

Zurich Open Repository and Archive

University of Zurich University Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch

Year: 2006

Reactions of 2-unsubstituted 1H-Imidazole 3-Oxides with 2,2-Bis(trifluoromethyl)ethene-1,1-dicarbonitrile: A stepwise 1,3-dipolar Cycloaddition

Mlostoń, Grzegorz; Jasiński, M; Linden, Anthony; Heimgartner, H

Abstract: The reaction of 1,4,5-trisubstituted 1H-imidazole-3-oxides 1 with 2,2-bis(trifluoromethyl)ethene-1,1-dicarbonitrile (7, BTF) yielded the corresponding 1,3-dihydro-2H-imidazol-2-ones 10 and 2-(1,3-dihydro-2H-imidazol-2-ylidene)malononitriles 11, respectively, depending on the solvent used. In one example, a 1: 1 complex, 12, of the 1H-imidazole 3-oxide and hexafluoroacetone hydrate was isolated as a second product. The formation of the products is explained by a stepwise 1,3-dipolar cycloaddition and subsequent fragmentation. The structures of 11d and 12 were established by X-ray crystallography.

DOI: https://doi.org/10.1002/hlca.200690129

Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-51291 Journal Article Accepted Version

Originally published at:

Mlostoń, Grzegorz; Jasiński, M; Linden, Anthony; Heimgartner, H (2006). Reactions of 2-unsubstituted 1H-Imidazole 3-Oxides with 2,2- Bis(trifluoromethyl)ethene-1,1-dicarbonitrile: A stepwise 1,3-dipolar Cycloaddition. Helvetica Chimica Acta, 89(7):1304-1316.

DOI: https://doi.org/10.1002/hlca.200690129

Prof. Dr. H. Heimgartner

Tel. 044 635 4282

Fax 044 635 6836

e-mail: heimgart@oci.unizh.ch

Reactions of 2-Unsubstituted Imidazole N-Oxides with 2,2-Bis(trifluoromethyl)ethene 1,1-Dicarbonitrile; A Stepwise 1,3-Dipolar Cycloaddition

by Grzegorz Mlostoń*, Marcin Jasiński¹)

University of Łódź, Department of Organic and Applied Chemistry, Narutowicza 68, PL-90-136 Łódź

Anthony Linden and Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190,

CH-8057 Zürich

¹) Part of the planned Ph.D. thesis of *M.J.*, University of Lódź

The reaction of 1,4,5-trisubstituted imidazol-3-oxides **1** with 2,2-bis(trifluoromethyl)ethene-1,1-dicarbonitrile (**7**, BTF) yielded the corresponding imidazol-2-ones **10** and 2-(imidazol-2-ylidene)malononitriles **11**, respectively, depending on the solvent used. In one example, a 1:1 complex, **12**, of the imidazol-3-oxide and hexafluoroacetone hydrate was isolated as a second product. The formation of the products is explained by a stepwise 1,3-dipolar cycloaddition and subsequent fragmentation. The structures of **11d** and **12** were established by X-ray crystallography.

1. INTRODUCTION. - Imidazole *N*-oxides are interesting compounds with respect to their applications as building blocks of imidazole derivatives [1-3] and for their diverse biological activities [4-6]. Convenient syntheses of 2-unsubstituted imidazole *N*-oxides are condensations of α -(hydroxyimino)ketones with *in situ* generated methylidenamines [7], of α -aminooximes with orthoformates [8], and of diimines with formaldoxime [9]. Generally, imidazole *N*-oxides are not available by direct oxidation of the parent compound. However, a recent paper describes the preparation of 1-methylimidazole N^3 -oxide by treatment of 1-methylimidazole in THF with H_2O_2 at room temperature [10]. Starting with imidazole *N*-oxides, preparations of imidazole-2-thiones [7], 2-cyanoimidazoles [11], as well as parent imidazoles *via* deoxygenation with PCl₃ [12] were reported. Furthermore the isomerization to give imidazol-2-ones can easily be achieved by treatment with Ac₂O [11] or photochemically [13].

The structure of 2-unsubstituted imidazole *N*-oxides relates to aldonitrones, which are well known 1,3-dipoles. In fact, they react with dipolarophiles, such as dimethyl acetylenedicarboxylate [2] [12], isocyanates and isothiocyanates [2], as well as with thioketones and thioketenes [7] to give ultimate products, which result from subsequent conversions of the initially formed [2+3]-cycloadducts. Of special mechanistic interest is the reaction of **1a** with thioketene **2**, in which the formation of two sets of products, *i.e.* 3/4 and 5/6 is an indication for the stepwise reaction pathway [7] (*Scheme1*). The addition of the dipole **1** to the heterocumulene **2** leads to the zwitterionic intermediate **A**, in which the formation of the five-membered unstable cycloadducts (route a) competes with the cyclization to yield thiirane **4** (route b).

Cycloreversion of the cycloadduct leads to **5** and **6**. These results prompted us to test other dipolarophiles in reactions with imidazole *N*-oxides of type **1**. The electron deficient 2,2-bis(trifluoromethyl)ethene-1,1-dicarbonitrile (**7**, BTF) was selected for the present study.

Apart from the fact that **7** has been used extensively in *Diels-Alder* reactions [14] and in [2+2]-cycloadditions [15], to the best of our knowledge no [2+3]-cycloadditions with this dipolarophile have been reported.

2. RESULTS AND DISCUSSION. - Following the previously described procedure, five known and three new imidazole N-oxides of type **1** were prepared by heating mixtures of α -(hydroxyimino)ketones **8** and the corresponding hexahydro-1,3,5-triazines **9**, the trimers of methylenamines, in EtOH (*Scheme* 2).

Scheme 2

All prepared compounds **1b-1i** were isolated as colorless crystals, which contained variable amounts of H_2O . The removal of H_2O was neither possible by drying under reduced pressure nor by azeotropic distillation with toluene, because of the thermal instability of **1**, which converted into the corresponding imidazol-2-ones. The imidazole *N*-oxide hydrates of type **1**'H₂O showed a characteristic singlet at *ca.* 7.8-8.2 ppm in the ¹H-NMR spectra. When the spectra were recorded from a solution in CD_3OD , the signal disappeared after several h at room temperature (H/D exchange)²).

²) Very fast H/D exchange was observed in basic aqueous solution, whereas it was slow in the presence of DCl [8].

As pointed out in the introduction, the transformation of *N*-oxides of type **1** into the parent imidazoles was typically carried out by treatment with PCl₃ [1][3][12]. In our laboratory, *N*-oxides **1** were deoxygenated by using freshly prepared *Raney*-Ni [16] in EtOH at room temperature and the corresponding imidazoles were obtained in almost quantitative yield.

The first experiments with BTF (7) were carried out in CH₂Cl₂ using the *N*-oxides 1 as hydrates. The conversions were completed within *ca.* 15 min at room temperature. The major product obtained in these reactions was the corresponding imidazol-2-one 10 (*Scheme 3*). In addition, small amounts of (1,3-dihydroimidazol-2-ylidene)malononitriles 11 were detected. Carrying out the same reaction in MeOH solution, compounds 11 were formed as the main products. Fractional crystallization of the mixtures gave 11 as colorless or pale yellow crystals. Unexpectedly, in the experiment with 1d, in addition to 11d, the complex of the starting material with hexafluoroacetone hydrate, depicted as structure 12 in *Scheme 3*, was isolated by concentration of the mother liquor and recrystallization of the residue from CH₂Cl₂.

