NMR spectra on a Bruker AM 300L Spectrometer

and mass spectra on a Jeol D-300 spectrometer. Rotations were measured on a Perkin Elmer 241 electronic polarimeter. Column and thin layer chromatographic analyses were carried out using silica gel BDH (60-120 mesh). Preparative thin layer chromatographic experiments were carried out on plates coated with silica gel G (Merck) as adsorbent. Spots were detected in an iodine chamber. Analytical samples were routinely dried *in vacuo* over P_2O_5 for 24 hr at room temperature. Anhydrous sodium sulphate was used for drying the organic extracts. Petrol refers to pet. ether having bp 60-80°C.

Isolation of epitaraxerol from Euphorbia antiquorum L.

Dried whole plant of Euphorbia antiquorum L. was extracted with petrol in a Soxhlet apparatus for 48 hr. The solid which separated was filtered and dissolved in benzene. Column chromatography was carried out using silica gel as adsorbent and from the petrol : benzene (3:1) eluate epitaraxerol was isolated, mp 257-58°C [benzene $[\alpha]_{D}^{27^{\circ}}$ + 2.0° (CHCl₃)] Anal. Calcd for C₃₀H₅₀O: C 84.51; H, 11.74% Found: C, 84.49; H, 11.67%; ¹H NMR (300 MHz, CDCl₃) : δ 0.80, 0.82, 0.90, 0.92, 0.95, 0.97, 1.09 (each s, 3H, C₂₃/C₂₄/C₂₅/C₂₆/C₂₈/C₂₉/C₃₀-CH₃), 3.18 (brs, 1H, C₃-OH), 3.63 (t, 1H, C₃-H), 5.52 (q, 1H, C₁₅-H); 13 C-NMR (75.5 MHz, CDCl₃) : δ 37.8, 22.6, 79.1, 38.8, 55.7, 18.9, 33.2, 39.1, 49.4, 38.0, 17.5, 36.8, 37.8, 158.2, 116.9, 33.8, 35.8, 49.0, 41.5, 28.8, 35.2, 37.6, 28.0, 15.4, 15.4, 25.9, 29.9, 29.9, 33.4, 21.3 ppm.

Acetylation of epitaraxerol. Epitaraxerol (200 mg) was dissolved in pyridine (5 mL) and acetic anhydride (1 mL) added to the solution. The reaction mixture was heated on a water-bath for 3 hr. The reaction was quenched by pouring the reaction mixture over crushed ice-chips. The solid was filtered and washed with dilute hydrochloric acid and then with water until neutral. The crude product was crystallised from chloroform-methanol (3:1) as white

crystals, mp 278°C (CHCl₃); $[\alpha]_{D}^{27^{\circ}} -14^{\circ}$ (CHCl₃) in 80% yield. Anal. Calcd for C₃₂H₅₂O₂: C, 82.05; H, 11.11% Found : C, 82.00; H, 11.07% ¹H NMR (300 MHz, CDCl₃) : δ 0.81, 0.85, 0.87, 1.08, 2.03 (each s, 3H, 5-CH₃), 0.90, 0.95 (each s, 6H, 4-CH₃), 4.45 (t, 1H, *J*=5.7 Hz, C₃-*H*), 5.52 (br.s, 1H, C₁₅-*H*); ¹³C NMR (75.5 MHz, CDCl₃) : δ 37.8, 23.6, 81.1, 38.0, 55.8, 18.8, 39.3, 39.1, 49.3, 37.7, 17.6, 36.8, 37.8, 158.2, 117.0, 33.8, 35.7, 49.1, 41.4, 28.9, 35.3, 37.5, 28.0, 16.6, 15.5, 25.9, 29.9, 29.9, 33.4, 21.3, 21.2, 171.0; MS : m/z 468 (M⁺), 408, 344, 329, 204, 284 and 269.

Dehydration of epitaraxerol 1 to 2,14taraxeradiene 2. Compound 1 (1g) was dissolved in dry p idine (20 mL) and distilled phosphorus oxychl ide (6 mL) added to it. The reaction mixture was refluxed for 4 hr and kept for 18 hr. It was poured over crushed ice-chips, extracted with methylene chloride (4×50 mL), washed with 2N hydrochloric acid (3×50 mL), then with water until the reaction mixture became neutral and dried. The concentrate afforded a white solid. It showed a single spot on a TLC plate (benzene as solvent). The solid was purified by column chromatography using silica gel as adsorbent and eluting with solvents of increasing polarity. The petrol eluate afforded compound 2, mp 194-95°C (C_6H_6) in 80% yield. Anal. Calcd for $C_{30}H_{48}$: C, 88.24; H, 11.76%. Found : C, 88.18; H, 11.70%. MS : m/z 408, 284, 269 and 204.

