REACTIONS OF CARBON VAPOR WITH HYDROGEN
AND WITH METHANE IN A HIGH INTENSITY ARC

by

Jean L. Blanchet
BoSon Laval University (1958)

MoS. Massachusetts Institute of Technology (1960)

> Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Science

> at the

Massachusetts Institute of Technology

```
June, }196
```

Signature of Author:

Certified by:

Signature redacted

 Department of Chemical Engineering May 10, 1963
Signature redacted

Thesis Supervisor

Accepted by:

Department of Chemical Engineering Massachusetts Institute of Technology Cambridge 39, Massachusetts May 10, 1963

Professor Phillip Franklin
Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Dear Sir:

The thesis entitled "Reactions of Carbon Vapor with Hydrogen and with Methane in a High Intensity Arc" is herewith submitted in partial fulfillment of the requirements for the degree of Doctor of Science.

Respectfully submitted,

Signature redacted

Jean L. Blanchet

ABSTRACT

Reactions of Carbon Vapor with Hydrogen and with Methane in a High Intensity Arc

Jean L. Blanchet

Submitted to the Department of Chemical Engineering on May 10, 1963, in partial fulfillment of the requirements for the degree of Doctor of Science.

Thermodynamic equilibrium composition diagrams for the carbonhydrogen system have been constructed for the temperature range 2,000 to $6,000^{\circ} \mathrm{K}$ at various total pressures and carbon to hydrogen ratios. Significant species in the high temperature region included $\mathrm{C}_{2} \mathrm{H}, \mathrm{C}_{3} \mathrm{H}$, and $\mathrm{C}_{4} \mathrm{H}$ radicals.

Assuming that the $\mathrm{C}_{2} \mathrm{H}$ radical serves as precursor to $\mathrm{C}_{2} \mathrm{H}_{2}$ formation, the maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration in the quenched gais has been calculated as a function of quenching temperatures and total pressures.

A mechanism for reacting carbon vapor with methane at high temperatures was postulated, whereby the available heat of reaction of carbon vapor with hydrogen provided the sensible heat to bring methane to reaction temperature and the heat required to crack methane to acetylene and hydrogen. A carbon vapor to methane ratio of 0.6 to 0.8 should produce between 40 and $47 \% \mathrm{C}_{2} \mathrm{H}_{2}$ at temperature of 2,000 to $4,000^{\circ} \mathrm{K}$.

A high intensity carbon arc reactor was built to react carbon vapor with both hydrogen and methane as feed gases. The hot gases from the arc zone were quenched with a water-cooled sampling probe and then analysed by vapor chromatography.

At one atmosphere pressure, as high as $26 \% \mathrm{C}_{2} \mathrm{H}_{2}$ was obtained for reactions of carbon with hydrogen and the data could be correlated by considering the quenching temperatures and the $\mathrm{C} / \mathrm{H}_{2}$ ratios. An acetylene concentration of 52% was reached with the carbon-methane system. These maximum concentrations are higher than any previously reported values in the literature for similar systems.

The energy required to make a given amount of acetylene by the present arc technique was found to be five to ten times higher than with the usual industrial processes. It was also found that only 20% of the vaporized carbon could be utilized to produce acetylene in the output gas. Methods are suggested for reducing
both these quantities, and it appears that the carbon $-\mathrm{CH}_{4}$ system could produce very high acetylene concentrations at competitive power inputs.

Thesis Supervisor:
Raymond F. Baddour
Associate Professor of
Chemical Engineering

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Professor Raymond F. Baddour for his assistance and suggestions during the course of this thesis.

The financial support from the Avco Corporation is gratefully acknowledged for making possible the construction of the experimental apparatus and especially the sampling probes used in this study at high temperatures.

Encouragements from Dr . Cholette of Laval University and financial assistance from the Provincial Government of Quebec and the Ford Foundation are greatly appreciated.

Thanks are also due to Henry Chasen, Schuyler Holbrook, Allan Merrill, Harold Carter, Gerhard Blaisies and Charles Foschey for their assistance in solving some of the practical problems associated with the experimental work.

The author is also greatly indebted to his wife for her constant help during their stay here.

Thanks are also due to Mrs. Ulla Eisert for the typing of this thesis.

TABLE OF CONTENTS

Page
I. SUMMARY 1
II. INTRODUCTION 5
Objects of Thesis 6
Literature Survey 7
High Temperatures 7
Gaseous Discharge Theory 7
Operation of the High Intensity Arc 24
Measurement of High Temperatures 25
Acetylene Production from Hydrogen and from Methane at High Temperatures 28
III. APPARATUS AND PROCEDURE 40
IV. RESULTS AND DICUSSION OF RESULTS 52
(1) Theory 52
Carbon-Hydrogen Reactions 52
Carbon-Methane Reactions 72
Specific Energy and Efficiency of Carbon Utilization 79
(2) Experimental Results 80
Carbon-Hydrogen System 80
Operational Characteristics of the High Intensity Arc Reactor 80
Effect of Power on the $\mathrm{C}_{2} \mathrm{H}_{2}$ Content of the Quenched Gas 86
Economic Considerations 94
Carbon-Methane System 96
Operational Characteristics of the High Intensity Arc Reactor 96
Effect of Power on the $\mathrm{C}_{2} \mathrm{H}_{2}$ Content of the Quenched Gas 99
Economic Considerations 103
Comparison of the Methane and Hydrogen Systems 105
V. CONCLUSIONS AND RECOMMENDATIONS 108
VI. Appendix A 110
(1) Carbon-Hydrogen System, according to Iwasyk 110
Page
(2) Computer Program 113
Appendix B 124
(1) Equilibrium Composition at High Temperatures 124
(2) Quench Mechanism 130
Appendix C 143
Experimental Results: H_{2} runs 144
CH_{4} runs 148
Appendix D 151
Calculations pertaining to the $\mathrm{C}-\mathrm{CH}_{4}$ System 151
Appendix E
(1) Calculation of the Coefficient of Volume Expansion, β. 156
(2) Calculation of the Efficiency of Carbon Utilization for Acetylene Production 162
Appendix F 165
Magnetic Circuit Relations 165
Appendix G
Gas Chromatography Analysis 169
NOMENCLATURE 172
BIBLIOGRAPHY 174
BIOGRAPHICAI NOTE 177

FIGURES

Page
FIG. 1. Effect of Temperature on Hydrogen Gas 11
FIG. 2. Voltage-Current Characteristics for Gaseous Discharges 18
FIG. 3. Free Energies of Several Hydrocarbons 29
FIG. 4. Heats of Formation of Several Hydrocarbons 29
FIG. 5. Equilibrium Composition of the $\mathrm{C}+\mathrm{H}_{2}$ System, $\mathrm{C}_{2} \mathrm{H}$ Considered, According to ${ }^{2}$ Iwasyk 33
FIG. 6. Maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus Temperature for the $\mathrm{C}^{2}+{ }^{2} \mathrm{H}_{2}$ System, According to Iwasyk 34
FIG. 7. Details of the Experimental High Temperature Arc Reactor 41
FIG. 8. Details of the Sampling Probe 43
FIG. 9. Layout of High Temperature Facilities 46
FIG. 10. Equilibrium Composition for the Carbon 57 Hydrogen System in the Heterogeneous Region
FIG. 11. Equilibrium Diagram at One Atmosphere,$\mathrm{C} / \mathrm{H}_{2}=0.5$58FIG. 12. Equilibrium Diagram at One Atmosphere,$C / H_{2}=1.0$59
FIG. 13. Equilibrium Diagram at One Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=2.5$60
FIG. 14. Equilibrium Diagram at One Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=5.0$61
FIG. 15. Equilibrium Diagram at One Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=7.5$62
FIG. 16. Equilibrium Diagram at One Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=15.0$ 63

FIG. 17. Equilibrium Diagram at 0.1 Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=5.0$

FIG. 18. Equilibrium Diagram at 10.0 Atmospheres, $\mathrm{C} / \mathrm{H}_{2}=5.0$
FIG. 19. Carbon Sublimation Temperature as a Function
of the $\mathrm{C} / \mathrm{H}_{2}$ Ratio at Various Pressures
$\begin{array}{lll}\text { FIG. 20. Calculated Maximum } \mathrm{C}_{2} \mathrm{H}_{2} \text { Content for } & \\ \text { Various } \mathrm{C} / \mathrm{H}_{2} \text { Ratios at One Atmosphere } & 70\end{array}$
FIG. 21. Maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ Content at Various Total
Pressures, $\mathrm{C} / \mathrm{H}_{2}=5.0$ in the
Homogeneous Region
FIG. 22. Equilibrium Limitation on the Cracking Reaction of Methane, According to Anderson and Case73
FIG. 23. Energy Requirement for Methane Cracking, According to Anderson and Case 74
FIG. 24. Net Heat of Reaction 76
FIG. 25. Carbon Requirement for Null Reaction Heat 77
FIG. 26. Arc Voltage-Current Characteristics of the High Intensity Arc 82
FIG. 27. Effect of Power on Carbon VaporizationRate83
FIG. 28. Effect of Power on Carbon Vaporization Rate for Hydrogen at Higher Flow Rates 84
FIG. 29. $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus Power Input 87FIG. 30. $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus Power Input forHydrogen at Higher Flow Rates89
FIG. 31. $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus $\mathrm{C} / \mathrm{H}_{2}$ Ratio 90FIG. 32. Maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ Content as a Function of$\mathrm{C} / \mathrm{H}_{2}$ Ratio for Various QuenchingTemperatures at 1.0 Atm .93
$\left.\begin{array}{ccc}\text { FIG. 33. Measured } C_{2} H_{2} \text { Concentration versus Specific } & \text { Page } \\ \text { Energy for Carbon-Hydrogen System }\end{array}\right)$ 95

Table D-2. Overall Heat of Reaction, Carbon Vapor Requirement and $\% \mathrm{C}_{2} \mathrm{H}_{2}$ for Null Reaction Heat of Methane Cracking 155
Table E-1. Average Efficiency of Carbon Utilization for Acetylene Production 164
Table Gal. Gas Chromatography Determinations 171

PLATES

Plate I. View of the Inserted Probe, Probe Holder, Cathode Holder, and Main Reactor Shell48
Plate II. Open End View of the Main Reactor Part 48
Page
Plate III. Overall View of the Assembled Reactor 49
Plate IV. View of the Window Side of the Reactor with Arc Running 49
Plate V. View of the Pump Panel Controls and Barricade 50
Plate VI. View of the Gas Supply and Distribution System 50
Plate VII. View of Generator and Arc Starter 51
Plate VIII. Gas Chromatography Unit 51

I. SUMMARY

Introduction

Reliable thermodynamic data for $\mathrm{C}-\mathrm{H}$ compounds at temperatures above $1500^{\circ} \mathrm{K}$ are almost nonexistent in the literature. Techniques used nowadays for estimating high temperature thermodynamic properties are based on estimates of interatomic distances and vibrational energies of the molecules (3). Spectroscopic data taken at high temperatures in order to provide more reliable values (11) are still needed.

This thesis was undertaken to study thoroughly the carbonhydrogen and carbon-methane system at temperatures between 2,000 and $6,000^{\circ} \mathrm{K}$ in a high intensity arc. The determination of acetylene yields that can be expected from such systems was another objective considered. In contrast with previous work (2), this thesis was aimed at studying the homogeneous region, where carbon exists in the gas phase only.

Procedure
A high temperature carbon arc reactor, shown schematically in Fig. 7, was built in order to carry out reactions of carbon with hydrogen and with methane. The gases from the arc reaction zone were sampled with a water-cooled sampling probe, under fast quenching conditions, and analyzed by gas chromatography. The arc characteristics were determined for anode sizes of $1 / 4$ in. and $3 / 8$ in. and the effects of arc power input, C / H_{2} ratio
and gas flow rates upon $\mathrm{C}_{2} \mathrm{H}_{2}$ content of the quenched gas were studied at a pressure of 1.0 atmosphere.

Results and Conclusions

Thermodynamic equilibrium composition diagrams were determined for the carbon-hydrogen system in the temperature range $2,000-$ $6,000^{\circ} \mathrm{K}$. Several total pressures and carbon to hydrogen ratios were considered, since previous studies failed to consider these conditions $(\underline{2}, \underline{19})$. Species that were assumed to exist in the high temperature region included $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}, \mathrm{C}_{3} \mathrm{H}$, $\mathrm{C}_{4} \mathrm{H}, \mathrm{H}_{2}, \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$, and $\mathrm{C}_{4} \mathrm{H}_{2}$. Figs. 11 to 16 show some of the diagrams obtained for a pressure of 1.0 atm . Actual calculations were performed by means of the IBM 7090 computer of the M.I.T. Computation Center.

Assuming that the $\mathrm{C}_{2} \mathrm{H}$ radical serves as precursor to $\mathrm{C}_{2} \mathrm{H}_{2}$ formation ($\underline{2}, \underline{26}$), i.e.,

$$
\mathrm{C}_{2} \mathrm{H}+\mathrm{H} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}
$$

the maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration obtainable under optimum quenching conditions was computed. Fig. 20 shows the dependence of the $\% \mathrm{C}_{2} \mathrm{H}_{2}$ in the quenched gas on the $\mathrm{C} / \mathrm{H}_{2}$ ratio and the temperature. A rather narrow temperature band between 3,700 and $4,500^{\circ} \mathrm{K}$ for $\mathrm{C} / \mathrm{H}_{2} \approx 5.0$ would exhibit optimum $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration in the product gas.

The following mechanism was postulated for the reaction of methane with carbon vapor:

$$
\begin{align*}
& \mathrm{C}_{1}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2} \quad(\text { at } \mathrm{T}) \tag{1}\\
& 2 \mathrm{CH}_{4}\left(298^{\circ} \mathrm{K}\right) \longrightarrow 2 \mathrm{CH}_{4} \quad(\text { at } \mathrm{T}) \tag{2}\\
& 2 \mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+3 \mathrm{H}_{2}(\text { at } \mathrm{T})
\end{align*}
$$

The heat released by reaction (1) is used to raise CH_{4} to reaction temperature by reaction (2) and to crack methane to acetylene by reaction (3). The overall reaction can be represented by

$$
\begin{equation*}
\mathrm{C}_{1}+\mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \tag{4}
\end{equation*}
$$

Carbon vapor requirement and theoretical $\mathrm{C}_{2} \mathrm{H}_{2}$ content for a null reaction heat of reaction (4) are plotted in Fig. 25. At temperatures $2,000-4,000^{\circ} \mathrm{K}$, as much as $40-47 \% \mathrm{C}_{2} \mathrm{H}_{2}$ at $\mathrm{C} / \mathrm{H}_{2}$ ratio of 0.8 to 0.9 could be obtained according to this reaction scheme.

Experimental results show that a maximum of $26 \% \mathrm{C}_{2} \mathrm{H}_{2}$ was obtained for reaction of carbon with hydrogen at one atmosphere, as seen in Fig. 32, and that the data could be correlated with the theoretical calculations, if sampling was assumed to take place along an isotherm. This value of $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration is higher than any previously reported in the literature for reaction between the elements. By comparison with theory it was deduced that sampling was performed at excessively high temperatures, but limitations of the reactor design prevented reaching the higher possible yields of $\mathrm{C}_{2} \mathrm{H}_{2}$. Acetylene output was found to be also a function of both quenching temperatures and $\mathrm{C} / \mathrm{H}_{2}$ ratios. An acetylene concentration equal to 52% was reached with the
carbon-methane system. This is higher than the 25% theoretically attainable by the cracking reaction of methane (1) alone (Eq. 3) or the 12% claimed by Weir's patent ${ }^{(35)}$ for a similar case. The results of Fig. 36 are, however, far from the predicted values of Fig. 25.