Scheme 3

Imidazol-2-ones of type **10** are well documented compounds and the identification of **10b-10i** was possible on the basis of their spectroscopic and analytical data as well as by comparison with original samples. The malonodinitrile derivatives **11** are less well known. Their IR-spectra (KBr) show two intense absorption bands of the CN groups located at *ca*. 2195 and 2155 cm⁻¹. In the ¹³C-NMR spectra ((D₆)DMSO or CDCl₃), the C-atoms of the exocyclic formal C,C-double bond absorb at 148–146 ppm (C(2)) and 26–23 ppm (=*C*(CN)₂), which is characteristic of this type of 'push-pull' system [17][18]. These chemical shifts

indicate a highly zwitterionic character of these compounds in solution, resulting in a low rotational barrier about the exocyclic $C=(CN)_2$ bond [17]. In accordance with this interpretation is the fact that only one CN signal appears in the 13 C-NMR spectrum. In the case of **12**, the IR spectrum showed the presence of a series of strong and broad absorption bands between 3400 and 2374 cm⁻¹, which were attributed to the associated O-H bonds. Another strong absorption at 1213 cm⁻¹ revealed the presence of the CF₃ group. In the 1 H-NMR spectrum recorded from a solution in CD₃OD, the characteristic signal of *H*-C(2) of the imidazole ring ocurred at 8.48 ppm and was downfield shifted compared with the corresponding signal in **1d**.

Finally, the molecular structures of **11d** and **12** were established by single crystal X-ray diffraction analysis (*Figs. 1* and 2).

Fig. 1. ORTEP Plot [19] of the molecular structure of **11d** (arbitrary numbering of the atoms; 50% probability ellipsoids)

The asymmetric unit in the structure of **11d** contains one molecule of the heterocycle plus one highly disordered MeOH molecule. The disorder of the MeOH molecule could not be modelled adequately. Therefore, the contribution of the solvent molecules to the intensity data was removed by using the SQEEZE [20] routine of the PLATON program [21]. The NH group of **11d** forms an intermolecular H-bond with the N-atom of one of the CN groups of a neighboring molecule. In turn, the acceptor molecule donates the same type of H-bond back to the original molecule, therefore forming centrosymmetric dimers where the H-bonds form a closed loop with a graph set motif [22] of R^2 , (12). The five-membered heterocycle is almost planar, and the adjacent atoms C(13), C(16) and C(22) deviate only slightly from this plane. The intraannular C,N-bonds (N1),C(2) and N(3),C(2) are short (1.349(2) and 1.346(2) Å.

resp.); the bond lengths are close to those of C=N-bonds (\it{ca} . 1.30 Å). Similarly, the C,C-bonds to the C \equiv N groups, $\it{i.e.}$ C(13),C(14) and C(13),C(15) show significant double-bond character (1.406(2) and 1.408(2) Å, resp.). On the other hand, the formal C82),C(13) double-bond is rather long (1.426(2) Å). These data support a zwitterionic structure with the positive charge delocalized between N(1),C(2) and N(3), and the negative one between CN(14), C(13), and CN(15). Surprisingly, the plane of the malononitrile moiety is twisted only slightly out of the heterocyclic plane (dihedral angle N(1) –C(2) –C(13) –C(14) –15.7°).

Fig. 2. a) *ORTEP Plot* [19] *of the molecular structure of* **12** (arbitrary numbering of the atoms; 50% probability ellipsoids) *and* b) *Packing diagram*

There is one molecule of the zwitterionic oxide and one molecule of hexafluoropropane-2,2-diol (hexafluoroacetone hydrate) in the asymmetric unit of structure 12. The OH groups form intermolecular H-bonds with the oxide O-atom of two different zwitterions, so that each zwitterions accepts a H-bond at the same atom from two different ketone hydrates. These interactions together link two zwitterions and two ketone hydrates to give centrosymmmetric tetramers where the H-bonds form a closed loop with a graph set motif of R^2 , $_4$ (12).

Formula

Reaction mechanisms for the formation of the imidazole derivatives 10-12 are proposed in *Scheme 4*. The key intermediate is the zwitterion **B**, which is formed by a nucleophilic addition of **1** onto **7**. In CH₂Cl₂, **B** reacts with the H₂O of the hydrate to give **C**, which undergoes a subsequent fragmentation to yield 10. As the second product, we postulate the adduct 13 of H₂O and 7, which, however, could not be detected after workup. The conversion

of **B** to **11** in MeOH solution occurs *via* a 1,5-dipolar electrocyclization which yields the 'cycloadduct' **D**. Subsequent cleavage of the N,O bond followed by a retro-ene reaction leads finally to **11** and hexafluoroacetone, which is immediately captured by H₂O. The different reaction course in CH₂Cl₂ and in MeOH is remarkable. A likely interpretation is the higher nucleophilicity of H₂O in an aprotic solvent like CH₂Cl₂ compared with MeOH, which reduces the nucleophilicity by solvatation.

Scheme 4

As shown in *Scheme 4*, H₂O plays an important role in the formation of products in the reaction of **1** and **7**. For this reason, the reaction was repeated using anhydrous *N*-oxides **1**, which were prepared by drying the corresponding hydrates with activated molecular sieves in CHCl₃. Under these conditions, the (imidazol-2-ylidene)malononitriles **11** were formed in high yield (*Scheme 4*). Neither imidazol-2-ones **10** nor complexes of type **12** were present in the reaction mixtures.

In conclusion, the present study shows that imidazole N-oxides 1 easily react with BTF (7). Although the formation of products 11 can be explained via a formal [2+3]-cycloaddition, the formation of imidazol-2-ones 10 (in the reaction involving H_2O) clearly indicate a stepwise reaction mechanism. The common intermediate in the formation of all products is the zwitterion B, which is the product of the regioselective attack of the 'nitrone-like' dipolar species 1 on 7. This reaction can be regarded as the initial step of a *Michael* addition, thus leading to the activation of C(2) of the imidazolium ring. In the light of these results, the combination 1/7 fulfils the fundamental requirement for a step-wise course of a [2+3]-cycloaddition *i.e.* an electron-rich 1,3-dipole approaches an electron deficient dipolarophile [23][24].

The formation of **11** under anhydrous conditions can be of preparative importance as derivatives of (1,3-dihydroimidazol-2-ylidene)malononitriles are known as pharmacologically active compounds [25].

We thank the analytical sections of our institutes for spectra and analyses and *F. Hoffmannn-La Roche AG*, Basel, for financial support. *G. M.* and *M. J.* acknowledge the financial support by the *Polish State Committee for Scientific Research* (KBN-Grant No. PBZ-KBN-126/T09/12).