Epoxidation of 2,14-taraxeradiene 2. Compound 2 (600 mg) was dissolved in dry methylene chloride (20 mL) and mCPBA (750 mg) in dry methylene chloride (30 mL) was added to it dropwise with stirring at 25°C. The reaction mixture was further stirred for five hr at 25°C and kept for a further period of 18 hr. This was treated with 10% sodium sulphite solution until it gave a negative test with starch iodide paper, then washed with 5% sodium bicarbonate solution (3×20 mL) and finally with water (3×20 mL) and dried. The concentrate was subjected to preparative thin layer chromatography using benzene as solvent system. Compound 4, mp 185-87°C (benzene) was isolated in 25% yield. Anal. Calcd for C₃₀H₄₈O₇ : C, 81.82; H 10.91%. Found : C, 81.75; H, 10.83%; MS : m/z 440, 219 and 206.

Compound **3**, mp 190-93°C (benzene-ethyl acetate, 1:1), was isolated in 10% yield. Anal. Calcd for $C_{30}H_{48}O_2$: C, 81.82; H, 10.91%. Found : C, 81.77; H 10.82% MS : m/z 440, 234, 219 and 206.

Boron trifluoride catalysed rearrangement of

 2α , 14α -die poxytaraxerane 4. Compound 4 (100 mg) was dissolved in dry methylene chloride (10 mL) and boron trifluoride etherate (0.4 mL) in dry methylene chloride (7 mL) added to it dropwise at 0°C under nitrogen atmosphere with stirring for 3 hr. The reaction mixture was poured over ice-chips, extracted with methylene chloride (4×10 mL), washed with 2% sodium bicarbonate solution (3×10 mL), water (3×10 mL) and dried. The concentrate was subjected to preparative thin layer chromatography using benzene : ethyl acetate (9:1) as the solvent system. Compound 5, mp 134-35°C (benzene), was isolated in 15% yield. Anal. Calcd for C₃₀H₅₀O₃ : C, 78.60; H, 10.92%. Found : C 78.55, H : 10.83%; MS : m/z 458, 440, 234, 219 and 206.

+

Boron trifluoride catalysed rearrangement of olean-12-en-2 α -epoxy-15 α -ol 3. Compound 3 (50 mg) was dissolved in dry methylene chloride (5 mL) and boron trifluoride etherate (0.2 mL) in dry methylene chloride (1 mL) added to it dropwise with continuous stirring at 0°C under nitrogen atmosphere for 3 hr. The reaction was quenched over ice-chips, extracted with methylene chloride (4×5 mL), washed with 2% sodium bicarbonate solution (3×5 mL), water (3×5 mL) and dried. The concentrate was subjected to preparative thin layer chromatography using the solvent system benzene-ethyl acetate (9:1) Compound 5 was isolated in 30% yield.

X-Ray crystallographic analysis . Compound 3 was recrystallised by slow evaporation of a methanol solution at 4°C. A colourless prismatic crystal 0.2 x 0.2×0.6 mm in size was used for X-ray diffraction analysis.

Crystal data— $C_{30}H_{48}O_2$, M 440, monoclinic space group $P2_1$, a = 15.002 (9) Å, b = 11.783 (7)Å, c = 7.423 (3) Å, b = 98.94 (6) Å, Z = 2, V = 1296.2 (9) Å³, F(OOO) = 488, $\lambda = 1.5418$ Å (CuK α), R = 7.3% for 1892 Fobs with 1>2 σ (1), R = 8.7% for all Fobs (2031).

Data collection, processing and refinement—X-ray crystallographic analysis was carried out on a Philips PW 1100 four circle diffractometer, operating the CuK α radiation ($\lambda = 1.5418$ Å). The orientation matrix and cell parameters were deduced from the angular settings of 25 reflections randomly distributed between 20 and 30 degrees in 6 and refined by least squares procedure. Diffraction data were recorded within the 3-65° : θ range. The structure was solved by direct methods (SHELXS). Most of the atoms were identified on the E-map corresponding to the highest