Economic considerations for these two systems revealed that, for the conditions studied, the energy required to produce a given output of acetylene was five to ten times higher than that of usual industrial processes for making acetylene. This is presented in Figs. 33 and 37. The carbon-methane system has, however, a potential of lower energy requirements, since a trend opposite to that of the carbon-hydrogen system is experienced.

In Fig. 38, it is shown that the efficiency of carbon utilization for acetylene production did not reach more than about 20% with both systems. More carbon was found, however, in the product gases with the carbon-methane system and the efficiency increased with increasing flow rates of gas fed to the reactor.

II. INTRODUCTION

Newly developed devices have made available sources of gas at temperatures between $3,000^{\circ} \mathrm{K}$ and $50,000^{\circ} \mathrm{K}$. During the past decade, electric arcs have been used in various ways to create high energy environments. In particular, plasma jets, low intensity arcs and high intensity arcs have been studied extensively for high temperature operation in the range of about 3,000 to $20,000^{\circ} \mathrm{K}$. The use of such devices seems attractive for carrying out chemical reactions of potential industrial importance.

Chemical reactions may benefit from high temperature environments in those cases where the formation of a particular substance would not be otherwise possible, or where a state of equilibrium not limited by chemical kinetics or a very rapid reaction rate is sought. Certain recombination reactions may also favor the formation of a desired product upon proper quenching of a gas mixture from a high temperature region. Other uses of high temperatures may include studies of chemical equilibrium under extreme conditions, radical and ion formation or reaction mechanisms.

Research at temperatures above $2,500^{\circ} \mathrm{K}$ is hindered, however, by two factors that are closely related: first, reliable thermodynamic data are scarce, and, second, it is very difficult to verify experimentally these data, as special techniques and apparatus are required which are still in the development stage. One extraneous but important factor that does not help the gathering of new data is the limitation imposed by materials of construction which are
subjected to extreme conditions. Up to about four or five years ago, there were only a few works published on this type of research; however, due to the increased interest aroused mostly by space research and technology, and the understanding of highly reactive media, it is hoped to close the gaps created by an extended range of operating conditions and to ascertain experimentally many of the assumptions involved in extrapolating properties of atoms and molecules to high temperature systems.

Objects of the Thesis

This thesis was undertaken as a continuation of Iwasyk's work (16) on the carbon-hydrogen system at temperatures above $2,500^{\circ} \mathrm{K}$. A high intensity arc reactor was used to react carbon with hydrogen, and the major product obtained was acetylene, up to 18% at one atmosphere pressure. Due to limitations in available thermodynamic data at that time and in design of the original reactor, only the heterogeneous region where carbon exists in the solid phase, was investigated.

The present study was aimed at
(1) a more thorough analysis of the equilibrium compositions of the carbon-hydrogen system, especially in the homogeneous phase, with emphasis given to the effects of carbon to hydrogen ratios and radicals expected to be present in the high temperature region,
(2) a determination of acetylene yields that may be expected from such equilibrium diagrams according to a simple quenching
mechanism,
(3) the construction and operation of a high intensity arc reactor for reacting carbon vapor and hydrogen at temperatures up to $7,000{ }^{\circ} \mathrm{K}$, and the determination of the important variables that control the output of acetylene in the reaction products,
(4) an extension of the above study to the carbon-methane system for the high temperature production of acetylene using arc techniques also.

Literature Survey

With these goals in mind, the literature survey was directed toward the review of works dealing with
(1) high temperature chemistry in general and means of generating high temperatures by the electric arc; measurements of high temperatures were also investigated;
(2) acetylene formation from the elements and from hydrocarbons, methane in particular.

High Temperatures

The term "high temperatures" is certainly a relative one. In combustion furnaces, temperatures were limited by the amount of energy of the chemical bond of fuels and the conditions under which the energy released was affected. The temperature range was increased to an upper limit of about $5,500^{\circ} \mathrm{K}$, with the development of electric furnaces, solar furnaces, and special cutting flames.

With plasmas the temperature range has been expanded to still higher limits.

Above $6,000^{\circ} \mathrm{K}$, all elements are in the gaseous phase at atmospheric pressure. At this temperature hydrogen H_{2}, for example, consists almost entirely of free atoms, i.e., in the dissociated state of $\mathrm{H}_{\text {. Above }} 6,000^{\circ} \mathrm{K}$ hydrogen atoms begin to ionize and exist as a mixture of ions, electrons and free atoms. At $30,000^{\circ} \mathrm{K}$ hydrogen would be completely ionized. This is shown in Figure 1, where the dissociation portion was calculated by means of the equilibrium constants (28) of the dissociation reaction of hydrogen

$$
\mathrm{H}_{2} \quad \rightleftharpoons 2 \mathrm{H}
$$

and where the ionization curve was computed according to the Saha equation (7) related to thermal ionization

$$
\mathrm{H} \rightleftharpoons \mathrm{H}^{+}+\mathrm{e}-\mathrm{U}_{\mathrm{i}}
$$

Thermal ionization is a general term applied to the ionizing action of molecular collisions, radiation, and electron collisions occurring in gases at high temperatures. Saha, on the basis of thermodynamic reasoning, assumed that the process of ionization is a completely reversible reaction defined by the equation

$$
A \rightleftarrows A^{+}+e-U_{i}
$$

where A represents a neutral atom, A^{+}a singly ionized atom, e the electron removed from the atom, and U_{i} the ionization energy.

The concentrations of neutral atoms, n_{n} of singly ionized atoms, n_{i}, and of the electrons, n_{e}, are assumed to be in complete thermal equilibrium, that is, they all have the energy of excitation corresponding to the temperature T. The concentrations are further assumed to follow Dalton's law of partial pressures for gas mixtures

$$
\pi=p_{n}+p_{i}+p_{e}
$$

Defining n as the original concentration of atoms in the gas, $n=n_{n}+n_{i}$ and the fraction of ionized atoms is $x=n_{i} / n=n_{e} / n$ since there are as many ions present in the gas as electrons. The relation developed is

$$
\begin{equation*}
\frac{x^{2}}{1-x^{2}} \pi=3.16 \times 10^{-7} T^{2} \cdot 5-\frac{e V_{i}}{T} \tag{1}
\end{equation*}
$$

where π is the total pressure in atmospheres, T the gas temperature in degrees Kelvin, eV_{i} is the ionization energy in ergs, and K is the Boltzmann's constant. A more convenient form is

$$
\begin{equation*}
\log \left(\frac{x^{2}}{1-x^{2}} \pi\right)=\frac{-5.050 V_{i}}{T}+2.5 \log T-6.5 \tag{2}
\end{equation*}
$$

where V_{i} is in volts.
The relative concentration of positive ions and electrons may be altered however, for example, by the superposition of an electric or magnetic field; thus it might not be safe to assume $n_{e}=n_{i}$ in the use of the Saha equation. In this case, the following form should be used:

$$
\begin{equation*}
\log \frac{n_{e} n_{i}}{n_{n}}=\frac{-5,050 v_{i}}{T}+1.5 \log T+15.385 \tag{3}
\end{equation*}
$$

The ionization potential corresponding to the energy required to remove completely the outer electron from its normal state in a neutral atom to a distance beyond the sphere of influence of the nucleus, is 13.6 volts and for H atoms (7) this value was used in Equation 2 for computing the concentration of atoms in a partially ionized gas up to $30,000^{\circ} \mathrm{K}$ at one atmosphere pressure. Also shown on Figure 1 is the partial pressure of H_{2} molecules from 2,000 to $6,000^{\circ} \mathrm{K}$ and the partial pressures of H^{+}and electrons (set equal in the present case) from 6,000 to $30,000^{\circ} \mathrm{K}$. Ionization is very small below $6,000^{\circ} \mathrm{K}$, the fraction of ionized atoms being only 5×10^{-5} at this temperature, reading 0.99 at $25,000^{\circ} \mathrm{K}$ and complete ionization near $30,000^{\circ} \mathrm{K}$ where the gas would comprise an equal concentration of H^{+}and electrons. Results of the calculations appear in Table I.

The above analysis has certain limitations: first, the ideal gas state was assumed in this derivation whereas actual conditions at high temperatures may depart widely from this behavior; second, processes of multiple or cumulative ionization may also take place, as for instance ionization by contact with excited atoms, the so-called collisions of the second kind; third, the gas is assumed homogeneous, but flames and arcs usually burn in mixtures of gases and vapors whose ionization potentials may vary considerably: the gas having the lowest ionization potential in a mixture will be the most ionized and the gas with the highest, the least.

FIG. 1 . Effect of Temperature on Hydrogen Gas.

Table I

Ionization of H Atoms at One Atm。 (according to Saha ${ }^{\circ}$ s equation (Eq. 2))

T, $^{\ominus} \mathrm{K}$	x	p
6,000	$-\mathrm{p}_{\mathrm{H}}$	
8,000	2.17×10^{-3}	1.00
10,000	0.02	.998
12,000	0.0930	.979
14,000	0.288	.907
16,000	0.585	.712
18,000	0.820	.415
20,000	0.930	.070
22,000	0.970	.030
25,000	0.992	.008

A gas that is completely ionized is known as a "plasma", but the term has been extended to include also partially ionized gases. Thus a plasma is a mixture of molecules, free atoms, ions and electrons where the ionic charge is numerically equal to the number of electrons in a finite volume of gas, i。e.s electrical neutrality is a basic property of plasmas.

Because chemical engineers are used to associate rates of heat transfer with temperature, the statement relating greater heat transfer rates with higher temperatures no longer holds at very high gas temperatures. The usual concept of temperature cannot be defined on this basis, because now we must consider the heat content of a gas as well as its temperature. It is common knowledge that a diatomic gas is much more suitable for heating than a monatomic gas.

If we assume a nearly constant specific heat, then a monatomic gas exhibits a linear enthalpy increase with rising temperature. When the gas begins to ionize at still higher temperatures, the enthalpy increases more rapidly for a given temperature rise.

A similar process occurs for a diatomic gas, except there is one more step that brings the heat content to a higher value: a diatomic molecule begins to dissociate around $2,000^{\circ} \mathrm{K}$ and for most gases, dissociation is complete at $7,000^{\circ} \mathrm{K}$. The energy required for dissociation allows the gas to have a larger heat content at lower temperatures than a monatomic gas. When a dissociated gas is cooled down through the dissociation range, large amounts of
heat are released per unit temperature drop, making the gas more suitable for heat transfer application than a monatomic gas. The effect of temperature on the heat content of hydrogen has been discussed by Anderson and case ${ }^{(1)}$ where is shown the sharp enthalpy rise over the dissociation range which levels off when dissociation is completed.

If higher temperatures are reached, another increase in enthalpy will occur over the ionization range, and depending on the gas there may be several plateaus depending upon the ionization level. There exists, however, a limit to heat transfer rates, since at these plateaus, heat content is almost constant over a wide temperature range, and heat transfer can no longer be associated with temperature, according to the usual concept.

Temperature can be defined at these extreme conditions on the bases of the energy distribution over all particles: molecules, atoms, ions and electrons. Four different kinds of temperature describe average energy of the particles in ionized media: the electron temperature which gives the kinetic energy of the electrons, the gas temperature which provides the number of atoms per cm^{3}, the concentration temperature which determines the population of the excited states and the ionization temperature which gives the ion density. At thermal equilibrium, the four temperatures will be the same. The gas pressure is the other condition necessary to describe completely a plasma. At low pressures, the electron and gas temperatures differ by as much as several orders of magnitude.

At high pressures, above say 20 mm Hg , the ions, electrons and gas atoms are in thermal equilibrium, thus bringing the temperatures to the same value. This behavior is shown by Cobine (7) and Iwasyk (16) when describing the general properties of plasma produced in arcs. Temperature equilibrium for a plasma implies that the number of excitations of atoms by electrons is equal to the number of collisions of the second kind; that events of ionization by collision are equal to the events of recombination by all mechanisms of collision (third body collisions): that the radiation emitted is equal to the radiation absorbed; and that dissociation of molecules to secondary products of ionization by collisions is equal to the association into molecules. In plasma generators with plasma temperatures of the order of $10,000^{\circ} \mathrm{K}_{2}$ instead of such a state of equilibrium, there can only exist some sort of stationary state where a supply of energy balances the inevitable losses by radiation, by convection and by diffusion. Of course, the field of plasmas is relatively new and most of the research in this area has been published only in technical reports, and the like. A survey of the research of ionized media has been thoroughly made by Jackson (17), mostly directed toward the dynamical or equilibrium properties of ionized media. Various designs of plasma generators, properties of arc plasmas including composition, viscosity, temperature, electrical conductivity and plasma instabilities and various uses of plasma jet generators have been discussed also in greater details by Turner (33), Iwasyk (16),

Cobine (7), and Dow (9), while an advanced kinetic theory of plasma behavior has been developed quite extensively by Kaepeller (18). In this latter report, a trial has been made to establish a stochastic theory of transport phenomena occurring in plasmas at very high temperatures by considering both mathematical and physical models. The temperature range treated was extended to $10^{6}{ }^{\circ} \mathrm{K}$ 。

Problems of heat transfer and diffusion associated with ionized gas have also been studied by Grey (13). Average temperatures up to $15,000^{\circ} \mathrm{K}$ were determined by considering the enthalpy of an argon plasma jet.

However, properties of the plasma are not the primary concern of this thesis. The above discussion was intended to point out the different phenomena that are known to exist at elevated temperatures. Since the temperature range covered in the present work was believed to be between 4,000 and $7,000^{\circ} \mathrm{K}$, the plasma consisted mostly of partially ionized gas, containing many dissociation products. As the source of high temperatures for plasma production is a form of gaseous discharge, usually established by an applied electric field, a further look into gaseous discharge theory is warranted, especially because an electric arc was used in the present work to create a high energy environment.

Gaseous Discharge Theory

An arc has been defined as "a discharge of electricity between electrodes in a gas or vapor, which has a voltage drop at the cathode of the order of the minimum ionizing or minimum exciting potential of the gas or vapor" (7) . It is a self-sustained discharge having a low voltage drop and capable of supporting large currents.

It is customary to distinguish between three forms of steadystate gaseous discharge; Figure 2 shows the typical volt-ampere characteristics of various discharges. These characteristics are obtained for a discharge tube in series with a battery of voltage V and a resistance R, and can be determined by increasing the battery voltage, from V_{1} to V_{2}, with constant resistance, or by decreasing the resistance, from R_{1} to R_{2}, at constant battery voltage. In order of increasing current magnitude, discharges between two electrodes may be described in terms of:
(a) Townsend currents, usually measured in micro-amperes, $I_{A} \approx 10^{-6}$ amp. Voltage may range from about 25 to 50 volts, and the current in this region can be increased only by increasing the voltage. As the applied voltage reaches a point s at a current of 10^{-5} amp., there appears a glow discharge or a spark or an arc. These currents are prerequisite for starting electric arcs.
(b) Glow discharge currents, usually measured in milliamperes, $I_{B} \approx 10^{-3}$ amp. The region between S and B is a "normal" glow discharge which exhibits a voltage drop nearly independent of the current. The transition from the Townsend to the glow discharge

IIG. 2. Voltage-Current Characteristics for Gaseous Discharges.
is usually characterized by a drop in voltage, as shown in Figure 2. A region termed "abnormal" glow extends from about 10^{-2} to $10^{-1} \mathrm{amp}$. Where the voltage increases with current up to a point where a sudden transition to a low intensity arc takes place.
(c) Electric arc currents, occurring at much higher amperage (0.1 to 1000 amp.) and relatively low voltage (usually below 100 volts), $I_{c} \approx 1 \mathrm{amp}$. There exists no upper limit to the current carried by an electric arc, provided the surroundings can withstand the charge. While low intensity arcs appear in the negative slope region as indicated in Figure 2, the high intensity region shows a rising voltage-rising current behavior and yields much higher temperatures than the low intensity region.