Experimental Part

- 1. *General*. M.p.s: *Melt-Temp*. *II* apparatus (*Aldrich*); in capillary; uncorrected. IR spectra (KBr): *NEXUS FT-IR* spectrophotometer; in KBr. ¹H- and ¹³C-NMR spectra: *Tesla BS567A* (80 and 20 MHz, resp.) or *Bruker AC 300* instrument (300 and 75.5 MHz, resp.); in CDCl₃, TMS as an internal standard. The multiplicity of the ¹³C signals was deduced from the DEPT spectra. MS (EI or CI): *Finnigan MAT-90* or *Finnigan SSQ-700* instruments. Elemental analyses were performed in the Analytical Laboratory of the University of Zürich or in the Laboratory of the Polish Academy of Sciences (CBMiMM) in Łódź.
- 2. Starting materials. α -Hydroxyiminoketones **8** were obtained according to known protocols: $R^1 = Me$ [26], $R^1 = Ph$ [27]. 1,3,5-Trisubstituted hexahydro-1,3,5-trizines **9** were prepared following known methods: $R^2 = Me$ [28], $R^2 = Bn$ [29], $R^2 = cHex$ [30], $R^2 = cProp$ [31], and $R^2 = Allyl$ [32].
- 3. *Preparation of 1H-Imidazole 3-Oxides* (1): Syntheses and properties of the *N*-oxides **1b-f** have already been described [7][11][33]. Compounds **1g-i**, which have not been described so far, were prepared by heating 1.2 mmol of the corresponding 1,3,5-hexahydrotriazine **9** with

1.0 mmol of 3-(hydroxyimino)-3-phenylpropan-2-one ($\mathbf{8}$, $\mathbf{R}^1 = \mathbf{Me}$) and α -benzil monoxime ($\mathbf{8}$, $\mathbf{R}^1 = \mathbf{Ph}$), respectively, in boiling EtOH. After removal of the solvent in vacuo, the resulting mixture was treated with Et₂O, cooled, then the product was filtered, washed with cold acetone and recrystallized. In the case of 1-allyl-4,5-diphenyl-1*H*-imidazole 3-oxide ($\mathbf{1i}$), the reaction mixture also contained the isomeric 1,3-dihydro-2*H*-imidazol-2-one, which was formed as a side product, and the separation of both compounds was achieved by column chromatography (SiO₂, AcOEt).

1-Cyclopropyl-5-methyl-4-phenyl-1H-imidazole 3-Oxide (**1g**): 3 h; yield: 199 mg (93%). Colorless needles. M.p. 172–174° (acetone). IR: 3063s, 3020m, 2961s (br.), 1619m (br.), 1594m, 1497m, 1445m, 1422s, 1386vs, 1374vs, 1317m, 1258m, 1219s, 1150m, 1064w, 1036m, 894m, 843m, 825s, 769m, 755s, 697s (br.). ¹H-NMR: 7.27 (s, H–C(2)); 6.78–6.76, 6.60–6.47 (2m, 5 arom. H); 2.36–2.31 (m, 1 H of cProp); 1.50 (s, Me); 0.29–0.15 (m, 4 H of cProp). ¹³C-NMR: 129.9, 127.0, 124.4 (3s, arom. C_q, C(4), C(5)); 129.4, 128.2, 128.1 (3d, 5 arom. CH); 125.6 (d, C(2)); 27.0 (d, CH of cProp); 9.7 (q, Me); 6.42 (t, 2 CH₂ of cProp). EI-MS: 214 (100, M⁺·), 198 (62), 197 (67), 130 (30). Anal. calc. for C₁₃H₁₄N₂O⁻¹/₈ H₂O (216.52): C 72.12, H 6.63, N 12.94; found: C 72.09, H 6.57, N 12.93.

1-Allyl-5-methyl-4-phenyl-1H-imidazole 3-Oxide (**1h**): 2 h; yield: 191 mg (89%). Colorless crystals. M.p. 164–167° (CH₂Cl₂/Et₂O). IR: 3093w, 3063s, 3031m, 2980s, 2940vs, 1640m, 1626m, 1497m, 1456m, 1428s, 1384vs, 1361m, 1348m, 1317m, 1268s, 1220s, 1142w, 932s, 852m, 836m, 762s, 719s, 699s. ¹H-NMR: 7.91 (s, H-C(2)); 7.68–7.31 (m, 5 arom. H); 5.97–5.84 (m, -CH=); 5.35–5.12 (m, =CH₂); 4.48–4.46 (m, CH₂N); 2.23 (s, Me). ¹³C-NMR: 131.3 (d, -CH=); 130.5, 127.4, 122.5 (3s, arom. C_q, C(4), C(5)); 129.7, 128.4, 128.2 (3d, 5 arom. CH); 124.9 (d, C(2)); 119.1 (t, =CH₂); 48.0 (t, CH₂); 9.3 (q, Me). CI-MS: 215 (100, [M+1]⁺), 199 (39). Anal. calc. for C₁₃H₁₄N₂O (214.27): C 72.87, H 6.59, N 13.07; found: C 72.68, H 6.57, N 13.09.

1-Allyl-4,5-diphenyl-1H-imidazole 3-Oxide (**1i**): 5 h; yield: 201 mg (73%). Colorless solid. M.p. 176–180° (CH₂Cl₂/Et₂O). IR: 3065s, 3024m, 2991s, 2975s, 2935m, 1621m (br.), 1603m, 1585m, 1585m, 1507m, 1483s, 1458m, 1445s, 1423m, 1328s, 1344s, 1320m, 1306m, 1269m, 1208m, 1183m, 1077m, 1051m, 1024m, 993m, 955m, 944m, 930m, 814m, 769vs, 715vs, 704vs, 698vs. ¹H-NMR: 8.07 (s, H-C(2)); 7.58–7.24 (m, 10 arom. H); 5.93–5.80 (m, – CH=); 5.33–5.15 (m, =CH₂); 4.42–4.40 (m, CH₂N). ¹³C-NMR: 131.7 (d, –CH=); 130.7, 129.6, 129.1, 128.1 (4d, 10 arom. CH); 130.8, 127.4, 127.1, 127.0 (4s, 2 arom. C_q, C(4), C(5)); 125.8 (d, C(2)); 119.6 (t, =CH₂); 48.3 (t, CH₂). CI-MS: 277 (63, [M+1]⁺), 261 (100). Anal. calc. for C₁₈H₁₆N₂O (276.34): C 78.24, H 5.84, N 10.14; found: C 78.10, H 5.85, N 10.11.

3. Deoxygenation of Imidazole N-Oxides 1 with Raney-Ni. – General procedure. To a magnetically stirred soln. of 1b (188 mg, 1.0 mmol) in EtOH (2 ml), a suspension of freshly prepared Raney-Ni [16] in EtOH was added portion-wise in intervals of *ca.* 10 min until the conversion of the starting material was complete (TLC). Then, the mixture was filtered in order to remove the black Ni precipitate and the filtrate was evaporated to dryness. Imidazole 3b was obtained as pure material (¹H-NMR). Analogous treatment of 1d with *Raney*-Ni at r.t. yielded pure 3d.