de III-Positi		× 10 ⁴) and mean re on-hydrogen atom	ecalculated isotropic	c factors (× 10 ³)
ATOM	X	Y	Z	< <i>U></i>
01	2731(4)	5055(5)	2923(8)	49(6)
Cl	1481(6)	5876(7)	4386(10)	32(7)
C2	2470(5)	5763(7)	4373(10)	34(7)
C3	2898(5)	6260(6)	2899(10)	26(6)
C4	2366(4)	6918(6)	1328(8)	21(5)
C4′	2776(4)	8127(6)	1426(10)	30(6)
C4"	2569(5)	6374(8)	-483(10)	40(7)
C5	1343(4)	6880(6)	1386(8)	17(5)
C6	787(4)	7772(6)	144(9)	24(6)
C7	-204(5)	7521(7)	-139(9)	28(6)
C8	-625(4)	7493(5)	1616(8)	16(5)
C8′	-668(5)	8735(6)	2304(12)	37(8)
C9	-8(4)	6756(5)	3089(7)	17(5)
C10	1037(4)	6904(5)	3285(7)	12(4)
C10′	1408(5)	8000(6)	4388(10)	25(6)
C11	-355(5)	6804(10)	4919(9)	38(7)
C12	-1341(5)	6703(7)	4729(8)	34(7)
C13	-1935(4)	6768(6)	3173(8)	21(5)
C14	-1598(4)	6939(5)	1340(7)	14(5)
C14′	-1599(4)	5766(6)	535(8)	20(5)
C15	-2319(5)	7702(6)	153(9)	27(6)
015	-2140(4)	7719(5)	-1686(6)	39(5)
C16	-3283(5)	7331(7)	140(10)	29(6)
C17	-3565(4)	7320(6)	2049(9)	28(6)
C17′	-3472(7)	8553(7)	2831(13)	58(10)
C18	-2911(5)	6560(5)	3339(9)	22(6)
C19	-3160(5)	5282(6)	3176(12)	35(7)
C20	-4143(5)	5017(7)	3273(12)	37(7)
C21	-4410(6)	5308(9)	5112(12)	53(9)
C22	-4283(7)	3717(8)	2934(16)	62(11)
C23	-4719(5)	5664(8)	1731(11)	46(8)
C24	-4565(5)	6957(9)	1948(12)	50(9)

(*) in A² and recalculated as : $<U>= \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{i} * a_{j} * a_{i} a_{j}$

figure of merit. Two missing positions were obtained by difference – Fourier Synthesis. The overall structure was refined with isotropic, then anisotropic thermal factors, for the non-hydrogen atoms, by full matrix least squares procedures. All hydrogens were introduced with a fixed U isotropic thermal factor of 0.06 subsequently refined as grouped factors, according to their position, one overall value for hydrogens linked to tertiary carbons, and a second value for other hydrogens. The final agreement factor

Tab

7

Table IV—Positional parameters $(\times 10^3)$ and mean recalculated isotropic factors $(\times 10^3)$ for hydrogens atoms.

13011	opic racions (v io jioi iiy	diogens atoms	•
ATOM	Х	Y	Ζ	U
HII	130	583	565	36
H22	133	510	382	36
H2	302	568	536	36
H3	358	639	322	36
H41'	251	853	25	54
H42′	347	812	152	54
H43′	260	854	252	54
H41″	228	688	-152	54
				contd