In the arc regions, the discharge is made of
(1) a main current-carrying discharge, named the plasma, which contains, as explained previously, gas particles, electrons and positive ions in equal concentration, hence giving no space charge. If a moderate potential is applied to the plasma, a considerable drift current of electrons will be driven through, accounting for the observed current flow.
(2) plasma boundary regions through which current also passes, the anode and cathode fall regions.

In the cathode fall region of the low intensity arc positive ions move toward the negative electrode, accelerated by a cathode voltage drop of about 10% of the total arc voltage, strike the cathode, and heat it to a temperature of $3,200-3,600^{\circ} \mathrm{K}$. Electrons are then emitted and they ionize neutral atoms in the cathode
fall region.
At the anode, electrons are accelerated by a voltage drop of about 10 to 30% of the total. They strike the anode and heat it to a temperature of the order of $3,600^{\circ} \mathrm{K}$. The temperature is hotter at the anode because of the cooling effect of electron emission, conduction and radiation taking place at the cathode. At the anode surface, electrons convene together and form a "space charge" that tends to repel further electrons from entering the anode, unless this barrier is overcome by an additional amount of energy given to the electrons. For attaining steady-state discharge, enough potential drop must be established across this region in order to force additional electrons through the anode fall space. As positive ions also are present near the anode, the negative "space charge" is somewhat neutralized, thus lowering and reducing the high potential drop that would have been necessary, were it not for these ions.

The anode and cathode fall regions extend only a tiny fraction of the distance between the electrodes, the plasma, also termed "positive column" forming the major portion of the arc. It is probable, according to cobine (7) that the cathode-drop thickness is of the order of an electron mean free path, and the potential drop in this region is of the order of the least ionization potential of the gas or vapor in which the arc burns. For carbon cathodes, for which the temperatures are very high under normal operation, the most obvious mechanism for maintaining the current
at the arc cathode is thermionic emission of electrons. The high temperature is produced by the energy released by the impinging positive ions which may come from the positive column but probably are produced in the cathode fall region.

Now consider what happens when the current in a low intensity arc is increased to the high intensity region, i.e., when the energy barrier, as explained above, is overcome by a progressive supply of electrical energy. This effect on the appearance of an ordinary carbon arc has been shown by Iwasyk (16) and a good description of anode and cathode is given also in cobine (7).

In the low intensity arc, the current is such that the arc forms a characteristic crater that just covers the central portion of the anode tip. By increasing the current, the arc crater will now expand over the entire area. A further increase of current will cause the crater to spill over onto the sides of the anode. At this point, radiation and conduction can no more handle the energy losses; this condition corresponds to the transition from the low intensity region and the high intensity region, depicted as point D in Figure 2. The current density goes up, the temperature of the anode tip rises up to a point where disintegration of the anode material may begin. If, for instance, the electrodes are made of carbon, the sublimation point of carbon will be reached (as the anode temperature is limited to the [boiling point of the material), and the vaporization rate of the carbon anode will increase notably with the current. This high
intensity effect causes a tail flame to appear with an increased intrinsic brillancy. This is due to radiation from vapors at the base of the tail flame and indicates that superheated vapors exist also near the anode.

A main fraction of the arc power input is now being transferred directly to the anode. This intense concentration of energy can heat carbon electrodes so rapidly that they will vapoxize instantaneously and the vapors produced will stream away from the surface at high speed. It is not uncommon for this tail flame to extend outward as much as several inches, even though the spacing between the electrodes is of the order of a fraction of an inch. The arc core is a region of intense chemical activity and the temperature is so high that all gases coming through it are mainly dissociated. Suits (31) , for instance, reports a temperature of $7,400^{\circ} \mathrm{K}$ at one atmosphere for H_{2} gas passed between two carbon electrodes for a current of 10 amp . The temperature also is seen to increase with both current and pressure.

The plasma column of the high intensity arc has, in most cases, a well-defined boundary. The surrounding cold gas acts as a wall to receive diffusing ions and electrons for recombination. It has been found (31) that the temperature of the surrounding gas departs very little from the ambient value up to a distance only a few millimeters from the luminous region. Thus, a temperature gradient of the order of several thousand degrees per inch exists in the region immediately surrounding the arc core. A high-
temperature gradient is evidently necessary from the Fourier heat-flow equation, for thermal conductivity k and area A

$$
\begin{equation*}
\frac{\partial H}{\partial t}=-k A \frac{\partial T}{\partial r} \tag{4}
\end{equation*}
$$

because the temperature gradient must be large enough for the outward flow of heat, $\partial \mathrm{H} / \partial t$, to be equal to the total electrical energy supplied to the arc.

Heat is lost from the electrodes by conduction through the electrode supports, by convection to the surrounding gas, and by radiation. If the material constituting the electrodes is a relatively poor heat conductor, as carbon, conduction of heat through the solid can be neglected. If in addition the convection loss to the gas is neglected, the entire heat loss per unit area is by radiation, according to the Stefan-Boltzmann law:

$$
\begin{equation*}
\text { Heat losses }=\alpha \sigma T^{4} \tag{5}
\end{equation*}
$$

where α is the emissivity of the electrode material relative to a black body (about 0.75), σ is the radiation constant $\left(5.77 \times 10^{-12}\right.$ watts $/(\mathrm{cm})^{2}(\text { deg })^{4}$, and T is the absolute temperature in ${ }^{\circ} \mathrm{K}$. Estimates of heat transfer rates to probes placed in plasmas ${ }^{(13)}$ reveal that at least 75% of heat losses are due to radiation.

The temperature of the arc column at atmospheric pressure is sufficiently high for thermal ionization to become an important factor in the maintenance of ionization, according to the Saha equation (Eq. 2). The thermal ionization that maintains the arc
column is established by virtue of the high gas temperature, which in turn is established and maintained by the energy given up by the ions and electrons in collision with the gas particles. Of course, the energy of the ions and electrons comes directly from the electric field, or the arc power input. Thus, although the maintenance of the arc column is by thermal ionization, this is only an intermediate process whereby electrical energy is converted into heat.

Operation of the High Intensity Arc

The stability of a high intensity arc depends on a few factors which will be discussed briefly. The type of discharge that results upon spark breakdown of a gap depends upon the shape of the electrodes, the gap, the gas pressure, and the nature of the external circuit. A self-sustained discharge is established only when the conditions of field, pressure, and gap are such that each electron leaving the cathode establishes secondary processes whereby it is replaced by a new electron leaving the cathode.

For a given gas at a fixed pressure and for any given arc length, the conditions of the external circuit establish the voltage and current of the burning arc. The requirement of constant arc length is often hard to fulfill: if an arc burns horizontally, the buoyant forces due to the hot gases will cause the column to arch and thus increase the actual length of the column even though the electrode separation is unchanged. If the arc
is struck between vertical electrodes, the hot gas may alter the phenomena at the upper electrode.

A sudden increase in arc voltage due to an increase in arc length may cause the current to decrease to a value less than that necessary for stable operation for so long a period that the arc will be extinguished.

The stability of an arc can be increased by the superimposition of a high-frequency voltage. For welding arcs, using carbon electrodes, a magnetic field produced by a solenoid coaxial to the carbon electrode is sometimes used to stabilize the arc and produce a stirring action in the molten metal which is carrying the welding current.

Measurement of High Temperatures

At present none of the usual temperature measuring devices can withstand temperatures at extreme conditions $\left(7,000^{\circ} \mathrm{K}\right)$; investigators had to look for some other ways to find temperatures encountered in plasmas. Although the methods used are somewhat refined, good reliability is claimed with regard to the assumptions involved.

One method relies on equilibrium composition of gases at elevated temperatures. Mollier diagrams for enthalpy-entropy have been issued for a few gases, and they are used to compute the plasma temperature, for argon plasmas for instance (13). On the other hand, if the equilibrium diagram for a gas or mixture can be
calculated reliably as a function of temperatures, then the composition of the gas determines the temperature.

The velocity of propagation of acoustic waves in gases is another way of determining temperatures (34). Thermodynamic and fluid flow theories are then applied in these cases. The effects of vibrational, dissociative, and radiative relaxation and absorption on the propagation of sound waves provide a means of computing the temperature of a gas. The applicability of acoustic methods is unfortunately limited to special apparatus.

The determination by Dickermann (8) of the equilibrium temperature of a plasma has been obtained by the analysis of the Bolmer series lines in hydrogen. According to the line broadening theory, the plasma temperature is directly related to the spectral line width. The use of Holtsmark theory together with the Saha equation discussed previously provides the necessary relationships to express ion and atom concentrations as a function of temperature.

Assuming that the plasma has no net charge, the excitation energy E_{o} is related to the number of electrons, n_{e} (equal to the number of positive ions) by

$$
\begin{equation*}
E_{o}=2.61 \text { e }\left(n_{e} T\right)^{2 / 3} \tag{6}
\end{equation*}
$$

where e is the ionic charge. Wave lengths and relative intensities of the H_{2} Balmer lines are measured, and by choosing a value of E_{0} that provides for the best fit of experimental and theoretical curves, a temperature is directly matched from the broadening of
the Balmer lines.
Results are claimed to be consistent in the temperature range 10,000 to $18,000^{\circ} \mathrm{K}$ with an accuracy of five percent. This method is applicable to plasmas largely made up of hydrogen, but it is claimed to be suitable for plasmas in which hydrogen amounts to only one percent. Consistent results are expected, provided the total pressure is sufficient to assure a close approach to thermal equilibrium (20 cm Hg or kigher).

Spectral methods of broader applications can also be applied to determine temperatures in the range 5,000 to $15,000^{\circ} \mathbb{R}$, using the intensities of the atomic lines on of the ionic Iines. The latter depends, however, on a shape factor and the work of Pearce (25) should be very useful in that respect, since it lists several tables relating wavelengths and excitation energies to various shape factors for several substances. The spectral methods require again very elaborate apparatus.

In studying high temperature systems by means of the high intensity arc, none of the discussed methods seem practical for temperature measurements, unless temperature determinations are specifically involved. Unfortunately also, the usual thermom couples are unsuitable, even for heat transfer study, because the intense electric field generated by the arc renders such devices useless.

Acetylene Production from Hydrogen and from Methane at High Temperatures

Gas mixtures made up essentially of carbon and hydrogen have been the object of several investigations at high temperatures. Thermodynamics shows that the formation of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, is favorable at elevated temperatures; the energy to form acetylene thermally from hydrocarbons or carbon and hydrogen must be supplied at high enough temperatures so that the free energy is favorable, as shown in Figure 3 where free energies of formation (28) per carbon atom for several hydrocarbons are plotted against temperature (14, 16). The temperature required for acetylene formation decreases as the molecular weight of paraffinic hydrocarbons is increased, though in general it will be above $1,200^{\circ} \mathrm{K}$ for all hydrocarbons.

To convert any hydrocarion to acetylene also requires a relatively large amount of energy as indicated in Figure 4 which shows the heats of formation (28) of several hydrocarbons (14, 4). Of all hydrocarbons, methane requires the largest amount of energy in order to be converted to acetylene. Under extreme conditions, acetylene production is thus possible.

Arc processes used to react gases formed of carbon and hydrogen date back to 1862 when Berthelot first studied qualitatively the $\mathrm{C}+\mathrm{H}_{2}$ reaction. Bone and Jordan ${ }^{(5)}$ reviewed more quantitatively Berthelot's work. They operated a low intensity $\operatorname{arc}(40-60 \mathrm{amp} ., 160$ volts) with two carbon electrodes, using atmospheres of (1) hydrogen, (2) either methane or acetylene, (3) methane and acetylene. When H_{2} was used alone, a state of

FIG. 3 . Free Energies of Several Hydrocarbons.

FIG. 4 . Heats of Formation of Several Hydrocarbons.
equilibrium was established between the unconverted H_{2} and the CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{2}$ formed; the same state of equilibrium was also reached when either CH_{4} and/or $\mathrm{C}_{2} \mathrm{H}_{2}$ was used under the same conditions. The product gases contained typically about 10% of $\mathrm{C}_{2} \mathrm{H}_{2}$ and $3 \% \mathrm{CH}_{4}$. The first successful commercial plant for the production of acetylene by thermal cracking of low molecular weight hydrocarbons was probably the electric arc process of the I_{0} G. Farbenindustrie of the Chemische Werke plant at Huels in Germany. The plant produced about 200 metric tons/day of a 97% acetylene, first from C_{2} and C_{3} hydrocarbons and later from natural gas. Detailed information on the design and operation of this plant is available as the plant was found to be virtually undamaged after the war. In this process, the product gas from the arc zone qas quenched several feet away by a water spray and contained 16 to $17 \% \mathrm{C}_{2} \mathrm{H}_{2}$. The synthesis of $\mathrm{C}_{2} \mathrm{H}_{2}$ directly from C and H_{2} has been studied (32) at temperatures up to $2,600^{\circ} \mathrm{C}$ in resistance heated furances, but in this case the acetylene produced did not amount to over 5\%. It is also noted in this work that methane formation predominates in the temperature range 1,450 to $2,000^{\circ} \mathrm{C}$ due to CH , CH_{2} and CH_{3} radicals forming and recombining to methane, while at temperatures above $2,000^{\circ} \mathrm{C}$ the amount of $\mathrm{C}_{2} \mathrm{H}_{2}$ increases upon quenching of the reaction products due primarily to the same radicals which recombine to yield $\mathrm{C}_{2} \mathrm{H}_{2}$ rather than CH_{4}. Plooster and Reed (26) have also investigated the carbon-hydrogen system in resistance heated furnaces up to $2,500^{\circ} \mathrm{C}$ and found good
agreement between experimental and thermodynamical equilibrium concentrations of acetylene based on the following mechanism. They postulated acetylene dissociation to go to $\mathrm{C}, \mathrm{H}, \mathrm{CH}, \mathrm{C}_{2}$ and $\mathrm{C}_{2} \mathrm{H}$ radicals; the $\mathrm{C}_{2} \mathrm{H}$ radical was explained on the reasoning that the rupture of a carbon triple bond or of two separate double bonds is quite improbable until even higher temperatures are reached, but the rupture of one $\mathrm{C}-\mathrm{H}$ bond to give $\mathrm{C}_{2} \mathrm{H}+\mathrm{H}$ should be most likely.

At temperatures of the order of $3,000^{\circ} \mathrm{K}$, the following dissociation reactions were postulated:

$$
\begin{array}{ll}
\text { I) } \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{H}, & \mathrm{~K}_{1}=\mathrm{p}_{\mathrm{H}}^{2} / \mathrm{p}_{\mathrm{H}_{2}} \\
\text { II) } & 2 \mathrm{C}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{2},
\end{array} \quad \mathrm{~K}_{2}=\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}_{2}} / \mathrm{p}_{\mathrm{H}_{2}} .
$$

The partial pressures of the species are then related to the total pressure by Dalton's law

$$
\begin{equation*}
\mathrm{P}=\mathrm{p}_{\mathrm{H}_{2}}+\mathrm{p}_{\mathrm{H}}+\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}_{2}}+\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}} \tag{10}
\end{equation*}
$$

Three possible recombination reactions are assumed to occur upon quenching:

$$
\begin{align*}
& \text { IV) } \mathrm{H}+\mathrm{H} \longrightarrow \mathrm{H}_{2} \tag{11}\\
& \text { V) } \mathrm{C}_{2} \mathrm{H}+\mathrm{H} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2} \tag{12}\\
& \text { VI) } \mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{2} \text { (diacetylene) } \tag{13}
\end{align*}
$$

but, according to kinetics, diacetylene formation should be very
small.

The free energies of formation of the $C_{2} H$ radical were theoretically calculated up to $3,500^{\circ} \mathrm{K}$, taking into account estimation of interatomic bond to bond distance and frequencies of vibration of the molecule.

Experiments carried out up to $3,000^{\circ} \mathrm{K}$ seem to verify this assumption regarding the $C_{2} H$ radical, but the evidence is not clear cut since the maximum acetylene concentrations found were of the order of 5 or 6% and the data were widely scattered.