1,5-Dimethyl-5-phenyl-1H-imidazole (**3b**): Yield: 165 mg (96%). Colorless oil [34]. IR (neat): 3150–2850*m* (br.), 1717*m*, 1663*m*, 1604*s*, 1580*m*, 1563*w*, 1508*s*, 1495*s*, 1472*m*, 1444*s*, 1423*m*, 1379*s*, 1320*w*, 1303*w*, 1239*s*, 1165*m*, 1138*m*, 1071*m*, 1012*m*, 939*m*, 772*s*, 739*m*, 703*s*, 632*s*. ¹H-NMR: 7.73–7.10 (*m*, H–C(2), 5 arom. H); 3.57 (*s*, MeN); 2.38 (*s*, Me).

1-Benzyl-4,5-diphenyl-1H-imidazole (**3d**): Yield: 300 mg (97%). Colorless solid. M.p. 112–115° ([35]: 113–115°). IR: 3150–2950*m* (br.), 1602*s*, 1506*s*, 1497*s*, 1477*m*, 1455*s*, 1443*s*, 1433*m*, 1359*s*, 1254*s*, 1193*m*, 1068*m*, 1027*m*, 955*s*, 915*m*, 828*m*, 794*s*, 774*s*, 760v*s*, 724v*s*, 698v*s*, 668*m*, 654*s*. ¹H-NMR: 7.81 (*s*, H–C(2)); 7.67–6.75 (*m*, 15 arom. H); 4.98 (*s*, PhCH₂).

4. Synthesis of 1,3-Dihydro-2H-imidazol-2-ones (10). – General Procedure. To a magnetically stirred soln. of 1.0 mmol imidazole-3-oxide 1 (hydrates with variable amounts of H₂O) in *ca.* 10 ml of CH₂Cl₂, a soln. of 2,2-bis(trifluoromethyl)ethane-1,1-dicarbonitrile (7, BTF) (235mg, 1.1 mmol) in CH₂Cl₂ (4 ml) was added dropwise at r.t. and stirring was continued for 20 min. Then, the solvent was evaporated and the semi-solid residue was triturated with Et₂O to give a colorless, crystalline material, which was identified as 10, contaminated with traces of the corresponding 11. Purification of the main product was achieved by crystallization from MeOH or from a mixture of hexane and CH₂Cl₂.

1,3-Dihydro-1,5-dimethyl-4-phenyl-2H-imidazol-2-one (**10b**): Yield: 118 mg (63%). Colorless crystals. M.p. (decomp.) 246–249° (MeOH; [11]: 246–251°). IR: 3200–2800*m* (br., NH), 1675vs (C=O), 1599*m*, 1503*m*, 1468*m*, 1434*m*, 1396*m*, 1384*m*, 845*m*, 766*m*, 745*m*, 700*m*, 666*m*. ¹H-NMR (CD₃OD): 7.48–7.15 (*m*, 5 arom. H); 3.22 (*s*, MeN); 2.21 (*s*, Me).

1,3-Dihydro-1-methyl-4,5-diphenyl-2H-imidazol-2-one (**10c**): Yield: 182mg (73%). Colorless crystals. M.p. (decomp.) 284–287° (MeOH; [11]: 286–290°). IR: 3200–2640*m* (br. NH); 1679vs (C=O); 1604s, 1507s, 1455s, 1432*m*, 1390s, 1024*m*, 955*m*, 866*m*, 834*m*, 768s, 746*m*, 723*m*, 698s, 668*m*. ¹H-NMR: 9.53 (br. *s*, NH); 7.55-7.25 (*m*, 5 arom. H); 7.16 (br. *s*, 5 arom. H); 3.14 (*s*, Me).

1-Benzyl-1,3-dihydro-4,5-diphenyl-2H-imidazol-2-one (**10d**): Yield: 257 mg (79%). Colorless crystals. M.p. (decomp.) 221–226° (MeOH; [31]: 176–178°). IR: 3200–2800s (br., NH), 1686vs (C=O), 1604m, 1508m, 1497m, 1445s, 1400s, 1345m, 1075w, 935w, 769s, 746m, 720m, 696s, 667m. ¹H-NMR (CD₃OD): 7.36–6.87 (m, 10 arom. H); 7.17 (br. s, 5 arom. H); 4.78 (s, CH₂N).

1-Cyclohexyl-1,3-dihydro-4,5-diphenyl-2H-imidazol-2-one (**10f**): Yield: 229 mg (72%). Colorless crystals. M.p. (decomp.) 287–290° (EtOH; [11]: 286–290°). IR: 3200–2800s (br., NH), 1674vs (C=O), 1603m, 1507m, 1444m (br.), 1375s, 1351m, 800m, 763s, 752m, 702s,

692*s*, 666*m*. ¹H-NMR (CD₃OD): 7.58–7.24 (*m*, 5 arom. H); 7.12 (br. *s*, 5 arom. H); 3.65–3.43 (*m*, 1H, cHex); 2.55–0.80 (*m*, 10 H of cHex).

*1-Cyclopropyl-1,3-dihydro-5-methyl-4-phenyl-2*H-*imidazol-2-one* (**10g**): Yield: 154 mg (72%). Colorless crystals. M.p. (decomp.) 198–200° (CH₂Cl₂/hexane). IR: 3150–2750*m* (br., NH), 1679vs (C=O), 1642*m*, 1602*m*, 1504*m*, 1456*m*, 1414*m*, 1374*m*, 1032*m*, 835*m*, 763*s*, 747*s*, 698*m*. ¹H-NMR: 9.62 (br. *s*, NH); 7.43–7.22 (*m*, 5 arom. H); 2.74–2.67 (*m*, 1 H of cProp); 2.32 (*s*, Me); 1.04–1.01 (*m*, 4 H of cProp). ¹³C-NMR: 154.8 (*s*, C=O); 130.5, 117.7, 117.2 (3*s*, arom. C_q, C(4), C(5)); 128.8, 126.7, 126.1 (3*d*, 5 arom. CH); 22.9 (*d*, CH of cProp); 10.3 (*q*, Me); 6.7 (*t*, 2 CH₂ of cProp). CI-MS: 216 (14), 215 (100, [*M*+1]⁺), 214 (5, *M*⁺). Anal. calc. for C₁₃H₁₄N₂O (214.27): C 72.87, H 6.59, N 13.07; found: C 71.75, H 6.09, N 12.72.

*1-Allyl-1,3-dihydro-5-methyl-4-phenyl-2*H-*imidazol-2-one* (**10h**): Yield: 141 mg (66%). Colorless crystals. M.p. (decomp.) 183–184° (MeOH). IR: 3200–2650*m* (br., NH), 1694vs (C=O), 1640*s*, 1599*m*, 1503*m*, 1458*m*, 1430*m*, 1408*s*, 1386*m*, 1345*m*, 937*m*, 923*m*, 843*m*, 764*s*, 741*s*, 701*m*, 669*m*. ¹H-NMR: 10.68 (br. *s*, NH); 7.44–7.20 (*m*, 5 arom. H); 5.98–5.85 (*m*, –CH=); 5.20–5.09 (*m*, =CH₂); 4.35–4.32 (*m*, CH₂); 2.22 (*s*, Me). ¹³C-NMR: 154.1 (*s*, C=O); 133.4 (*d*, –CH=); 128.7, 126.5, 126.0 (3*d*, 5 arom. CH); 130.4, 117.8, 115.8 (3*s*, arom. C_q, C(4), C(5)); 116.2 (*t*, =CH₂); 42.8 (*t*, CH₂); 9.7 (*q*, Me). CI-MS: 215 (100, [*M*+1]⁺), 214 (5, *M*⁺·), 188.2 (8). Anal. calc. for C₁₃H₁₄N₂O (214.27): C 72.87, H 6.59, N 13.07; found: C 72.87, H 6.53, N 12.98.