1327

Table IV —Positional parameters ($\times 10^{3}$) and mean recalculated isotropic factors ($\times 10^{3}$) for hydrogens atomscontd					Table V —Distances (Å) for non-hydrogen atoms with <i>esd</i> .'s given in parentheses -contd			
	X	y ioi iiy	Z	U	C2 C4	-		
ATOM					C3 – C4	1.520 (9)	C14 – C15	1.568 (9)
H42''	230	558	-62	54	C4 – C4'	1.549(10)	C15 – O15	1.432 (8)
H43"	325	636	-44	54	C4 – C4"	1.562 (10)	C15 – C16	1.509 (10)
H5	110	613	86	36	C4 – C5	1.542 (9)	C16 – C17	1.540 (10)
H61	86	856	74	36	C5 – C6	1.553 (9)	C17-C17'	1.562(11)
H62	107	780	-103	36	C5 – C10	1.549 (8)	C17 – C18	1.546 (9)
H71	-21	678	-83	36	C6 – C7	1.499 (10)	C17 – C24	1.550(11)
H72	-51	815	-95	36	C7 – C8	1.534 (9)	C18 – C19	1.552 (10)
H81'	-102	869	341	54	C8 – C8'	1.554 (10)	C19 – C20	1.521 (11)
H82′	-100	932	141	54	C8 – C9	1.580 (8)	C20 – C21	1.520(12)
H83′	-2	900	276	54	C8 – C14	1.582 (9)	C20 – C22	1.561 (13)
H9	-3	595	260	36	C9 – C10	1.561 (9)	C20 – C23	1.526 (12)
H101	119	876	377	54	C9 – C11	1.529 (9)	C23 – C24	1.545 (14)
H102	210	803	465	54	Table VI—Bo	ond angles (°C)	for non-hydrogen	atoms with
H103	118	80 0	565	54		esd.'s given i	n parentheses	
H111	6	615	572	36	C2-01-C3	60.9(5)	C1-C10-C5	107.5(5)
H112	-12	755	554	36	C2-C1-C10	114.3(6)	C1-C10-C9	
H12	-162	660	589	36	01-C2-C1	114.3(0)	C1-C10-C10'	107.7(5)
H141	-135	575	-84	54	01-C2-C3			106.1(5)
H142	-226	549	15	54	C1-C2-C3	58.9(5)	C5-C10-C9	110.4(5)
H143	-123	524	128	54	01-C3-C2	121.2(6)	C5-C10-C10'	110.9(5)
H15C	-223	849	72	36	01-C3-C4	60.2(5)	C9-C10-C10'	114.0(5)
H15O	-161	815	203	36	C2-C3-C4	116.1(6)	C9-C11-C12	112.9(7)
H161	-368	793	-58	36		122.3(6)	C11-C12-C13	126.9(7)
H162	-341	655	-47	36	C3–C4–C4′	106.0(5)	C12-C13-C14	120.1(6)
H171	-369	856	408	54	C3-C4-C4''	107.6(6)	C12-C13-C18	116.2(6)
H172	-387	911	199	54	C3-C4-C5	111.7(5)	C14–C13–C18	123.4(5)
H173	-281	881	298	54	C4'-C4-C4''	106.7(5)	C8-C14-C13	111.3(5)
H18	-290	681	468	36	C4'-C4-C5	114.6(5)	C8-C14-C14'	111.1(5)
H191	-298	503	193	.36	C4''-C4–C5	109.9(5)	C8-C14-C15	112.2(5)
H192	-268	493	417	36	C4-C5-C6	114.1(5)	C13-C14-C14'	108.8(5)
H211	-404	482	611	54	C4-C5-C10	117.4(5)	C13-C14-C15	106.2(5)
H212	-509	510	507	54	C6-C5-C10	108.7(5)	C14'-C14C15	107.0(5)
H213	-434	615	553	54	C5-C6-C7	112.3(5)	C14-C15-O15	109.1(5)
H221	-410	339	175	54	C6C7C8	114.5(6)	C14-C15-C16	114.5(6)
H222	-497	357	289	54	C7–C8–C8′	107.6(5)	O15-C15-C16	108.7(6)
H223	-395	326	402	54	C7-C8-C9	109.0(5)	C15-C16-C17	113.3(6)
H231	-540	549	165	36	C7-C8-C14	113.1(5)	C16-C17-C17'	108.2(6)
H232	-451	544	52	36	C8'-C8-C9	109.9(5)	C16- <u>C</u> 17-C18	109.6(6)
H241	-487	712	309	36	C8'-C8-C14	110.3(5)	C16-C17-C24	111.1(6)
11241	-496	731	84	36	C9-C8-C14	107.0(5)	C17'-C17-C18	107.3(6)
					C8-C9-C10	118.4(5)	C17'-C17C24	107.8(6)
I able V-Dis	stances (Å) for r	on-hydrog barenthese		with esd.'s	C8-C9C11	110.5(5)	C18-C17-C24	112.7(6)
01 65				1 4(9 (10)	C10-C9C11	112.9(5)	C13-C18-C17	112.7(5)
O1 – C2	1.462 (9)		- C12	1.468 (10)	C13-C18-C19	112.1(6)	C19C20C23	107.6(7)
O1 – C3	1.443 (9)		-C13	1.347 (9)	C17-C18-C19	113.1(6)	C21-C20-C22	108.6(7)
C1 – C2	1.491 (11)		-C14	1.537 (8)	C18-C19-C20	114.7(6)	C21-C20-C23	111.3(7)
C1 – C10	1.553 (10)		- C18	1.509 (9)	C19-C2()-C21	112.9(7)	C22-C20-C23	108.8(7)
C2 – C3	1.473 (10)	C14	- C14'	1.564 (9)	C19-C2()-C22	107.5(7)	C20-C23-C24	110.9(7)

٣

*

٠

.