Following Plooster and Reed ${ }^{\circ}$ s theory concerning the $\mathrm{C}_{2} \mathrm{H}$ radical and quenching mechanism, Iwasyk (16) calculated the thermodynamic equilibrium diagram of the $C+H_{2}$ system from 2,500 to $4,500^{\circ} \mathrm{K}$. At one atmosphere pressure and for a carbon to hydrogen ratio of unity, his calculations showed that a maximum concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ equal to 34% could be obtained at the sublimation point of carbon determined as $3,750^{\circ} \mathrm{K}$. However, if the radical $\mathrm{C}_{2} \mathrm{H}$ was not taken into account, only $14 \% \mathrm{C}_{2} \mathrm{H}_{2}$ could be obtained. Among the species assumed to be present in the high temperature region were $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{2} \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{H}_{2}$, and $\mathrm{H}_{\text {. }}$.

Figure 5 shows the results of calculations based on the scheme used by Iwasyk to evaluate the composition of the carbon-hydrogen system. Note that two values of $\Delta H_{\text {Of }}^{\circ}$ for $C_{2} H$ were used, since at the time, this was a major element of uncertainty, as pointed out by Plooster and Reed.

Figure 6 indicates the maximum concentration of acetylene that

FIG. 5. Equilibrium Jomposition of the $c+H_{2}$ System, $\mathrm{C}_{2} \mathrm{H}$ considered.

FIG. 6. Naximum $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration versus temperature for the $\mathrm{C}+\mathrm{H}_{2}$ system.
can be obtained at various temperatures following a perfect quench of the high temperature gas and assuming the gas to yield only $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2}. Calculated values related to these two graphs appear in Tables $A-1$ and $A-2$ of Appendix A. The equilibrium diagram and the quenched $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration are largely dependent on the value assigned to the heat of formation of the $C_{2} H$ radical, as indicated in the two graphs. Also the calculated sublimation point of carbon is different for both values used in the calculations, the heterogeneous region lying at the left of the sublimation point and the homogeneous region at the right.

The above equilibrium determinations are nevertheless limited in that they consider only one carbon to hydrogen ratio, $C / H_{2}=1.0$, whereas it is not only probable but also very likely to take lesser or greater ratios.

However experiments directed to $\mathrm{C}_{2} \mathrm{H}_{2}$ production and carried out in a high intensity $d_{0} c$. arc added evidence to the formation of $\mathrm{C}_{2} \mathrm{H}$ radicals and to the quenching mechanism of Eqs. 11 and 12 , since as high as $18.6 \% \mathrm{C}_{2} \mathrm{H}_{2}$ was obtained at one atmosphere and 23.8% with 66.7% helium diluent. These results are two or three times higher than any previously reported in the literature for reactions between the elements.

In a recent paper, Eremin et al. (12) report the results of their study on the electrocracking of methane in a low intensity a.c. arc to produce acetylene. It was shown that the quantity of methane reacted per unit of energy consumption in the initial
period of the reaction was practically independent of the geometric dimension of the discharge, of the current density, of the power and of the amount of dilution of the initial CH_{4} with H_{2}, but it was found to be influenced by pressure, decreasing with an increase of pressure. However, the final concentration of acetylene in the output gas did not reach more than 17% for power input ranging from 0.5 to 4 kw in a high voltage (2,000 volts) arc. The kinetics of methane reaction to yield $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$ and simultaneously to degrade to $\mathrm{C}+\mathrm{H}_{2}$ were also analysed as a function of methane flow rate and power requirement of the cracking reaction.

In a patent issued to H. M. Weir (35), a process is disclosed for making acetylene in an electric arc and data for treating each of the four simplest aliphatic hydrocarbons in order to yield product gases with $12 \% \mathrm{C}_{2} \mathrm{H}_{2}$ by volume arc presented. The invention is also related to the case where carbon particles are passed repeatedly through an arc and present a relatively large surface for reaction with hydrogen coming from either pure gas or excess H_{2} by cracking of hydrocarbons.

Molecular fragments likely to occur upon treatment of hydrocarbons such as methane were assumed to be $\mathrm{CH}_{,} \mathrm{CH}_{2}, \mathrm{CH}_{3}$, C, and H. Acetylene is said to result only from breakdown to C, H , and CH , and when the high temperature zone of the arc is increased by high temperature heat transport by solid particles this drastic breakdown of the original molecules is sensibly increased. The end result would be a greater production of $\mathrm{C}_{2} \mathrm{H}_{2}$ with the same
input of electrical energy. Also with the addition of solid carbon particles, forming extended surfaces of reactive material and contacting the atomic hydrogen derived from the feed, acetylene is formed in amounts substantially exceeding those theoretically possible only by cracking of hydrocarbons where no carbon other than that from the gas is available.

The main products of the process consist chiefly of H_{2}, unreacted feed gas and $\mathrm{C}_{2} \mathrm{H}_{2}$, whereas side reaction products such as methyl acetylene, vinyl acetylene and diacetylene are also found.

Processes using carbon electrodes, $\mathrm{C}_{2} \mathrm{H}_{2}$ manufacture from H_{2} and from mixtures of H_{2} and hydrocarbons with recycling of H_{2} are also disclosed in the patent. It is stated, however, that the net yield of $\mathrm{C}_{2} \mathrm{H}_{2}$ from any arc process depends critically on the effectiveness and speed of cooling the product gas stream to temperatures well below the range of rapid decomposition. No $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration larger than 12% is nonetheless disclosed.

In a recent study of plasma yet, Leutner and Stokes (22) mixed carbon powder to the high temperature stream of an H_{2} plasma jet: considerable soot formation was experienced and it was argued that the quench was not fast enough to prevent decomposition of the acetylene formed to carbon and hydrogen. Another experiment using an argon plasma jet was successful in bringing about 80% yield of $\mathrm{C}_{2} \mathrm{H}_{2}$ when CH_{4} was fed into the flame of the jet and contained
in a graphite insert. The limit of $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration was only 20% 。

Anderson and case ${ }^{(1)}$ made a detailed study of the cracking of methane at temperatures of the order of 1,000 to $2,000^{\circ} \mathrm{K}$. Theoretically, they applied thermodynamic and kinetic data to predict quantitatively the results that could be obtained by mixing the hot hydrogen from a plasma torch with cold methane and subsequently quenching the mixture. Experiments which were found to agree very well with the theory showed that a mixture providing a temperature between 1,700 and $2,000^{\circ} \mathrm{K}$ could produce 80 to 90% yield with minimum energy requirement. It was also found that mixing (not instantaneous) and the speed of quenching were not important for the cases considered. Acetylene concentration greater than 22% were not obtained; the optimal experimental values of $\mathrm{C}_{2} \mathrm{H}_{2}$ yield, $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration and energy requirement were 76%, 15%, and 370,000 B.t.u. $/ 1 \mathrm{~b}$. mole $\mathrm{C}_{2} \mathrm{H}_{2}$ respectively.

The latest developments regarding acetylene production at high temperatures involve processes using hydrogen dilution (20) which yield approximately $7 \% \mathrm{C}_{2} \mathrm{H}_{2}$ at a reactor temperature of $1,700^{\circ} \mathrm{K}$ and processes using partial oxidation (14) which provide the heat necessary to crack unreacted hydrocarbons with $\mathrm{C}_{2} \mathrm{H}_{2}$ output of about 6.5%. An analysis of the kinetics of the partial oxidation process has been reviewed extensively by Leroux and Mathieu (21). According to their study it is possible to calculate with a fair accuracy the performances of a partial oxida-
tion burner using basic kinetic data, assuming that the cracking process follows the combustion process and that the combustion leads to equimolar quantities of CO and $\mathrm{H}_{2} \mathrm{O}$. The mechanisms of methane pyrolysis, ethane, ethylene, and acetylene formation, acetylene polymerization and oxidation by water vapor are set forth and the velocity constants are calculated from the results of experiments. However, a $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration of only 15% seems possible from these processes.

From an economic standpoint, a summary of costs for producing acetylene by the electric arc, direct pyrolysis and partial oxidation processes has been prepared recently by Lobo (23).

III. APPARATUS AND PROCEDURE

In order to carry out the reactions of carbon vapors with hydrogen and with methane, a special reactor was built. A modification of the basic design originated by Iwasyk (2, 16) was used. The reactor consisted of four parts as pictured in Figure 7.
(a) The anode holder section and the screw drive mechanism (not shown) for the anode feed have been left unchanged from Iwasyk's reactor. The plunger assembly was machined at one end to receive threaded carbon anodes and thus provide good electrical contact. Three 0 rings made a good seal between the inside walls of the anode holder pipe and the plunger assembly. Reactant gas could be fed through either the anode holder flange or through hollow anodes.
(b) The main reactor shell was made of a $31 / 2$ in. i.d. steel pipe with $1 / 4$ in. walls and it was cooled by water flowing through three copper coils wrapped around the outside walls; a rectangular window covered with a Vycor glass plate and a dark blue glass plate was cut in the main shell to allow observation of the arc and to permit visual control of the anode feed. Radiation shields made of graphite were placed around the arc zone and in the window cut-out to reduce heat losses to the reactor walls and internal stresses to the Vycor glass. The main reactor shell contained anode and cathode, and also the sampling probe as seen in Figure 7.

FIG. 7. Details of the Experimental High Temperature Arc Reactor
(c) The cathode holder section was also made of a single brass pipe $21 / 2$ in. o.d. with one cooling coil wrapped closely around the exterior. The cathode was forced in the inside cylindrical chamber to provide good electrical contact through the holder material.
(d) A probe holder section was added at the back of the cathode holder to isolate electrically the probe from the cathode section and thus prevent arcing between the anode and the probe, should the probe have been positioned too close to the arc zone. This section also contained the exhaust line from the reactor and an inlet for vacuum and pressure gage.

The reactor was placed in an area containing two blow windows and surrounded by a barricade made of steel plate. Operation of the reactor was made by remote controls.

Anodes were $1 / 4$ and $3 / 8$ in. O.d. graphite electrodes; cathodes were made from a $1 / 2$ in. to 2 in. o.d. solid graphite rod through which a one in. center hole was bored. One end was threaded in order to accept screwed-on graphite caps and this feature allowed quick and easy replacement of the cathode part which became partially blocked with carbon deposits after a run.

Electrical insulation was provided by means of thick Teflon and rubber gaskets with plastic washers for preventing electrical contact between any two parts of the reactor through the screws that held them together.

The probe was inserted through a special fitting containing two rubber 0 rings that made a good seal and permitted easy sliding

FIG. 8. Details of the Sampling Probe
of the probe for proper positioning before each run. In most of the runs the probe was kept close to the arc reaction zone, the closest practical distance without experiencing probe failure being onehalf in. The sampling probes were made of three concentric tubes. Details of construction may be seen in Figure 8. The inner tube consisted of a stainless steel hypodermic needle with inside diameter varying from 0.043 to 0.135 in. where the hot gases from the arc zone were quenched in a few milliseconds (16). A middle tube, made of copper or stainless steel, divided the water flow. The outside shell was made of a copper tube, either $5 / 16$ or $3 / 8$ in. in outside diameter. Two special elbows directed the water flow in and out the probe. All parts were silver soldered for resistance to high temperatures.

A $5 \mathrm{~h} . \mathrm{p}$. pump provided cooling water to the three coils wrapped around the main reactor shell and to the coil encircling the cathode holder: the four parallel combination circulated 7 gpm at 200 psi while an independent $1 \mathrm{~h} . \mathrm{p}$. pump forced water through the probes at a rate of 0.3 to 1.5 gpm under 125 psi .

A coil of No. 24 enameled copper wire was also wrapped around the reactor over a 1 in. portion at the reaction zone. Direct current passing though this coil generated a magnetic field at a right angle to the electron path, providing a swirling action for mixing the hot gases. The magnetic strength was about 70 gauss. Considerations regarding the choice of this value are discussed in details in Appendix F. Power for this circuit was furnished
first by four 6 volt batteries in parallel which were changed later on to a regulated $d_{\circ} c$. power supply.

Power to the arc was provided by two Lincoln welding generators hooked in series and capable of delivering 30 kw to the electrodes. A Miller arc starter and stabilizer was used in series with the generators.

A gas collecting system completed the experimental set-up. It consisted of 125 ml gas sampling bottle connected to either a vacuum or the sampling probe by means of a three-way stopcock. Gas analyses were performed with a Perkin Elmer gas chromatography unit model 154. Calibrations of the chromatograph are shown in Appendix G. The layout of high temperature facilities is presented in Figure 9。

To perform an experiment, the procedure consisted in assembling the reactor with proper positioning of the probe, inserting the consumable anode through the anode holder and adjusting the gap between the electrodes by viewing through the window. The anode feed rate was then set according to the power input from the generators. Vacuum was then applied to the reactor to remove the air, gas flow SH_{2} or CH_{4}) was started, followed by cooling water flow. A small fraction of the feed gas was directed through the probe for purging and preventing the probe from plugging before a gas sample of the arc zone was withdrawn. Power was then applied to the electrodes and the arc starter and magnetic field switched on. When the arc struck between the
Explanation of Symbols

AS	Arc Starter and Stabilizer
AD	Anode Drive Mechanism
B	Barricade
BF	Magnetic Field Setup
CP1, 2,3 Control Panels	
E	Exhaust Line
G	Gas Cylinders
GCU	Gas Chromatography Unit
PR	Water Pump to Reactor
PP	Water Pump to Probe
R	Reactor
RC	Remote Controls
S	Sampling Line
W	Window

FIG. 9. Layout of High Temperature Facilities
electrodes, the anode feeder was started, and the vacuum was left on a sampling bottle. Just prior to withdrawal of a sample, the purge flow was stopped, the probe line evacuated and the sampling bottle under vacuum was connected for about 2 seconds with the reaction zone via the quenching probe.

After a run, the reactor was purged with helium before disassembling and the sample taken to the vapor chromatography unit for analysis.

Various views of the equipment can be seen in Pates I to VIII.

Plate I. View of the inserted probe, probe holder with pressure and exhaust lines, cathod holder and main reactor shell with cooling coils. At far right, part of the anode holder.

Plate II. Open end view of the reactor. Rubber insulation gasket, graphite radiation shield and cathode pipe can be seen. Note the grayish color of the cathode end, which showed after several runs.

Plate III. Overall view of the assembled reactor. At far right, electrical connection to the plunger assembly of the anode holder.

Plate IV. View of the window side of the reactor with the arc running

Plate V. View of the pump panel controls (left) and barricade. Pressure and vacuum gages, remote controls, ammeter for the magnetic field circuit and observation part are located on the barricade.

Plate VI. View of the gas supply and distribution system. The inclined draft gage controls the purge flow to the probe.

Plate VII. View of one generator with the Miller arc starter located at the upper left corner.

Plate VIII. Gas chromatography unit : carrier gas supply, Perkin Elmer fractometer and chart recorder.

IV. RESULTS \& DISCUSSITON OF RESULTS

(1) Theory

One objective of this thesis was to analyse thoroughly the carbon-hydrogen system at higin temperatures and extend the work of Iwasyk (2, 16) who considered theoretically only one $\mathrm{C} / \mathrm{H}_{2}$ ratio. It is known (19) that the output of $\mathrm{C}_{2} \mathrm{H}_{2}$ from carbonhydrogen reactions increases with the $\mathrm{C} / \mathrm{H}_{2}$ ratio, but there is no indication in the literature of the quantitative effects of increasing the $\mathrm{C} / \mathrm{H}_{2}$ ratio on $\mathrm{C}_{2} \mathrm{H}_{2}$ production. Also, only the simple cracking of methane has been analysed (12, 22), and reactions of carbon vapors with CH_{4} have not yet been considered.