1-Allyl-1,3-dihydro-4,5-diphenyl-2H-imidazol-2-one (**10i**): Yield: 226 mg (82%). Colorless crystals. M.p. (decomp.) 218–221° (MeOH). IR: 3200–2800*m* (br., NH), 1682vs (C=O), 1647*m*, 1571*m*, 1507*w*, 1444*w*, 1430*w*, 1394*m*, 1370*w*, 1358*w*, 1143*w*, 939*w*, 921*w*, 768*m* (br.), 705*m*, 694*m*, 667*m*. ¹H-NMR ((D₆)DMSO): 10.84 (br. *s*, NH); 7.51–7.20 (*m*, 10 arom. H); 5.79–5.66 (*m*, –CH=); 5.07–4.82 (*m*, =CH₂); 4.10–4.05 (*m*, CH₂N). ¹³C-NMR: 152.8 (*s*, C=O); 133.8 (*d*, –CH=); 130.5, 128.8, 128.7, 128.2, 126.4, 125.3 (6*d*, 10 arom. CH); 129.5,

120.3, 117.2 (3s, 2 arom. C_q , C(4), C(5)); 115.7 (t, = CH_2); 42.3 (t, CH_2). CI-MS: 277 (100, [M+1]⁺), 276 (18), 235 (5). Anal. calc. for $C_{18}H_{16}N_2O$ (276.34): C 78.24, H 5.84, N 10.14; found: C 77.89, H 5.76, N 10.15.

5. Synthesis of 2-(1,3-Dihydroimidazol-2-ylidene)malononitriles (11). – General Procedure. To a stirred soln. of 1.0 mmol imidazole-3-oxide 1 (anhydrous form, obtained by drying over freshly activated molecular sieves 4Å) in *ca.* 10 ml of dry CHCl₃, a soln. of 7 (235 mg, 1.1 mmol) in CHCl₃ (3 ml) was added dropwise at r.t. and stirring was continued for 20 min. The solvent was evaporated *i.v.*, and the residue was triturated with *ca.* 3 ml of Et₂O. The colorless solid was filtered and purified by recrystallization from MeOH.

2-(1,3-Dihydro-1,5-dimethyl-4-phenylimidazol-2-ylidene)malononitrile (11b). Yield: 111 mg (47%). Pale violet crystals. M.p. (decomp.) 219-223° (MeOH). IR: 3250–2800s (br., NH), 2198vs (CN), 2157vs (CN), 1640m, 1589vs (C=C(CN)₂), 1503m, 1488s, 1442m, 1421m, 1218w, 1141w, 767s, 697s. ¹H-NMR ((D₆)DMSO): 7.48 (br. s, 5 arom. H); 3.57 (s, MeN); 2.24 (s, Me). ¹³C-NMR ((D₆)DMSO): 146.1 (s, C=C(CN)₂); 128.6, 128.2, 127.9 (3d, 5 arom. CH); 124.7 124.1 (2s, arom. C_q, C(4), C(5)); 120.3 (s, C=C(CN)₂); 31.5 (q, MeN); 22.4 (s, C=C(CN)₂); 9.0 (q, Me). EI-MS: 236 (100, M⁺·), 221 (27), 196 (69), 130 (23), 77 (24).

2-(1-Benzyl-1,3-dihydro-4,5-diphenylimidazol-2-ylidene)malononitrile (11d). Yield: 182 mg (49%). Pale yellow crystals. M.p. (decomp.) 198-203° (MeOH). IR: 3200–2800m (br., NH), 2198vs (CN), 2164vs (CN), 1640m, 1597m, 1580vs (C=C(CN)₂), 1506w, 1497w, 1470m, 1452m, 1431m, 1344w (br.), 1227w, 769m, 731m, 698s. ¹H-NMR: 11.28 (br. s, NH); 7.47–6.96 (m, 10 arom. H); 7.25 (br. s, 5 arom H); 5.23 (s, CH₂). ¹³C-NMR: 148.4 (s, C=C(CN)₂); 135.1 (s, arom. C_q); 131.0, 130.0, 129.2, 128.7, 128.6, 127.9, 127.1, 126.4 (8d, 15 arom. CH); 127.7, 126.7, 126.6, 126.5 (4s, 2 arom. C_q, C(4), C(5)); 119.5 (s, C=C(CN)₂); 47.6 (t, CH₂); 26.7 (s, C=C(CN)₂). CI-MS: 376 (29), 375 (100, [M+1]⁺), 285 (9).

Suitable crystals for the X-ray crystal structure determination of **11d** were obtained from MeOH by slow evaporation of the solvent.

2-(1-Cyclohexyl-1,3-dihydro-5-methyl-4-phenylimidazol-2-ylidene)malononitrile (11e). Yield: 133 mg (44%). Colorless needles. M.p. (decomp.) 255-256° (MeOH). IR: 3200–2850s (br., NH), 2196vs (CN), 2156vs (CN), 1645m, 1599m, 1570vs (C=C(CN)₂), 1496w, 1457m, 1439m, 1340w, 1273w, 1237w, 818w, 769m, 701m. ¹H-NMR ((D₆)DMSO): 7.47 (br. s, 5 arom. H); 4.49–4.35 (m, 1 H of cHex); 2.36 (s, Me); 2.06–1.85, 1.70–1.62, 1.41–1.19 (3m, 10 H of cHex). ¹³C-NMR ((D₆)DMSO): 146.0 (s, C=C(CN)₂); 128.5, 128.4 (2d, 5 arom. CH); 127.6, 126.8, 123.3 (3s, arom. C_q, C(4), C(5)); 120.9 (s, C=C(CN)₂); 57.7 (d, CH of cHex); 30.7, 25.7, 21.2 (3t, 5 CH₂ of cHex); 24.3 (s, C=C(CN)₂); 11.4 (q, Me). EI-MS: 304 (11, M⁺⁻), 222 (100), 197 (10), 77 (18), 55 (33).