	Table VII	-Anisotropic the	rmal parameters(×	10 ⁴) fornon-hydro	gen atoms	
ATOM	<i>U</i> 11	U22	U33	U23	<i>U</i> 13	<i>U</i> 12
01	804(43)	131(27)	521(34)	88(26)	88(31)	178(28
C1	527(48)	208(40)	232(37)	186(33)	-30(35)	1(38
C2	333(40)	286(40)	407(41)	204(35)	-62(32)	119(35
C3	373(40)	92(36)	323(38)	-18(31)	-57(31)	47(31
C4	266(34)	151(32)	208(32)	53(30)	5(26)	7(30
C4′	208(34)	183(37)	506(45)	43(36)	52(30)	-120(32
C4''	436(44)	488(48)	269(38)	-22(36)	107(34)	-15(39
C5	336(35)	39(28)	145(28)	-11(27)	-62(25)	-43(29
C6	310(35)	217(39)	183(32)	149(30)	15(27)	8(30
C7	333(42)	271(39)	232(34)	100(31)	-1(30)	86(34
C8	317(35)	59(30)	111(28)	4(25)	28(24)	7(2
C8′	386(44)	71(38)	643(58)	-121(38)	-23(40)	-19(3
С9	403(36)	29(29)	69(27)	16(26)	7(25)	-16(2
C10	238(30)	69(29)	69(25)	-18(26)	-18(22)	-47(2)
C10′	256(35)	195(37)	286(37)	-175(32)	-54(29)	-116(3
C11	266(35)	747(60)	128(31)	15(41)	-22(27)	-86(4
C12	459(41)	451(49)	115(30)	20(34)	97(29)	19(3
C13	308(34)	154(34)	164(30)	-57(28)	58(26)	-40(3
C14	257(32)	142(29)	137(27)	-40(27)	29(24)	99(2
C14′	339(36)	126(33)	147(30)	-90(26)	40(26)	79(2
C15	318(38)	258(39)	223(33)	25(30)	25(28)	98(3
015	415(31)	537(38)	216(24)	140(26)	68(22)	125(2
C16	262(36)	307(39)	301(37)	53(32)	-48(29)	142(3
C17	239(34)	219(38)	386(38)	-36(31)	93(29)	103(3
C17′	885(72)	295(47)	557(58)	-117(43)	290(54)	146(4
C18	367(37)	106(33)	202(32)	-46(26)	16(28)	-33(2
C19	336(39)	181(38)	527(48)	-1(35)	12(35)	-17(3
C20	313(40)	278(43)	514(49)	80(38)	-56(37)	4(3
C21	532(51)	569(60)	482(51)	80(47)	123(41)	1(4
C22	476(57)	388(54)	972(82)	-11(54)	6(53)	-249(4
C23	311(39)	568(56)	481(49)	60(45)	-58(35)	52(4
C24	414(46)	500(57)	573(53)	155(51)	20(39)	234(4

 $R = \frac{\sum \|fo| - |fc\|}{\sum \|fo|} = 7.3\% \text{ for } 1892 \text{ reflections}$

observed above the 2σ background.

The positional parameters are given in **Tables III** and **IV**, the distance (Å) for non-hydrogen atoms and bond angles with estimated deviations are given in **Tables V** and **VI** and the anisotropic thermal parameters in **Table VII**.

Acknowledgement

The authors thank Mr A K Acharyya, Mr P Ghosh

and Mr J Ghosh of the Instrumental Laboratory of the Centre of Advanced Studies on Natural Products, Department of Chemistry, Calcutta University for recording the spectra and to CSIR, New Delhi, and UGC, New Delhi for financial assistance.

References

- 1 Talapatra S K, Bhar D S & Talapatra B, *Indian J Chem*, 15B, 1977, 806.
- 2 Sil A K, Ganguly J K, Dhara K P, Dutta C P & Roy D N, Indian J Chem, 20B, 1981, 201.
- 3 Ganguly J K, Som U K, Haque K E, Dhara K P & Dutta, C P, *Indian J Chem*, 21B, 1982, 1065.

1329

T

- 4 Corbett R E, Cong A N T, Wilkins A L & Thomson R A, J Chem Soc Perkin Trans-1, 1985, 2051.
- 5 Patra A & Choudhuri S K, Indian J Chem, 27B, 1988, 170.
- 6 Som U K, Sil A K, Haque K E, Dutta C P & Dhara K P, J Indian Chem Soc. 65, 1988, 604.
- 7 Pradhan B P, Roy A & Patra A, Indian J Chem, 31B, 1992, 633.
- 8 Banerji A & Sur R K, Indian J Chem, 34B, 1995, 338.
- 9 Fortschritte der Chemie Organischer Naturstoffe, Vol. 36, 1-229, edited by W Herz, H Griesebach and G W Kirby, (Published by Springer – Verlag / Wien) 1979.
- 10 Chatterjee A, Mukhopadhyay S & Chattopadhyay K. *Tetrahedron*, 32, 1976, 3051.
- 11 Cremer D & People J A, J Am Chem Soc, 97, 1975, 354.