Carbon-Hydrogen Reactions

Reliable thermodynamic data for $C-H$ compounds at temperatures above $1,500^{\circ} \mathrm{K}$ are almost nonexistent in the Iiterature (28). To estimate thermodynamic data in the lnigh temperature range where measurements have not been made, two techniques are commoniy used. In one, low temperature data are extrapolated to a higher range. In the other, the data are based on estimates of interatomic distances and vibxational energies of the molecules. The first method may give exroneous values because of the uncertainty involved in extrapolating to a region where no data exist whereas the second is still only approximate because of the assumptions involved (3, 19, 26). Spectroscopic data, such as those reported by Drowart (11) and Chupka (2), taken at high temperatures are needed
in order to provide more reliable values of thermodynamic properties of species containing carbon and hydrogen.

Kroepelin and Winter (19) studied theoretically the carbonhydrogen system between $2,000^{\circ}$ and $6,000^{\circ} \mathrm{K}$ but failed to consider the existence of radicals of the general form $C_{x} H$ which were found to be important at high temperatures. In particular, Plooster and Reed (26) and Iwasyk (2, 16) postulated the $\mathrm{C}_{2} \mathrm{H}$ radical as precursor to $\mathrm{C}_{2} \mathrm{H}_{2}$ and the work of Bauer and Duff (3) points to an equally high concentration of $\mathrm{C}_{3} \mathrm{H}$ and $\mathrm{C}_{4} \mathrm{H}$ radicals at high temperature.

After careful examination of the available data at high temperatures, it was assumed that, under equilibrium conditions, a reacting mixture of solid carbon, C_{s}, and hydrogen at 3,000 to $4,000^{\circ} \mathrm{K}$ would probably consist predominantly of $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{H}$, $\mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}, \mathrm{C}_{3} \mathrm{H}, \mathrm{C}_{4} \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$, and $\mathrm{C}_{4} \mathrm{H}_{2}$. Of the polyatomic forms of carbon vapor, only species containing from one to three atoms of carbon are important at high temperatures (11). Dissociation of hydrogen gas occurs between 2,000 and $6,000^{\circ} \mathrm{K}$, while ionization begins around 8,000 to $9,000^{\circ} \mathrm{K}$. The $\mathrm{C}_{4} \mathrm{H}_{2}$ molecule (diacetylene) was included because recombination of $\mathrm{C}_{2} \mathrm{H}$ radicals (30) or reaction of $\mathrm{C}_{2} \mathrm{H}$ with $\mathrm{C}_{2} \mathrm{H}_{2}$ (21) can produce $\mathrm{C}_{4} \mathrm{H}_{2}$. The presence of the $\mathrm{C}_{2} \mathrm{H}$ radical is further supported by the spectroscopic work of Chupka (6) and theoretical considerations by Marynowski (24). A recent analysis ${ }^{(3)}$ indicates that CH_{2} and CH may become significant. above $4,000^{\circ} \mathrm{K}$.

Calculations of the equilibrium composition of the carbonhydrogen system in both the heterogeneous and homogeneous regions have been performed on the IBM 7090 computer at the M.I.T. Computation Center, taking into account the twelve species listed above. The whole computer program appears in Appendix A.

For the heterogeneous region, the following reaction scheme was adopted:

$\mathrm{c}_{\mathrm{s}} \longrightarrow \mathrm{c}_{1}$	(K_{1})
$2 \mathrm{C}_{\mathrm{S}} \longrightarrow \mathrm{c}_{2}$	$\left(\mathrm{K}_{2}\right)$
$3 \mathrm{C}_{\mathrm{s}} \longrightarrow \mathrm{c}_{3}$	$\left(\mathrm{K}_{3}\right)$
$2 \mathrm{C}_{\mathrm{s}}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}$	$\left(\mathrm{K}_{4}\right)$
$\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}$	$\left(\mathrm{K}_{5}\right)$
$\mathrm{C}_{2} \mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	$\left(\mathbb{R}_{6}\right.$)
$3 \mathrm{C}_{5}+\mathrm{H} \longrightarrow \mathrm{C}_{3} \mathrm{H}$	(k)
$4 \mathrm{C}_{\mathrm{S}}+\mathrm{H} \rightarrow \mathrm{C}_{4} \mathrm{H}$	$\left(\mathrm{K}_{8}\right)$
$2 \mathrm{C}_{2} \mathrm{H} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{2}$	(K_{9})

For the homogeneous region, the following reactions were involved:

$\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}$	$\left(\mathrm{K}_{5}\right)$
$\mathrm{C}_{2} \mathrm{H}_{2} \longrightarrow \mathrm{c}_{2} \mathrm{H}+\mathrm{H}$	$\left(\mathrm{K}_{6}\right)$
$2 \mathrm{C}_{2} \mathrm{H} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{2}$	$\left(\mathrm{~K}_{9}\right)$
$\mathrm{C}_{3} \longrightarrow \mathrm{C}_{2}+\mathrm{C}_{1}$	$\left(\mathrm{~K}_{10}\right)$
$\mathrm{C}_{2} \longrightarrow \mathrm{C}_{1}$	$\left(\mathrm{~K}_{11}\right)$
$\mathrm{C}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}$	$\left(\mathrm{~K}_{12}\right)$
$\mathrm{c}_{3}+\mathrm{H} \longrightarrow \mathrm{c}_{3} \mathrm{H}$	$\left(\mathrm{K}_{13}\right)$

$\mathrm{C}_{2}+2 \mathrm{C}_{1}+\mathrm{H} \longrightarrow \mathrm{C}_{4} \mathrm{H}$
$\mathrm{C}_{1}+\mathrm{H} \longrightarrow \mathrm{CH}^{\left(\mathrm{K}_{14}\right)}$
$\mathrm{C}_{1}+2 \mathrm{H} \longrightarrow \mathrm{CH}_{2}$

Values of the free energy functions, on the enthalpy of formation for various components in the ideal state and of the calculations leading to the equilibrium constants for these reactions as calculated by the method of Bauer and Duff ${ }^{(3)}$ are given in Tables $A-4, A-5, A-6$, and $A-7$ of Appendix A. The basic constants for these calculations based on estimates of interatomic distances and vibrational energies of the molecules are also given in Table A-3 of the same Appendix, together with a reference list of all the sixteen chemical reactions examined.

In the heterogeneous region, the sum of the partial pressures of various components must equal the total pressure. In the homogeneous region, besides this condition, the carbon to hydrogen ratio must remain the same throughout the whole temperature range, thus involving a rearrangement of the various species over this range.

The solution of the first system of equations results in a quadratic equation with the partial pressure of H atoms to be determined, from which all other component concentration can be easily derived. The homogeneous system gives two quadratic equations that must check simultaneously, a situation most efficiently handled by a computer. A detailed explanation of the computer program leading to the determinations of the equilibrium composi-
tion at high temperatures is discussed in Appendix B, and results of the calculations are presented in Table $B-1$ for the heterom geneous region and in Table B-2 for the homogeneous region at various $\mathrm{C} / \mathrm{H}_{2}$ ratios and total pressures.

The results of such calculations are also presented in graphical form in Figs. 10 to 18 inclusively, for the heterogeneous region (Fig. 10) and for $\mathrm{C} / \mathrm{H}_{2}$ ratios of $0.5,1.0,2.5,5.0,7.5$, and 15.0 (Fig. 11 to 16 inclusively) at one atmosphere pressure. The influence of pressure is shown in Fig. 17 and 18, which are plotted for a pressure of 0.1 and 10.0 atmospheres respectively at a $\mathrm{C} / \mathrm{H}_{2}$ ratio of 5.0 . Note that $\mathrm{C} / \mathrm{H}_{2}=0.5$ would actually correspond to pure methane feed, but CH_{4} is practically nonexistent above $2,000^{\circ} \mathrm{K}$ and is not taken into account in these calculations.

On these plots, the dashed line represents the sublimation temperature for the particular carbon to hydrogen ratio, i.e., the maximum temperature at which solid carbon exists and the temperature at which the homogeneous region begins. For any carbon to hydrogen ratios, those portions of the curve which lie in the heterogeneous region coincide. Although CH and CH_{2} were not considered in the calculations of the heterogeneous region (see Table $B-1$), they were included in the above graphs by reference to the work of Bauer and Duff(3)...since their concentram tions are small, they do not influence the overall results in the heterogeneous region, CH and CH_{2} were however taken into account in the homogeneous region.

FIG. 10. Equilibrium Composition for the Carbon Hydrogen System in the Heterogeneous Region

FIG. 11. Equilibrium Diagram at One Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=0.5$

FIG. 12. Equilibrium Diagram at One Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=1.0$

FIG. 13. Equilibrium Diagram at one Atmosphere, $C / H_{2}=2.5$

FIG. 14. Equilibrium Diagram at One Atmosphere, $C / H_{2}=5.0$

FIG. 15. Equilibrium Diagram at One Atmosphere, $C / H_{2}=7.5$

FIG. 16. Equilibrium Diagram at One Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=15.0$

FIG. 17. Equilibrium Diagram at $0.1 \mathrm{Atm} ., \mathrm{C} / \mathrm{H}_{2}=5.0$

FIG. 18. Equilibrium Diagram at 10 Atm., $\mathrm{C} / \mathrm{H}_{2}=5.0$

The homogeneous region is characterized by a rearrangement of the different species obtained at the sublimation point and the relative distribution of the various components depends on the carbon to hydrogen ratio as can be seen from Figs. 11 to 18. The predominant components in this zone are carbon vapors and radicals $\mathrm{C}_{2} \mathrm{H}_{0} \mathrm{C}_{3} \mathrm{H}$, and $\mathrm{C}_{4} \mathrm{H}_{0}$ the radicals reaching a maximum concentration near the sublimation point and having approximately the same order of magnitude. The carbon species, except C_{1}, decrease at temperatures above $4,700^{\circ} \mathrm{K}$. Above $6,000^{\circ} \mathrm{K}$, only H and C_{1} remain in appreciable amount and their relative concentration approaches that calculated from the fixed carbon to hydrogen ratio. Hydrogen atoms have approximately the same concentration from $4,500^{\circ} \mathrm{K}$ 。

The transition from the heterogeneous region to the homogeneous region is smooth at $10 \mathrm{~W} / \mathrm{H}_{2}$ ratio, but breaks sharply at higher ratios. This provides a means of defining the sublimation point for various conditions. Since both regions are calculated independently, drawing the curves for the heterogeneous region and for the homogeneous region from the low and high ends of their range respectively should bring the concentration of each component to the same value at the sublimation point, as was done in Figs. 11 to 18. Another way to determine this temperature is to approach it from the heterogeneous region, by calculating at each temperature the $\mathrm{C} / \mathrm{H}_{2}$ ratio from the gas phase composition. Plotting these values (Table B-1) resulted
in Fig. 19, which shows that the heterogeneous region can be extended by either providing a larger proportion of carbon or by operating at higher pressures.

Acetylene concentration as calculated from the equilibrium diagrams goes through a maximum mole fraction of 0.07 at $3,300^{\circ} \mathrm{K}$ at one atmosphere in the heterogeneous region. A higher concentration is obtained with increasing pressure, but it decreases steadily in the homogeneous region. These equilibrium values of $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration are considerably lower than those obtained experimentally by sampling the hot gas through a water-cooled. probe, which was explained in terms of $\mathrm{C}_{2} \mathrm{H}$ and H combination in the probe to yield additional $\mathrm{C}_{2} \mathrm{H}_{2}$ (2). This illustrates the importance of considering all important high temperature species when attempting to predict the composition of the quenched gas from a high temperature reactor.

Since $\mathrm{C}_{3} \mathrm{H}, \mathrm{C}_{4} \mathrm{H}, \mathrm{CH}_{2}$ and CH_{2} were not all considered in previous workd $(\underline{2}, 16,19,26)$, the maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ concentrations obtainable under optimum quenching conditions were computed from the results of the calculations discussed above. See Appendix B for a detailed explanation of the quench mechanism and calculations reported in Tables $B-3$ to $B-6$. The quench mechanism adopted was the following: all $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{H}_{2}$ and $\mathrm{C}_{4} \mathrm{H}_{2}$ present remain unchanged, $\mathrm{C}_{2} \mathrm{H}$ recombines with H atoms to yield more $\mathrm{C}_{2} \mathrm{H}_{2}$, the remaining H not used by $\mathrm{C}_{2} \mathrm{H}$ forms molecular hydrogen and $\mathrm{C}_{3} \mathrm{H}, \mathrm{C}_{4} \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{C}_{1}$, C_{2}, C_{3} go to solid carbon and H_{2}. It might be argued that $C H$ can

FIG. 19. Carbon Sublimation Temperature as a Function of the
$\mathrm{C} / \mathrm{H}_{2}$ Ratio at Various Total Pressures
yield $\mathrm{C}_{2} \mathrm{H}_{2}$ directly from the dimerization of the radical, but its concentration is so low that the scheme adopted does not affect the overall results. Under these conditions, a perfectly quenched sample would contain only $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2} and also a minute amount of $\mathrm{C}_{4} \mathrm{H}_{2}$ (less than 0.5%). The results of those calculations are presented in Fig. 20 for a total pressure of one atmosphere and $\mathrm{C} / \mathrm{H}_{2}$ ratios from 0.5 to fifteen. The curve calculated for the heterogeneous region is common to all cases up to the specified $\mathrm{C} / \mathrm{H}_{2}$ ratio, as inferred from the equilibrium diagrams. The maximum acetylene concentration occurs in the homogeneous region for a carbonhydrogen gaseous mixture quenched from about 4,000 to $4,500{ }^{\circ} \mathrm{K}$. As the relative amount of carbon is increased, more acetylene can be obtained. The effect of increasing the $\mathrm{C} / \mathrm{H}_{2}$ ratio from 1 to 5 is more pronounced, however, than from 5 to 15. For instance, for a $\mathrm{C} / \mathrm{H}_{2}=100$ at $4,500^{\circ} \mathrm{K}$, the quenched gas would contain only 50% $\mathrm{C}_{2} \mathrm{H}_{2}$, whereas a similar result can be obtained at $4,300^{\circ} \mathrm{K}$ for $\mathrm{C} / \mathrm{H}_{2}=15$. Above $5,000^{\circ} \mathrm{K}, \mathrm{C}_{2} \mathrm{H}_{2}$ concentration is low for all mixtures of carbon and hydrogen, and operation between 3,500 and $4,500^{\circ} \mathrm{K}$ would provide maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ concentrations.

The effect of increasing pressure on maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ content (see Tables B-4, B-5, and B-6) is to shift the whole curves of Fig. 20 upward to the right, while decreasing pressures move the curves downward to the left. This is also shown in Fig. 21 where the calculated maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ content is plotted for various total pressures and a $\mathrm{C} / \mathrm{H}_{2}$ ratio of 5.0 in the homogeneous region.

FIG. 20. Calculated Maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ Content for Various $\mathrm{C} / \mathrm{H}_{2}$ Ratios
at One Atmosphere

FIG. 21. Maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ Content at Various Total Pressures (Atm.),
$\mathrm{C} / \mathrm{H}_{2}=5.0$ in the Homogeneous Region

Iwasyk (2, 16) and Plooster and Reed (26) disclose that lower pressures should increase $\mathrm{C}_{2} \mathrm{H}_{2}$ formation, but this is true in the heterogeneous region oniy. the most favorable conditions for $\mathrm{C}_{2} \mathrm{H}_{2}$ production would be found for a gas mixture quenched from the homogeneous region at higher pressures, as can be seen from Fig. 21. However, operation at higher pressures is restricted by the danger of handling acetylene under pressure.

Carbon-Methane Reactions

Since the reaction of carbon vapor with hydrogen to form acetylene is exothermic, it is interesting to consider a reaction scheme whereby the endothermic heat of methane cracking would be furnished by this exothermic heat of reaction.