2-(1-Cyclohexyl-1,3-dihydro-4,5-diphenylimidazol-2-ylidene)malononitrile (11f). Yield: 193 mg (53%). Colorless crystals. M.p. (decomp.) 278-285° (MeOH). IR: 3250–2800s (br., NH), 2198vs (CN), 2161vs (CN), 1636m, 1596s, 1572vs (*C*=*C*(CN)₂), 1504m, 1451s, 1435s, 1407m, 1336w, 1226w, 1224m, 1111w, 1074w, 1018w, 894w, 792m, 773s, 749m, 700vs. ¹H-NMR: 7.55–7.07 (m, 10 arom. H); 4.43–4.33 (m, 1 H of cHex); 1.95–0.77 (m, 10 H of cHex). ¹³C-NMR: 148.8 (s, *C*=*C*(CN)₂); 133.1, 131.3, 130.2, 129.8, 128.6 (5d, 10 arom. CH); 132.6, 130.0, 128.9, 127.0 (4s, arom. C_q); 122.5 (s, C=*C*(*C*N)₂); 61.3 (d, CH of cHex); 33.9, 27.2, 25.9 (3t, 5 CH₂ of cHex); 24.8 (s, *C*=*C*(CN)₂). CI-MS: 368 (28), 367 (100, [*M*+1]⁺), 342 (6), 319 (5). Anal. calc. for C₂₄H₂₂N₄ (366.47): C 78.66, H 6.05, N 15.29; found: C 78.37, H 6.02, N 15.25.

2-(1-Cyclopropyl-1,3-dihydro-5-methyl-4-phenylimidazol-2-ylidene)malononitrile (11g). Yield: 120 mg (46%). Pale yellow crystals. M.p. (decomp.) 241-244° (MeOH). IR: 3250–2850s (br., NH), 2193vs (CN), 2155vs (CN), 1647m, 1603m, 1575vs (C=C(CN)₂), 1503s, 1473m, 1447m, 1435m, 1416m, 1369m, 1330w (br.), 1229w, 1107w, 1038m, 1012w, 843m, 769s, 742m,

710*m*, 696*s*, 666*m*. ¹H-NMR ((D₆)DMSO): 7.49–7.44 (*m*, 5 arom. H); 3.18–3.12 (*m*, 1 H of cProp); 2.31 (*s*, Me); 1.22–1.09 (2*m*, 4 H of cProp). ¹³C-NMR ((D₆)DMSO): 148.3 (*s*, C=C(CN)₂); 128.5, 128.1, 127.9 (3*d*, 5 arom. CH); 127.8, 125.1, 124.6 (3*s*, arom. C_q, C(4), C(5)); 120.3 (*s*, C=C(CN)₂); 26.5 (*s*, C=C(CN)₂); 24.1 (*d*, CH of cProp); 10.2 (*q*, Me); 10.1 (*t*, 2 CH₂ of cProp). EI-MS: 262 (67, M⁺⁻), 222 (35), 221 (100), 130 (28), 103 (20), 77 (24).

2-(1-Allyl-1,3-dihydro-5-methyl-4-phenylimidazol-2-ylidene)malononitrile (11h). Yield: 160 mg (61%). Colorless crystals. M.p. (decomp.) 200-205° (MeOH). IR: 3250–2850s (br., NH), 2194vs (CN), 2153vs (CN), 1646s, 1579vs (C=C(CN)₂), 1504s, 1475s, 1444m, 1433m, 1414m, 1320m, 1288w, 1272w, 1229w, 1154w (br.), 988m, 934m, 923w, 791m, 769s, 698s. ¹H-NMR ((D₆)DMSO): 12.75 (br. s, NH); 7.49–7.37 (m, 5 arom. H); 6.02–5.92 (m, –CH=); 5.29–5.02 (m, =CH₂); 4.73–4.72 (m, CH₂); 2.21 (s, Me). ¹³C-NMR ((D₆)DMSO): 146.3 (s, C=C(CN)₂); 132.0 (d, –CH=); 128.5, 128.3, 128.1 (3d, 5 arom. CH); 127.7, 125.0, 123.7 (3s, arom. C_q, C(4), C(5)); 120.0 (s, C=C(CN)₂); 117.1 (t, =CH₂); 45.8 (t, CH₂); 23.2 (s, C=C(CN)₂); 8.7 (q, Me). EI-MS: 262 (47, M⁺), 222 (43), 221 (100), 130 (25), 77 (17).

6. Isolation of the Complex 12. To a soln. of the monohydrate of 1d (344 mg, 1.0 mmol) in MeOH (4 ml), a soln. of 7 (235 mg, 1.1 mmol) in MeOH (2 ml) was added dropwise and the mixture was stirred magnetically for 20 min at r.t. The solvent was evaporated *i.v.* and the oily residue was triturated with *ca.* 3 ml of Et₂O. The separated solid was dissolved in hot MeOH and left to cool. In the refrigerator, crystals of 11d formed. They were filtered and the mother liquor was evaporated *i.v.* to dryness. The colorless residue was dissolved in CH₂Cl₂ giving, after cooling in the refrigerator overnight, analytically pure crystals of the 1:1 complex of hexafluoroacetone hydrate and 1-benzyl-4,5-diphenyl-1H-imidazole 3-oxide (12). Yield: 40 mg (8%). Colorless prisms. M.p. (decomp.) 116-117° (CH₂Cl₂). IR: 3450–2360s (br., H-bridged OH), 1277m, 1213vs (CF₃), 1173s, 1148m, 1093s, 957m, 721s, 698s. ¹H-NMR (CD₃OD): 8.48 (s, CH); 7.52–6.84 (m, 15 arom. H); 5.11 s, CH₂). ¹⁹F-NMR (CD₃OD): -83.6 (2 CF₃). CI-MS:

328 (26), 327 (100, $[M-C_3H_2F_6O_2+1]^+$). Anal. calc. for $C_{25}H_{20}F_6N_2O_5$ (510.44): C 58.83, H 3.95; found C 58.43, H 3.98.

7. X-Ray Crystal-Structure Determination of 11d and 12 (Table and Figs. 1-2)³). All measurements were performed on a Nonius KappaCCD diffractometer [36] using graphitemonochromated Mo K_{α} radiation (λ 0.71073 Å) and an Oxford Cryosystems Cryostream 700 cooler. The data collection and refinement parameters are given in the *Table*, and views of the molecules are shown in Figs. 1 and 2. Data reduction was performed with HKL Denzo and Scalepack [37]. The intensities were corrected for Lorentz and polarization effects but not for absorption. Equivalent reflections were merged. The structures were solved by direct methods using SIR92 [38], which revealed the positions of all non-H-atoms. The asymmetric unit of 11d contains one molecule of the heterocycle and one highly disordered MeOH molecule. The disorder of the latter could not be modelled adequately, so the SQUEEZE routine [20] of the program PLATON [21] was employed. This procedure, which allows the disordered solvent molecules to be omitted entirely from the subsequent refinement model, gave better refinement results and there were no significant peaks of residual electron density to be found in the voids of the structure. The procedure leaves one cavity of 111 Å³ per unit cell. The electron count in the disordered region was calculated to be 26 e per cavity, although this can be an underbound. Allowing for two MeOH molecules per cavity (one per asymmetric unit, which corresponds with the estimate from the original attempt to model the solvent molecule) yields 36 e and this estimate was used in the subsequent calculation of the empirical formula, formula weight, density, linear absorption coefficient and F(000). The asymmetric unit of 12 contains two chemically distinct moieties. The non-H-atoms of 11d and 12 were refined anisotropically. The ³) CCDC-602037–602038 contain the supplementary crystallographic data for this paper. These

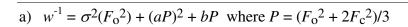
³) CCDC-602037–602038 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the *Cambridge Crystallographic Data Centre*, *via* www.ccdc.cam.ac.uk/data request/cif.