Consider the following reactions:
$2 \mathrm{C}_{1}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}$ (at T)
$2 \mathrm{CH}_{4}\left(298^{\circ} \mathrm{K}\right) \longrightarrow 2 \mathrm{CH}_{4}(a t \mathrm{~T})$
$2 \mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+3 \mathrm{H}_{2}$ (at T)
Reaction (30) may be used to furnish the sensible heat required to bring CH_{4} to reaction temperature, reaction (31) and to carry out the cracking reaction at that temperature, reaction (32). Below $2,000^{\circ} \mathrm{K}$, however, reaction (32) is equilibrium limited as seen by Fig. 22, (taken from Anderson and case (1), which represents the composition and yield from that reaction. The energy required for making one mole of acetylene as a func-

FIG. 22. Equilibrium Limitation on the Cracking Reaction of Methane $2 \mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+3 \mathrm{H}_{2}$ According to Anderson and Case (1).

FIG. 23. Energy Requirement for Methane Cracking, According to Anderson and Case (1).
tion of temperature is shown in Fig. 23, taken from Anderson and Case (1). This includes the heat requirement for reactions (31) and (32) in the range from $1,000^{\circ} \mathrm{K}$ to $2,000^{\circ} \mathrm{K}$. The parameter used is the yield or percent of methane decomposed that is converted to acetylene. The region at the left of the equilibrium line, transposed from Fig. 22, is not thermodynamically possible and it is seen that above $2,000^{\circ} \mathrm{K}$ all methane can be decomposed to yield $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2}.

Reaction (30) can also produce acetylene and the overall reaction scheme can give more $\mathrm{C}_{2} \mathrm{H}_{2}$ than the 25% possible by reaction (32) only.

The heats of reaction of the different reactions have been calculated (see Appendix D) from the heats of formation for the temperature range $1,500^{\circ} \mathrm{K}$ to $4,000^{\circ} \mathrm{K}$, using the data of Rossini (28) when available and extrapolating to high temperatures by the method of Bauer and Duff ${ }^{(3)}$ when necessary. Table D-1 shows the $\Delta \mathrm{H}^{\ominus}{ }_{\mathrm{Tf}}$ of $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{1}, \mathrm{H}_{2}, \mathrm{H}$, and CH_{4} as obtained by the various procedures, and also the sensible heat $\left(H_{T}^{0}-H_{0}^{0}\right)$ for methane.

The overall reaction may be written as:
$\mathrm{C}_{1}+\mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$
The heat of reaction for this reaction, i.e., for the sum of reactions (30), (31), and (32) has been calculated, taking into account the equilibrium limitation on methane cracking. The results are plotted in Fig. 24. From $2,000^{\circ} \mathrm{K}$ to $4,000^{\circ} \mathrm{K}$, the overall heat of reaction decreases steadily with increasing

FIG. 24. Net Heat of Reaction

FIG. 25. Carbon Requirement for Null Reaction Heat
temperature, but rises sharply near $1,500^{\circ} \mathrm{K}$ where equilibrium limits the reaction. This graph also shows that an excess of exothermic heat is still present at $4,000^{\circ} \mathrm{K}$ and can be used to react more methane.

Another way of analysing the results would be to determine the number of moles of carbon vapor necessary to carry out reactions (31) and (32) by using all the exothermic heat available from reaction (30). This procearure is given in Appendix D and the results are presented in Table $D-2$. As deduced from Fig. 24 for the entire procedure range, it will take fewer moles of carbon vapor reacted than moles of methane to be processed.

Fig. 25 shows this effect for a net $\Delta H_{\mathbb{R}}^{0}$ equal to zero, the bend in the curve below $2,000^{\circ} \mathrm{K}$ being due again to the equilibrium limitation imposed on reaction (32). Also represented on this plot is the theoretical concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ as calculated for the ratio of C_{1} to CH_{4} that gives a mull overall heat of reaction. For the temperature range of interest in the operation of a carbon arc reactor, a $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration of 40% to 47% could be theoretically obtained.

Although other processes such as the endothermic dissociation of hydrogen

$$
\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}
$$

or the highly exothermic reaction of atomic hydrogen with carbon vapor

$$
2 \mathrm{C}_{1}+2 \mathrm{H} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}
$$

which also produces more acetylene, or the formation of higher carbon species, which can also react with hydrogen to form further acetylene, or degradation of methane to solid carbon and lhydrogen were not included in this analysis, the results nonetheless point out that it is possible to obtain appreciable concentrations of $\mathrm{C}_{2} \mathrm{H}_{2}$ by reacting carbon vapors with methane, much more than the theoretical 25% possible by reaction (32) alone and the 12% claimed by the patent issued to Weir (35). For example, a $50-75 \%$ $\mathrm{C}_{2} \mathrm{H}_{2}$ gas may very well be possible from the cracking of methane in a high intensity arc reactor using consumable graphite anodes. As a point of economic interest, a quantity defined as the specific energy (10) might be examined. It is a measure of the energy used to produce a given amount of $\mathrm{C}_{2} \mathrm{H}_{2}$:

$$
\begin{equation*}
A=\text { specific energy }=\frac{k P}{\beta G a} \tag{34}
\end{equation*}
$$

where P is the power in $k w$, a' the outlet $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration, G the reactant gas flow rate in liters/min。 at $70^{\circ} \%$ and β is the coefficient of volume expansion. The coefficient of volume expansion can be dexived from stoichiometric considerations and can be calculated directly from the composition of the reacted gas. See Appendix E for the derivations. The constant k in Eq. 34 is a conversion factor equal to 7.02 for A in $k w-h r / l b$. $\mathrm{C}_{2} \mathrm{H}_{2}$ 。

For reactions (30) and (32), $\beta_{\max }=1$ and $\beta_{\max }=2$
respectively. Thus the methane-carbon system has the potential of
a considerably lower energy because of the higher maximum value of β 。

A last quantity might be considered in order to relate the fraction of carbon of the feed that is found in the output gas as $\mathrm{C}_{2} \mathrm{H}_{2}$ after reaction at high temperature. This quantity, termed Ω, is defined by

$$
\begin{equation*}
\Omega=\frac{\mathrm{C} / \mathrm{H}_{2} \text { in the output gas }}{\mathrm{C} / \mathrm{H}_{2} \text { in the feed }} \tag{35}
\end{equation*}
$$

It is a measure of the efficiency of carbon utilization for acetylene production in either the carbon-hydrogen system or the carbon-methane system. Details of derivation and determination of Ω are presented in Appendix E.

(2) Experimental Results

Two categories of experiments were performed in the high temperature reactor: one used hydrogen as feed gas and the other methane. A summary of the measured and derived quantities is presented in Appendix C. Table $C-1$ shows the data obtained for the hydrogen runs, while the methane runs are reported in Table $C-2$. In these runs, the power P has been taken as the average between the beginning and the end of any one experiment.

Carbon-Hydrogen System

Operational characteristics of the high intensity arc reactor Two sizes of anodes were used for the hydrogen runs: $1 / 4 \mathrm{in}$.
and $3 / 8$ in. The inner hole of the cathode cap was drilled to give a $1 / 8$ in. spacing between the cathode and anode as seen in the details of the reactor (Fig. 7). Accordingly, the cathode cap hole measured $1 / 2$ in. in diameter for the $1 / 4 \mathrm{in}$. anodes and $5 / 8$ in. for the $3 / 8 \mathrm{in}$. anodes. The length of the cap was kept at $1 / 2 \mathrm{in}$. in all cases. The arc characteristics were determined from the data of various runs and are shown in Fig. 26. The rising voltagerising current points, characteristic of a high intensity arc, exhibit rather wide scattering, and it is seen that the slope depends on the size of the gap between the electrodes or on the anode size only. Even if the spacing between the electrodes is the same in both cases, the arc length will not be the same, when taking the middle point as a reference point. A longer arc length seems to reduce somewhat the high intensity effect by lowering the burning voltage. There was no detectable influence of the gas flow rate on the arc characteristics.

It was observed during actual runs that the voltage and current varied in opposite directions so that the VI product was almost constant, $i_{0} e_{0}$, the power fed to the electrodes was constant despite fluctuations of voltage and current. This is shown in Figs. 27 and 28 where the carbon vaporization rate is plotted as a function of power. A direct relationship applies between these two quantities, but the slope is different for the two sizes of anodes used for the hydrogen runs.

FIG. 26. Arc Voltage-Current Characteristics of the High Intensity Arc

FIG. 27. Effect of Power on Carbon Vaporization Rate.
Hydrogen Runs: 1/4 Inch Anodes;
Methane Runs: 3/8 Inch Anodes.

FIG. 28. Effect of Power on Carbon Vaporization Rate for Hydrogen at Higher Flow Rates; $3 / 8$ in. Anodes
represented by

$$
\begin{align*}
& (\mathrm{CVR})_{1 / 4 \text { in. }}=0.435(\mathrm{P}-2.5) \tag{36}\\
& \text { anode }
\end{align*}
$$

while from Fig. 28, at higher flow rates,

$$
\begin{gather*}
(C V R)_{3 / 8 \text { in. }}=0.675(\mathrm{P}-4) \tag{37}\\
\text { anode }
\end{gather*}
$$

Taking the ratio of the slopes for $3 / 8 \mathrm{in}$. and $1 / 4 \mathrm{in}$. anodes, we get

$$
\begin{equation*}
\frac{(\mathrm{CVR}) 3 / 8}{(\mathrm{CVR}) 1 / 4}=1.55 \tag{38}
\end{equation*}
$$

If one assumes now, as discussed in the Introduction, that the current density is constant at the electrodes, the carbon vaporization rate should depend only on the area of the arc. The cathode cap cylindrical chamber is $5 / 8$ in. and $1 / 2$ in. for the $3 / 8$ in. and 1/4 in. anodes respectively, giving an area ratio

$$
\left(\frac{5 / 8}{1 / 2}\right)^{2}=1.5625
$$

which is approximately equal to the ratio of the slopes by Eq. 38 . One other fact that seems to ascertain that the CVR is dependent upon the arc area is the power needed to begin vaporization of the carbon anodes. The higher power (see Figs. 27 and 28) needed to vaporize bigger anodes could be explained by the radiation losses which are larger, the larger the area of the plasma, if we assumed that the latter retain approximately the same volume, since it is confined by the electric and magnetic fields and the cold
surrounding gas. The ratio of area to volume would then be greater, the larger the anodes. It would also be larger if we increase the flow rate, which has the effect of arching the arc and producing a larger area, as exhibited in Fig. 28 where the CVR is smaller at higher flow rates. This could be a plausible reason why the $C V R=P$ lines are shifted to the right with increasing flow rates.

It was also found experimentally that about half of the vaporized carbon condensed inside the cathode cap and formed hard deposits, grayish in color: this reduced the cathode opening after a run to about half the initial diameter. Most of the remaining carbon was found on the cold reactor walls. The probe was coated for a length of 3 to 4 inches from the tip and a small amount of carbon was deposited inside the probe, sometimes plugging the hypodermic needle tubing and preventing a sample from being withdrawn. In some cases, carbon deposits were found in the sampling bottle after sampling.

Effect of Power on the $\mathrm{C}_{2} \mathrm{H}_{2}$. Content of the Quenched Gas

The concentrations of acetylene obtained in the quenched samples are shown in rigs. 29 and 30 as a function of the power fed to the arc. In Fig. 29 for $1 / 4 \mathrm{in}$. anodes, data for the smaller, 19 gage (0.043 in. i.d.), probe were difficult to duplicate. The hypodermic tubing used plugged in each run and thus good samples $(25 \mathrm{ml}$ or more) were rather the exception. The 14 gage probe (0.063 in . i.d.) results are more reliable since plugging

FIG. 29. $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration Versus Power Input,
H_{2} Flow Rate: () : 3.0, (\diamond): 1.5 lit. $/ \mathrm{min}$ 。 1/4 in. Anodes
did not occur and any size sample could be collected. This probe also gave higher $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration as compared with the other two probes and it may well be close to an optimum quenching diameter, as discussed by Plooster and Reed ${ }^{(26)}$. The probe position for the 14 gage probe was $1 / 2$ in. from the anode tip in each run. For the smaller probes, this distance was varied from one inch to $1 / 2$ inch. In Fig. 30 are shown the data for the larger anodes and probes at different positions and for higher flow rates of H_{2} feed. This plot shown that the same concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ can be obtained by changing simultaneously both variables power and flow rates of feed gas. The $\mathrm{C}_{2} \mathrm{H}_{2}$ output is directly proportional to the power and inversely proportional to the rate of flow of gas, or expressed otherwise, to P / G. Due to power limitation from the generators, no clear cut trend with respect to acetylene concentration can be ascertained for extrapolation to power levels higher than 29 kw . The highest $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration obtained was 26.2% at 27 kw .

Of perhaps more significance is the $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration as a function of the $\mathrm{C} / \mathrm{H}_{2}$ ratio, shown in Fig. 21 for the results of Fig. 31. It is believed that the acetylene output is more directly related to the $\mathrm{C} / \mathrm{H}_{2}$ ratio than to the power, since the quantity P / G discussed above is directly proportional to the C/H ${ }_{2}$ ratio. The correlations for the three probes seem to present a direct relationship between the two quantities, although the 19 gage probe results are a little erratic. Operation with the 0.100 in. probe at a H_{2} flow rate of 1.5 lit. min. (thus giving a twofold increase in the

FIG. 30. Measured $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus Power Input for Hydrogen at Higher Flow Rates.

FIG. 31. $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration Versus $\mathrm{C} / \mathrm{H}_{2}$ Ratio.
H_{2} Flow Rate: $\left(\theta^{-1}\right): 3.0,(\diamond): 1.5$ lit. $/ \mathrm{min}$.
$\mathrm{C} / \mathrm{H}_{2}$ ratio for the same power input as compared with a flow rate of 3.0 lit./min.) indicates $\mathrm{C}_{2} \mathrm{H}_{2}$ concentrations equal to the ones obtained previously at 3.0 lit. $/ \mathrm{min}$, for a slightly higher $\mathrm{C} / \mathrm{H}_{2}$ ratio.

At this state in the course of the present study, the computer results were analysed more carefully in an effort to determine a way of comparing theory with experiments. Referring back to Fig. 20, a cross-plot was made with the $\mathrm{C} / \mathrm{H}_{2}$ ratio as an independent variable and temperature as a parameter. Along an isotherm the $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration does not rise appreciably with increasing carbon to hydrogen ratios, as inferred from the above graph. However, the temperature is the important factor to consider as the maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration occurs in a rather narrow temperature band spread. Should the gas sampling be performed isothermally, then the $\mathrm{C}_{2} \mathrm{H}_{2}$ output could be correlated with the $\mathrm{C} / \mathrm{H}_{2}$ ratio for a chosen value of temperature. This was done in Fig. 32 where the solid lines represent the theoretical lines as calculated, and the points are the actual data. On this graph, only the two lower lines were plotted first, corresponding to the results of Fig. 21 for the 14 gage and 0.100 in. probes; the 19 gage probe results were omitted because of experimental difficulties encountered with this probe. It was found that the data could be matched very closely with one isotherm, even though there is scattering of the data.

These findings prompted the verification of this assumption of isothermal sampling. As seen in Fig. 32, the output gas was sampled
at excessively high temperatures. The sampling temperature had to be lowered and the C / H_{2} ratio had to be decreased in order to get results with more acetrlene, according to the theoretical calculations. This could be accomplished in two ways: first, increasing the gas flow rate would provide a cooler flame, and second, sampling further back from the arc would also result in a lower temperature at the probe inlet.

Both techniques were tried, and again the actual data could be matched accurately with one isotherm. This is shown in Fig. 32 where the isotherm at $4,680^{\circ} \mathrm{K}$ represents the data taken at an H_{2} flow rate of 6.0 lit. $m i n$. and sampled 2 in . from the anode tip, the $4,600^{\circ} \mathrm{K}$ line, the data for 10 lit./min. of H_{2} and probe distance 3 in . and the $4,500^{\circ} \mathrm{K}$ isotherm for $16.011 \mathrm{~m} / \mathrm{min}$. and sampling position at 5 in. back from the cathode face. This plot also shows that a very low temperature gradient axists inside the cathode pipe chamber, the main factor reducing temperature being the higher flow rates of gas fed to the arc.

It was discussed by Plooster and Reed ${ }^{(26)}$ and Iwasyk (2, 16) that the probe design for optimum quenching conditions would lie somewhere between the two extremes of large tubing with high gas flow rates which can sample higher temperature gas and small tubing which reduces the gas flow through the probe and leads to a poorer quench, since any element of gas would spend more time in the region of decreasing temperature in the gas near the cold probe tip. Looking at the results of Fig. 32, it is seen that the

FIG. 32. Maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ Content as a Function of $\mathrm{C} / \mathrm{H}_{2}$ Ratio for Various Quenching Temperatures at 1.0 Atm.
(): 1.5 lit. $/ \mathrm{min} ., 0.1 \mathrm{in}. \mathrm{Probe:} 1 / 2 \mathrm{in}$.;
() : 3.0 lit./min., 14 g . Probe: $1 / 2$ in.;
(O) : 6.0 lit. $/ \mathrm{min} ., 0.1 \mathrm{in}. \mathrm{Probe:} 2 \mathrm{in}$. ;
(Δ) : 10.0 lit. $/ \mathrm{min},, 0.1 \mathrm{in}. \mathrm{Probe:} 3$ in.;
$(+)$: 16.0 lit. $/$ min., 0.1 in. Probe: 5 in.
optimum quenching conditions depend only on the sampling temperature and agree more or less with Plooster and Reed's assumption. A lowering of temperature could be obtained in two ways: either a higher feed rate of gas or a smaller probe diameter. However, going to a too small diameter reduces the temperature so much as to limit the $\mathrm{C}_{2} \mathrm{H}_{2}$ content to a low concentration, as deduced from Figs. 20 and 32 for temperatures below $3,500^{\circ} \mathrm{K}$.

The probes used in this thesis are very efficient devices for cooling very rapidly the hot gases from the reaction zone to room temperature. Skrivan and Freeman ${ }^{(29)}$ have disclosed that quench rates were of the order of $50 \times 10^{6} \mathrm{C} / \mathrm{sec}$., whereas calculations performed by Iwasyk (16) showed approximately the same order of magnitude. It is also seen that quenching occurs within the first inch of the sampling probe and that the remainder of the probe length serves mostly to cool most of the gas which is exhausted to the atmosphere.

Economic Considerations

Of economic significance, it is interesting to compute the energy necessary to produce a given $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration from reactions of solid carbon and hyarogen in the high intensity arc reactor used in the present study. This is presented in Fig. 33 where the $\mathrm{C}_{2} \mathrm{H}_{2}$ content is plotted as a function of the specific energy, as defined by Eq. 34 .

From this graph, it is deduced that reactions of carbon with

FIG. 33. Measured $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus Specific Energy for the Carbon Hydrogen System.
hydrogen using a high intensity arc as the source of high temperatures would not be competitive with the usual processes for making acetylene, since the latter operate between 5 and $10 \mathrm{kwmr} / \mathrm{lb}, \mathrm{C}_{2} \mathrm{H}_{2}$ whereas the lowest value obtained in this study was about $50 \mathrm{kw}-\mathrm{hr} / \mathrm{lb}, \mathrm{C}_{2} \mathrm{H}_{2}$ 。 For a higher content of $\mathrm{C}_{2} \mathrm{H}_{2}$ in the gas, the specific energy also increases: to be competitive, the high intensity arc process would have to operate at low $\mathrm{C}_{2} \mathrm{H}_{2}$ concentrations and operate at very high flow rates of H_{2} feed gas; but then the cost of separating the products is higher for this case.

It should be noted, however, that the maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration obtained with the carbon $-h y d r o g e n$ system was 26% and this is higher than any previously reported value in the literature for reactions between the elements. It should be recalled also that the two major variables controlling the $\mathrm{C}_{2} \mathrm{H}_{2}$ output are the $\mathrm{C} / \mathrm{H}_{2}$ ratio (where $C / H_{2}=5$ to 6 seems to be optimum) and the sampling temperature of the quenched gas (which has a somewhat narrow spread between 3,700 and $4,500^{\circ} \mathrm{K}$) as seen in Figs. 20 and 32 .

Carbon-Methane System

Operational Characteristics of the High Intensity Arc Reactor The experiments with methane feed gas were planned along the same pattern as with H_{2} feed gas. In order to produce more carbon vapors, only $3 / 8$ in. graphite anodes were used.

The arc characteristics, shown in Fig. 26, are identical with those obtained with hydrogen for the $3 / 8$ in. anodes. Thus the
burning voltage and current for the high intensity arc used in this thesis is a function of the anode size only or, as discussed for the hydrogen results, a function of the arc length only. Although the scattering of the data is very pronounced, the trend is clearly discernable and does not depend at 211 on the feed rate of methane.

In Fig. 27 are compared the vaporization rates of carbon obtained with the same input of hydrogen from either methane or hydrogen, since the hydrogen flow rate is twice that of methane. It must be pointed out, however, that in that plot the anode sizes were different. The carbon vaporization rate as a function of power input for methane feed is shown in Fig. 34, where the effect of higher flow rates is to reduce somewhat the vaporization rate. The data points are still more scattered in this case than with hydrogen, but if Fig。 34 is compared with Fig。 28 the same straight line is obtained for flow rates above 5 lit./min. Thus, no dependence on the feed gas is observed in the operation of the high intensity arc reactor. The anode size, hence the arc spacing, controls the characteristics of the gaseous discharge for the geometry used in this work.

For the methanemcarbon system, visual observation revealed that much more solid carbon was deposited on the inside walls of the cathode and on the walls of the reactor than was the case for hydrogen. It was found necessary to scrape a coat of carbon as thick as $1 / 8$ in off the inside cathode walls after each run. A rapid diffusion of carbon to the walls was also observed through the

FIG. 34. Effect of Power Input on Carbon Vaporization Rate for Methane at Higher Flow Rates.
window and sometimes the view was obstructed by carbon particles condensed on the Vycor plate glass.

Effect of Power on the $\mathrm{C}_{2} \underline{H}_{2}$ Content of the Quenched Gas

In Fig. 35, it is seen that the acetylene content increases linearly with power input, as was the case with hydrogen. However, the slope of the line is considerably higher with methane feed gas for low flow rates. At 26 kw power input, the $\mathrm{C}_{2} \mathrm{H}_{2}$ content was 52%, compared with 26% for hydrogen feed, for a net feed rate of hydrogen to the reactor equal in both cases (1.5 lit./ min . CH_{4} and 3.0 lit. $/ \min , H_{2}$). At higher methane flow rates, the slope of the lines in Fig. 35 is approximately the same as that for hydrogen, but a little steeper.

In contrast with the hydrogen runs, probe diameter appears to have no effect in the methane runs at low flow rates. However, considerable carbon deposition occurred on the inside of the probe along a distance up to 2 in. This limited the minimum operable probe diameter to about 0.1 in. Further, the carbon deposition was more severe for the larger probe than for the smaller one, so that the free opening diameters in the two cases were not so different which perhaps explain the lack of dependence of the acetylene concentration on probe diameter, or, as discussed previously, on sampling temperature. The effect of probe plugging was not evidenced at higher flow rates, partly because the sampling was performed at 5.0 in. back from the anode tip, as compared with $1 / 2$ in. distance at

FIG. 35. Measured $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus Power Input for Methane
1.5 lit./min。

A similar result is shown in Fig. 36 when acetylene concentration is plotted against the $\mathrm{C} / \mathrm{H}_{2}$ ratio. Again, for the runs made at 1.5 lit./mino, there is no apparent effect of probe diameter. As mentioned above, a considerable amount of carbon vaporized in the arc is lost through rapid diffusion to the walls, thus reducing the available $\mathrm{C} / \mathrm{H}_{2}$ ratio of the feed that effectively goes to the hot arc zone. This could account for the lower $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration that were found in quenched samples, as compared with those predicted in Fig. 25. According to Fig. 25 and Table D-2, as much as $40-46 \% \quad \mathrm{C}_{2} \mathrm{H}_{2}$ could be expected with $\mathrm{C} / \mathrm{H}_{2}$ ratios between 0.8 and 0.9 , if all of the available heat from reaction (30) is used for heating and cracking methane by reactions (31) and (32). The results of Fig. 36 show a situation that is far from approaching the theoretical results. But the theoretical calculations included also a null overall heat of reaction, whereas in actual operation heat losses are likely to account for a part of the heat given off by reaction (30) (see Appendix D).

Also shown in Fig. 36 is the effect of a cooler sampling temperature with increasing gas flow rate and sampling distance from the arc zone, thus exhibiting the same trend as that for the hydrogen runs in Fig. 32. Sampling at distance greater than 5 in. from the cathode face was not performed because of methane and ethylene increasing concentrations in the quenched gas, as seen in Appendix C. However, the $\mathrm{C} / \mathrm{H}_{2}$ ratio is twice as large and the $\% \mathrm{C}_{2} \mathrm{H}_{2}$ half as

FIG. 36. Measured $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus $\mathrm{C} / \mathrm{H}_{2}$ Ratio for Methane
much for the 12.0 lit./min. methane runs as might be expected from the theoretical calculations. Higher flow rates of methane feed gas could not be accomplished, due to a slight pressure buildup in the reactor, which limited the experiments at the flow rates reported here. To attain the operating conditions suggested by the theoretical results, it was estimated that perhaps a 75 kw power input and gas flow rate of approximately 50 lit./min. would be necessary, but the actual experimental design was not adequate for these conditions.

Economic Considerations

The energy required for producing one pound of acetylene for a given $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration is presented in Fig. 37 for the conditions studied in this thesis. Contrary to the hydrogen case, the specific energy becomes smaller with increasing $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration in the output gas. Going to higher flow rates has the effect of decreasing also the specific energy. The lowest value was $30 \mathrm{kw}-\mathrm{hr} / \mathrm{lb}, \mathrm{C}_{2} \mathrm{H}_{2}$ obtained for a gas flow rate of 12 lit。/min。giving $12 \% \mathrm{C}_{2} \mathrm{H}_{2}$ in the gas. By extrapolating the lines to a value of $5 \mathrm{kw}-\mathrm{hr} / \mathrm{lb}, \mathrm{C}_{2} \mathrm{H}_{2}$ which would be competitive with the usual processes for making a cetylene, it was found that the output gas had to contain as much as $85 \% \mathrm{C}_{2} \mathrm{H}_{2}$. The region where such large concentrations would be expected could not be reached, because of design limitations of the reactor as discussed previously.

It should be noted here again that the $52 \% \mathrm{C}_{2} \mathrm{H}_{2}$ obtained with the carbon-methane system is the highest content of acetylene

FIG. 37. Measured $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration versus Specific Energy for the Carbon-Methane System.
reported so far for the cracking reaction of methane, which cannot yield more than $25 \% \mathrm{C}_{2} \mathrm{H}_{2}{ }^{(1)}$, or for reaction of carbon with methane which did not produce more than $12 \% \mathrm{C}_{2} \mathrm{H}_{2}$ in the product gas (35), whereas usual processes using methane or natural gas do not yield more than $17 \% \mathrm{C}_{2} \mathrm{H}_{2}(12,4)$

Comparison of the Methane and Hydrogen Systems

As a last point of interest, consider how efficiently the vaporized carbon was utilized in the high intensity arc process using both hydrogen and methane as feed gases.

In Fig. 38 is plotted the average efficiency of carbon utilization for acetylene production as a function of gas flow rate. Ω average, as defined by Eq .26 , is computed here according to the procedure described in Appendix E with results reported in Table E-1. As shown in this graph, more vaporized carbon is used when the flow rate of gas is increased and methane gas exhibits a greater utilization of carbon than hydrogen.

However, both systems are highly inefficient because about 75% to 90% of the carbon is lost through recondensation on the reactor or cathode walls for the best operating conditions. This is also evidenced by the actual observation of the diffusion of vaporized carbon to the cold reactor walls and the necessity of cleaning the reactor after every run.

The rather low value of Ω average can explain the low output of $\mathrm{C}_{2} \mathrm{H}_{2}$ in the quenched gas, since most, if not all, of the carbon in the gas was found as acetylene. Fig. 38 also points out that a

FIG. 38. Efficiency of Carbon Utilization as a Function of Gas Flow Rate for Hydrogen and Methane.
greater acetylene content can be obtained with the carbon-methane system, perhaps because of the carbon contribution by the methane molecule. The results also show that larger acetylene concentrations can be expected at higher flow rates if enough carbon vapor is provided to the arc zone for reaction with the gas.

V. CONCLUSTONS AND RECOMMENDATIONS

(1) Experiments performed in a high intensity arc reactor showed that maximum of $26 \% \mathrm{C}_{2} \mathrm{H}_{2}$ ws obtained in the quenched gas for reactions of solid carbon with hydrogen and that maximum of $52 \% \mathrm{C}_{2} \mathrm{H}_{2}$ was attained with the carbonmmethane system. These values are higher than any reported values in the literature for the cases considered, but still below the $C_{2} H_{2}$ content theoretically possible.
(2) The postulation of the existence of the C_{2} ridical by Plooster and Reed (26) and IWasyk (2, 16), as precursor to $\mathrm{C}_{2} \mathrm{H}_{2}$ formation, has been supported experimentally by the number of times a $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration larger than $10-14 \%$ (calculated without taking into account the C_{2} Hadical (16, 19), has been obtained at one atmosphere pressure.
(3) The analysis of the carbon-hydrogen system reveals that radicals $C_{2} H_{2} C_{3} H_{2}$ and $C_{4} \mathbb{H}$ probably exist in considerable concentration at high temperature and that it is important to consider these species when attempting to predict the composition of the quenched gas from a high temperature reactor.
(4) It was also show that the arc reactor was ar inefficient device for utilizing the carbon vapor in order to make acetylene. The efficiency of caxbon utilization increases, however, with larger gas flow rates. If further expeximents are planned for either or both systems, it is recommended that a large capacity reactor be used in order to convert more efficiently carbon vapors into $\mathrm{C}_{2} \mathrm{H}_{2}$
at high flow rates of feed gas and high power.
(5) Operation of the high intensity arc reactor at pressures above one atmosphere should provide a higher $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration, but is not recommended because of the dangers inherent in handing $\mathrm{C}_{2} \mathrm{H}_{2}$ under high pressures. Low pressure operation could be performed, however, in order to ascertain the basic theory of the carbon-hydrogen system.

Appendix A

(1) Calculations of carbon-hydrogen system, according to Iwasyk's scheme (2, 16) of seven components. Two values of ΔH_{\circ}° for $c_{2} H$ were used: $115 \mathrm{kcal} . / \mathrm{mole}$ (Table A-1) and $110 \mathrm{kcal./mole} \mathrm{(Table} \mathrm{A-2)}$.