HN-atom of **11d** and the HO-atoms of **12** were paced in the positions indicated by a difference electron density maps and their positions were allowed to refine together with individual isotropic displacement parameters. All remaining H-atoms were placed in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2 U_{eq} of its parent C-atom. The refinement of each structure was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w(F_o^2 - F_c^2)^2$. Corrections for secondary extinction were applied. In each case, two reflections, whose intensities were considered to be extreme outliers, were omitted from the final refinement. Neutral atom scattering factors for non-H-atoms were taken from [39a], and the scattering factors for H-atoms were taken from [40]. Anomalous dispersion effects were included in F_c [41]; the values for f' and f'' were those of [39b]. The values of the mass attenuation coefficients are those of [39c]. All calculations were performed using the SHELXL97 [42] program.

Table. Crystallographic Data for Compounds 11d and 12

REFERENCES

- [1] H. Lettau, Z. Chem. **1970**, 10, 211.
- [2] G. Mlostoń, T. Gendek, H. Heimgartner, *Tetrahedron* **2000**, *56*, 5405.
- [3] S. Laufer, G. Wagner, D. Kotschenreuther, Angew. Chem. Int. Ed. 2002, 41, 2291.
- [4] R. Hossback, H. Lettau, P. Nuhn, R. Schneider, P. Stenger, B. Stiebitz, *Pharmazie* **1991**, 46, 412.


- [5] G. Aguirre, M. Boiani, H. Cerecetto, A. Gerpe, M. Gonzáles, Y. Fernández Sainz, A. Denicola, C. Ochoa de Ocáriz, J. J. Nogal, D. Montero, J. A. Escairo, *Arch. Pharm.* (Weinheim) 2004, 337, 259.
- [6] M. Boiani, M. Gonzales, *Mini-Rev. Med. Chem.* **2005**, *5*, 409.
- [7] G. Mlostoń, T. Gendek, H. Heimgartner, Helv. Chim. Acta 1998, 81, 1585.
- [8] H. Cerecetto, A. Gerpe, H. Gonzáles, Y. Fernandez Sainz, O. E. Piro, Synthesis 2004, 2678.
- [9] J. Alcázar, M. Begtrup, A. de la Hoz, J. Chem. Soc., Perkin Trans. 1 1995, 2467; Heterocycles, 1996, 43, 1465.
- [10] Y.-S. Lin, C.-W. Liu, T. Y. R. Tsai, Tetrahedron Lett. 2005, 46, 1859.
- [11] G. Mlostoń, M. Celeda, G. K. S. Prakash, G. A. Olah, H. Heimgartner, *Helv. Chim. Acta.* **2000**, *83*, 728.
- [12] I. J. Ferguson, K. Schofield, J. Chem. Soc., Perkin Trans 1 1975, 275.
- [13] R. Bartnik, G. Mlostoń, *Roczniki Chem.* **1977**, *51*, 1747 (*Chem. Abstr.* **1978**, *88*, 62332).
- [14] a) W. J. Middleton, E. Bingham, J. Fluorine Chem. 1982, 20, 397; b) R. Brückner, R. Huisgen, Tetrahedron Lett. 1994, 35, 3285.
- [15] a) W. J. Middleton, J. Org. Chem. 1965, 30, 1402; b) R. Brückner, R. Huisgen, Tetrahedron Lett. 1990, 31, 2561; c) R. Brückner, R. Huisgen, J. Org. Chem. 1991, 56, 1677.
- [16] R. Mozingo, Org. Syntheses **1955**, Coll. Vol. 3, 181.
- [17] R. Benassi, C. Bertarini, L. Hilfert, G. Kempter, E. Kleinpeter, J. Spindler, F. Taddei, S. Thomas, *J. Mol. Struct.* **2000**, *520*, 273.
- [18] G. L. Sommen, A. Linden, H. Heimgartner, *Tetrahedron* **2006**, *62*, 3344.
- [19] C. K. Johnson, 'ORTEP II', Report ORNL-5238, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.

- [20] P. van der Sluis, A. L. Spek, *Acta Crystallogr.*, Sect. A **1990**, 46, 194.
- [21] A. L. Spek, PLATON, Programm for the Analysis of Molecular Geometry, University of Utrecht, The Netherlands, 2004.
- [22] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, *Angew. Chem., Int. Ed.* **1995**, *34*, 1555.
- [23] R. Huisgen, E. Langhals, G. Mlostoń, T. Oshima, J. Rapp, Lectures in Heterocycl. Chem. 1987, 9, S-1.
- [24] R. Huisgen, G. Mlostoń, in *Modern Problems of Organic Chemistry*, Eds. A. A. Potekhin, R. R. Kostikov, M. S. Baird, St. Petersburg University Press, St. Petersburg, 2004, p. 23.
- [25] S. Sasho, H. Obase, S. Ichikawa, T. Kitazawa, H. Nonaka, R. Yoshizaki, A. Ishii, K. Shuto, J. Med. Chem. 1993, 36, 572; N. Kishibayashi, A. Karasawa, J. Pharm. Pharmacol. 1998, 50, 1045.
- [26] W. L. Semon, V. R. Damerell, Org. Synth. 1943, 2, 205.
- [27] T. Watson, J. Taylor, M. S. Marks, J. Chem. Soc. 1930, 2302.
- [28] J. R. L. Smith, L. A. V. Mead, J. Chem. Soc., Perkin Trans. 2, 1976, 1172.
- [29] A. F. McDonagh, H. E. Smith, J. Org. Chem. 1968, 33, 8.
- [30] L. Stefaniak, T. Urbański, M. Witanowski, H. Januszewski, *Roczniki Chem.* 1969, 59, 1687; *Chem. Abstr.* 1970, 72, 210726.
- [31] S. Laufer, G. Wagner, D. Kotschenreuter, Angew. Chem., Int. Ed. 2002, 41, 2290.
- [32] H. Ulrich, J. Rubinfeld, J. Org. Chem. 1961, 26, 1637.
- [33] R. Bartnik, W. Hahn, G. Mlostoń, *Roczniki Chem.* 1977, 51, 49; *Chem. Abstr.* 1978, 88, 62332.

- [34] G. Shapiro, B. Gomez-Lor, *J. Org. Chem.* **1994**, *59*, 5524; T. Kobayashi, H. Fujieda, Y. Murakami, T. Nakamura, K. Ono, S. Yamamoto, H. Kato, *Bull. Chem. Soc. Jpn.* **1994**, *67*, 3082.
- [35] L. R. Milgrom, P. J. F. Dempsey, G. Yahioglu, *Tetrahedron* **1996**, 29, 9877-9890.
- [36] R. Hooft, KappaCCD Collect Software, Nonius BV, Delft, The Netherlands, 1999.
- [37] Z. Otwinowski, W. Minor, in 'Methods in Enzymology', Vol. 276, 'Macromolecular Crystallography', Part A, Eds. C. W. Carter Jr., R. M. Sweet, Academic Press, New York, 1997, p. 307.
- [38] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *SIR92*, *J. Appl. Crystallogr.* **1994**, 27, 435.
- [39] a) E. N. Maslen, A. G. Fox, M. A. O'Keefe, in 'International Tables for Crystallography',
 Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992 Vol. C, Table 6.1.1.1,
 p. 477; b) D. C. Creagh, W. J. McAuley, in 'International Tables for Crystallography',
 Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992 Vol. C, Table 4.2.6.8,
 p. 219; c) D. C. Creagh, J. H. Hubbell, in 'International Tables for Crystallography', Ed.
 A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992 Vol. C, Table 4.2.4.3, p.
 200.
- [40] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
- [41] J. A. Ibers, W. C. Hamilton, *Acta Crystallogr.* **1964**, *17*, 781.
- [42] G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

Table. Crystallographic Data for Compounds 11d and 12

	11d	12
Crystallized from	МеОН	МеОН
Empirical formula	C ₂₅ H ₁₈ N ₄ ·CH ₃ OH	$C_{22}H_{18}N_2O^{\cdot}C_3H_2F_6O_2$
Formula weight	406.49	510.43
Crystal color, habit	colorless, prism	colorless, plate
Crystal dimensions [mm]	$0.10\times0.27\times0.27$	$0.05\times0.20\times0.37$
Temperature [K]	160(1)	160(1)
Crystal system	triclinic	triclinic
Space group	P^{-} ,1	P^{-} ,1
Z	2	2
Reflections for cell determination	5940	5206
2θ range for cell determination [°]	4–60	4–55
Unit cell parameters a [Å]	9.5540(5)	10.5912(4)
$b\ [ext{Å}]$	10.2090(4)	10.8967(4)
c [Å]	11.7472(6)	11.6654(5)
<i>α</i> [°]	70.527(3)	87.757(3)
$oldsymbol{eta}$ [°]	79.331(2)	79.724(3)
γ [°]	77.549(3)	62.052(2)
V [Å ³]	1046.82(9)	1168.67(8)
$D_{\mathcal{X}}$ [g cm ⁻³]	1.289	1.450
$\mu(\text{Mo}K_{\alpha}) \text{ [mm}^{-1}]$	0.0809	0.127
Scan type	ϕ and ω	ϕ and ω
$2\theta_{(\text{max})}$ [°]	60	55
Total reflections measured	25346	26435
Symmetry independent reflections	6094	5333
Reflections with $I > 2\sigma(I)$	3346	3721
Reflections used in refinement	6092	5331
Parameters refined	268	334
Final $R(F)$ [$I > 2\sigma(I)$ reflections]	0.0661	0.0446
$wR(F^2)$ (all data)	0.1974	0.1155
Weighting parameters $[a; b]^a$)	0.1065; 0	0.0520; 0.1644
Goodness of fit	0.995	1.057
Secondary extinction coefficient	0.048(9)	0.034(3)
Final $\Delta_{\text{max}}/\sigma$	0.001	0.001
$\Delta \rho (\text{max; min}) [\text{e Å}^{-3}]$	0.37; -0.29	0.20; -0.21

Legends

Fig. 1. *ORTEP Plot* [19] *of the molecular structure of* **11d** (arbitrary numbering of the atoms; 50% probability ellipsoids)

MG 348/04 (HG0446)

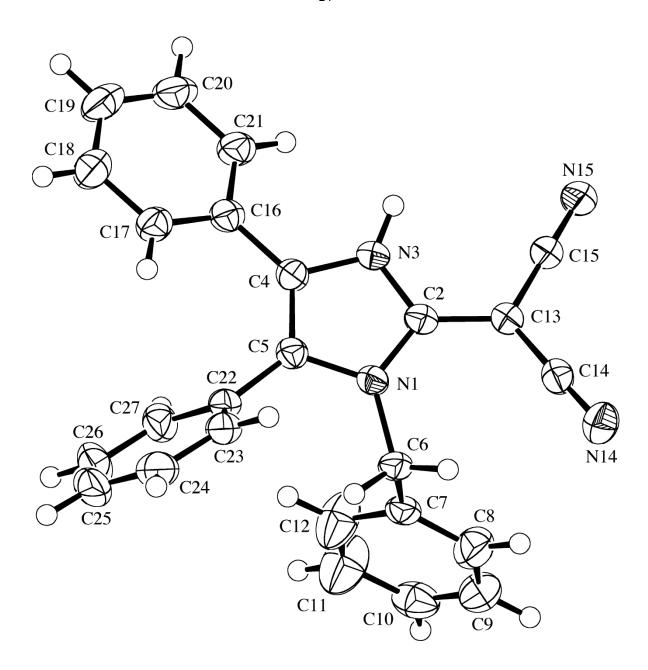
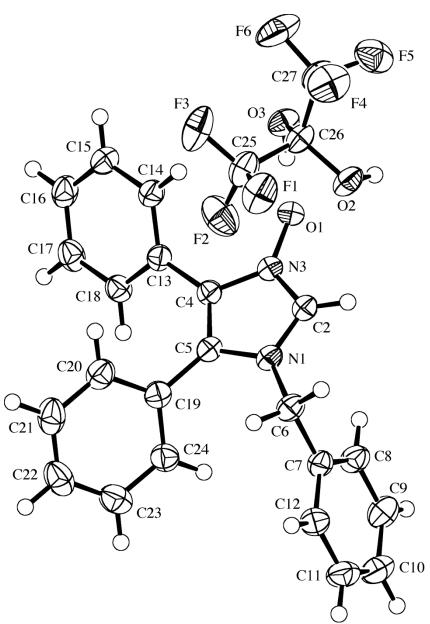
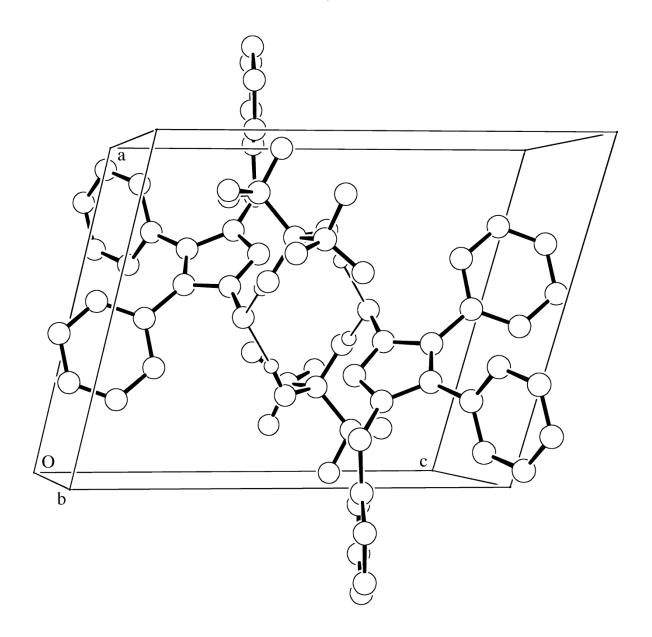




Fig. 2. a) *ORTEP Plot* [19] *of the molecular structure of* **12** (arbitrary numbering of the atoms; 50% probability ellipsoids) *and* b) *Packing diagram*

MG 349/04 (HG0447)

MG 349/04 (HG0447)

Scheme 1

Scheme 2

Scheme 3

Scheme 4

Formula