Equilibrium Composition of the Carbon-Hydrogen System at One Atmosphere $\mathrm{C} / \mathrm{H}_{2}=1.0$; Maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration in Quenched Gas. $\Delta \mathrm{H}_{\mathrm{Of}}^{\circ}=115 \mathrm{kcal} . / \mathrm{mole} \mathrm{C}_{2} \mathrm{H}$

T, ${ }^{\circ} \mathrm{K}$	C_{1}	C_{2}	C_{3}	H	H_{2}	$\mathrm{C}_{2} \mathrm{H}$	$\mathrm{C}_{2} \mathrm{H}_{2}$	Max. $\mathrm{C}_{2} \mathrm{H}_{2}$ in Quenched Gas
Heterogeneous Region								
2500	-	-	-	0.0246	0.965	0.0002	0.0098	0.0102
2750	-	-	-	0.0652	0.911	0.0013	0.0228	0.0250
3000	-	-	-	0.1415	0.807	0.0060	0.0449	0.0551
3250	-	-	0.0018	0.2630	0.647	0.0186	0.0693	0.1027
3500	0.0027	0.0046	0.0138	0.3945	0.448	0.0519	0.0853	0.1810
3750	0.0141	0.0263	0.0741	0.4840	0.234	0.0944	0.0723	0.280

Homogeneous Region

3800	0.0165	0.0299	0.0715	0.515	0.220	0.0865	0.0587	0.250
3900	0.0252	0.0392	0.0715	0.577	0.179	0.0708	0.0368	0.199
4100	0.0480	0.0580	0.0652	0.644	0.119	0.0502	0.0155	0.136
4300	0.0802	0.0738	0.515	0.699	0.073	0.0288	0.0054	0.078
4500	0.1250	0.0781	0.0323	0.709	0.043	0.0143	0.0018	0.040

Table A-2

Equilibrium Composition of the Carbon-Hydrogen System at one Atmosphere, $\mathrm{C} / \mathrm{H}_{2}=1.0$: Maximum $\mathrm{C}_{2} \mathrm{H}_{2}$ Concentration in Quenched Gas. $\Delta \mathrm{H}_{\mathrm{OE}}=110 \mathrm{kcal} / \mathrm{mole} \mathrm{C}_{2} \mathrm{H}$

$\xrightarrow{\text { T, }{ }^{\text {® }} \mathrm{K}}$	c_{1}	C_{2}	${ }_{\text {c }}^{3}$	-	${ }_{+}{ }_{2}$	$\mathrm{C}_{2} \mathrm{H}$	${ }^{\mathrm{C}_{2} \mathrm{H}_{2}}$	Max. $\mathrm{C}_{2} \mathrm{H}_{2}$ in Quenched ${ }^{2}$ Gas
			Heteragencous Region					
2500	\bigcirc	-	-	0.0246	0.965	0.0002	0.0098	0.0102
2750	\bigcirc	-	-	0.0651	0.908	0.0003	0.0228	0.0265
3000	-	-	-	0.1410	0.802	0.0139	0.0446	0.0634
3250	0.0004	0.0005	0.0018	0.259	0.627	0.0472	0.0671	0.1560
3500	0.0027	0.0046	0.0138	0.375	0.4.04	0.1237	0.0770	0.2750
3600	0.0052	0.0052	0.0258	0.413	0.310	0.1643	0.0710	0.3510
			Homogeneous Region					
3700	0.0094	0.0154	0.0388	0.454	0.248	0.1792	0.0563	0.380
3900	0.0216	0.0288	0.0448	0.566	0.372	0.1410	0.0260	0.302
4100	0.0417	0.0437	0.0428	0.634	0.116	0.1102	0.0113	0.243
4300	0.071	0.0580	0.0378	0.686	0.081	0.0695	0.0041	0.163
4500	0.188	0.0684	0.0265	0.704	0.042	0.0392	0.0013	0.098

(2) Computer Program

A program to be processed by the IBM 7090 computer of the M.I.T. Computation Center was written in order to get (a) the equilibrium constants needed for calculating the equilibrium composition diagrams, (b) the mole fractions of the components in the heterogeneous region and (c) in the homogeneous region. The temperature range 2,000 to $6,000^{\circ} \mathrm{K}$ was covered. Since the heterogeneous and homogeneous regions are discussed in details in Appendix B, only the part related to the determination of the equilibrium constants will be examined here.

The free energy function as given by Bauer and Duff ${ }^{(3)}$ can be calculated as a function of temperature by using a series of constants based on estimates of interatomic distances and vibrational energies of the molecules. These constants are given in Table A-3 together with the heat of formation at $0^{\circ} \mathrm{K}$ in the ideal state for thirteen components.

The equation used is as follows:
$-\left(F_{T}^{\circ}-H_{o}^{\circ}\right) / R T=a(\ln T-1)+b T+\frac{c T^{2}}{2}+\frac{d T^{3}}{3}+\frac{e T^{4}}{4}+k$

In the program, a subroutine named FREENE was written to give this function by reading directly the data of Table A-3 fed to the computer. The results from the computer are reported in Table A-4, for the temperature range $2,000-6,000^{\circ} \mathrm{K}$.

In the same subroutine, another quantity labeled LOG 10 K (comp.) was also calculated, which gave for every component the
results of the following computetion:
where the figures 0.434295 sepsesent the logarithm in base 10 of $e=2.71828$, the base of natural logarithms. This quantity will be used later in the other subroutine to obtain the equilibrium constants of the sixteen equations that are also given in Table A-3. Accoraing to Rossini (28), the logarithms of the equilibrium constants for much reactions as Reactions 1 to 16 Of Table A-3 can be obtained by

$$
\begin{equation*}
\log \mathbb{K}_{\text {reaction }}=\log \mathbb{R}_{\text {prodvcts }}-\log \mathbb{K}_{\text {reactants }} \tag{3}
\end{equation*}
$$

whereas the whole expression reverts to

Instead of computing Eq. \& separately for each reaction, it was found simpler to calculate separate functions for eack component, as represented by Eq. 2, and use them as expressed in Eq. 3. For instance, the logarithm in base 10 of reaction 6 of Table $A-3$ would be compreed as follows:

$$
\begin{equation*}
\left.\log _{10} K_{6}=\log K_{(H)}+\log \mathbb{R}_{\left(C_{2}\right.} H\right)-\log K_{\left(C_{2} H_{2}\right)} \tag{5}
\end{equation*}
$$

Results computed by the subroutire IRFENE for Eq. 2 above are
presented in Table $A-5$; this is an intermediary step.
The next subroutine, labeled EQCTS, takes the results of the first one in order to obtain the logarithms of the equilibrium constants for the sixteen reactions considered. It performs the calculations expressed by Eq. 3 (similar to Eq. 5) to give LOG ${ }^{K}$ (reaction) and also converts the logarithms to the equilibrium constants K^{\prime} s.

The computer results are presented in Table A-6 for
LOG $K_{(r e a c t i o n)}$ and in Table $A-7$ for $K^{\prime} s$.
The last values of Table A-7 are hereafter used in Appendix B to calculate the equilibrium diagrams of the carbon-hydrogen system at high temperatures.

DIMENSION E $(10,15), \operatorname{TEMP}(50)$, TOTALP(9), RATIO(9), S(50), REVERS(50),FE IFMIN(50,15), DELTA(50,15), XOG1OK(50, 15),F(50,15), XOGK(20,50), QONSK 220,50),Q(20,50)
2000 FORMAT (4E18.8)
1001 FORMAT (6F12.1)
1002 FORMAT (5F7.2)
1010 FORMAT (7E16.8, F8.1)
2006 FORMAT(56HOCONSTANTS USED IN CALCULATING THE FREE ENERGY FUNCTIONS 1)

1008 FORMAT(13F8.5,F8.3,F8.1)
 3005 FORMAT 27 HOCARBON TO HYOROGEN RATIO $=$,F8 31
1111 FORMAT (42 HICARBON-HYDROGEN SYSTEM, HOMOGENEOUS REGION)
2007 FORMATIL2OHO A B C
1 D 2050 FORMAT 2003 FORMAT(105HICOMPONENTS ARE (1)H2 (2)H (3)C2H (4)C2H2 (5)C S (6)Cl $205(7) \mathrm{C} 2(8) \mathrm{C} 3(9) \mathrm{C} 3 \mathrm{H}(10) \mathrm{C} 4 \mathrm{H}(11) \mathrm{CH}(12) \mathrm{CH} 2(13) \mathrm{C} 4 \mathrm{H} 2)$

2051 FORMAT (114HO		H2		H		
12 H 2	C S		C1		1/T	TEMP)
2052 FORMATI 114 HI		C2		C3		

1004 FORMAT (8F15.7)
2004 FORMAT (42HILOGARITHMS OF K FOR INDIVIDUAL COMPONENTS)
2005 FORMAT $(60 H O L O G 10 \mathrm{~K}(C O M P)=(-(F-H) / R T-(D E L T A H) / R T) \times 0.43$ 14295)

2008 FORMAT(113HO LOG K H2 LOG K H LOG K C2H LOG 2009 FORMAT(113H1 LOG K C S K LOG K C2 LOG K C1 \quad LOG K C3 1/T LOG K TEMP) LOG
$1 \mathrm{KC4H}$ LOG K CH LOG K CH2 LOG.K C4H2 TEMP)
2010 FORMAT (95HICALCULATIOVS OF THE EQUILIBRIUM CONSTANTS FOR THE FOLLO 2010 FORMAT 95 HICALCULATIOVS OF THE EQUILIBRIUM CONSTANTS FOR THE FOLLO IWING REACTIONS (DATA OF BAUER ANI DUFF))
3000 FORMAT (31HITHIS IS A CHECK ON SUBROUTINES)
2011 FORMAT (50HO
2013 FORMAT (50HO
2014 FORMAT (50HO
2015 FORMAT (50HO
2016 FORMAT (50HO
2018 FORMAT 150 HO
2019 FORMAT 150 HO
2020 FORMAT 151 HO
2021 FORMAT (51HO
2023 FORMAT (51HO
2024 FORMAT 51 HO
2025 FORMAT (51HO
2026 FORMAT 151 HO
2060 FORMAT(64HILOGARITHMS OF THE EQUILIBRIUM CONSTANTS FOR THE ABOVE R 2061 IEACTIONS)

2062 FORMAT (119H1 LOG K9 K13 LOG K10 K15 LOG K11 K16 LOG K1:
${ }^{1} \stackrel{1}{1}$ LOG K13 FORMAT (46HIEQUILIBRIUM CONSTANTS FOR THE ABOVE REACTIOVS)
2063 FORMAT (46 HIEQUILIBRIUM CONSTANTS FOR THE ABOVE REACTIOVS) 2064 FORMAT (119HO K1 KG K3 K3
2065^{1} FORMAT ${ }^{\text {K5 }} 119 \mathrm{HI}$ K9 K6
K 14
$K 10{ }_{K 15}^{k 7}$
${ }^{K 11}{ }_{k}^{k 8}$
$K 4$
K4
TEMP)
$K 12$

3006 FORMAT (8E14.6,F8.1)
1000 FORMAT (44HICARBON-HYDROGEN SYSTEM, HETERUGENEOUS REGIOV)
2071 FORMAT(23HOTOTAL PRESSURE (ATM) =,F6. 2)

1007 FORMAT (11F9.5,F10.3,F10.1)
READ 2000, ((E (I, J), $I=1,8), j=1,13)$
READ 1001, (TEMP (L), $L=1,42,1$)
READ 1003,(RATIO(M), M $=1,8,1$)
PRINT 2003
PRINT 2006
PRINT 2007
PRINT 1010, ((E(I, J), $I=1,8), J=1,13)$
101 CALL FREENE(E,S,TEMP,REVERS,FEFMIN, DELTA, XOG1OK, 8, 13,42) PRINT 2050
PRINT 2051
PRINT 1004, ((FEFMIN(L, J), J=1,6), REVERS(L), $\operatorname{TEMP}(L), L=1,42)$
PRINT 2052
PRINT 1004,
PRINT 1004,((FEFMIN(L, J), J=7,13), TEMP(L),L=1,42)
PRINT 2004
PRINT 2008
PRINT 1004, ($(\times 0 G 10 K(L, J), J=1,6)$, REVERS(L), TEMP(L),L=1,42) PRINT 2009
PRINT $1004,((X O G 10 K(L, J), J=7,13), \operatorname{TEMP}(L), L=1,42)$
OO $25 \mathrm{~J}=1,13,1$
DO $25 \mathrm{~L}=1,42$, 1
$F(L, J)=\operatorname{XOGIOK}(\mathrm{L}, \mathrm{J})$
25 CONTINUE
PRINT 3000
PRINT 2004
PRINT 2005
PRINT 2005
PRINT 2008
PRINT 1004, ((F(L,J), J=1,6), REVERS(L), TEMP(L),L=1,42) PRINT 2009
PRINT 1004, ((F(L,J),J=7,13), TEMP(L),L=1,42)
102 CALL EQCTS (F, XOGK, QONSK, 16,42,13)
PRINT 2010
PRINT 2011
PRINT 2012
PRINT 2013
PRINT 2014
PRINT 2014
PRINT 2015
PRINT 2016
PRINT 2017
PRINT 2018
PRINT 2019

PRINT 2020
PRINT 2021
PRINT 2022
PRINT 2023
PRINT 2024
PRINT 2025
PRINT 2026
PRINT 2060
PRINT 2061
PRINT 1005,($(\operatorname{XOGK}(K, L), K=1,8), \operatorname{TEMP}(L), L=1,42)$
PRINT 2062
PRINT 1005, $((\operatorname{XOGK}(K, L), K=9,16)$, $\operatorname{TEMP}(L), L=1,42)$
PRINT 2063
PRINT 2064
PRINT 3006,((QONSK (K,L),K=1.8).TEMP(L), L=1,42)
PRINT 2065
PRINT 3006,((QONSK (K,L) , K=9,16), TEMP(L),L=1,42
DO $26 \mathrm{~K}=1,16$, 1
DO $26 \mathrm{~L}=1,42,1$
Q(K,L) $=\operatorname{QONSK}(K, L)$
26 CONTINUE
PRINT 3000
PRINT 2063
PRINT 2064
PRINT 3006, ((Q(K,L), $K=1,8)$, $\operatorname{TEMP}(L), L=1,42,1)$
PRINT 2065
PRINT 3006,((Q(K,L), $K=9,16)$, TEMP(L), $L=1,42,1)$
22 DO $29 N=1,5,1$
PRINT 2071.
PRINT 2071, TOTALP(N)
PRINT 2072
51 TP = TOTALP(N)
$A=(1 .+Q(4, L)) / Q(5, L)+Q(9, L) *((Q(6, L) * Q(4, L) / Q(5, L)) * * 2)$
$B=1 .+Q(4, L) * Q(6, L) / Q(5, L)+Q(7, L)+Q(8, L)$
$C=Q(1, L)+Q(2, L)+Q(3, L)-T P$

IF (C) $28,29,29$
$28 \mathrm{PH}=1-8+\operatorname{SQRTF}(B * * 2-4 \cdot * A * C)) /(2 . * A)$
$Y H=P H / T P$
YH2 - ((PH**2)/Q(5,L))/TP
$Y C 2 H=(Q(6, L) * Q(4, L) * P H / Q(5, L)) / T P$
$Y C 2 H 2=(Q(4, L) *(P H * * 2) / Q(5, L)) / T P$
$Y C 3 H=(Q(7, L) * P H) / T P$
$Y C 4 H=(O(8, L) * P H) / T P$
$\mathrm{YC} 4 \mathrm{H}=(\mathrm{Q}(8, L) * P H) / T P$
$Y C 4 H 2=Q(9, L) *(1 Q(6, L) * Q(4, L) / Q(5, L)) * * 2) *(P H * * 2) / T P$
$Y \mathrm{YCZ}=Q(2, L) / T P$
YC3 $=$ Q(3, L) TP
YSUM $=Y H+Y H 2+Y C 2 H+Y C 2 H 2+Y C 3 H+Y C 4 H+Y C 4 H 2+Y C 1+Y C 2+$
IYC3
CARBON $=$
$4 \mathrm{H}+Y(4 \mathrm{H} 2)$
HYDROG $=Y \mathrm{H} 2+Y C 2 \mathrm{HZ}+Y C 4 \mathrm{H} 2+0.5 *(Y \mathrm{H}+Y C 2 \mathrm{H}+Y C 3 \mathrm{H}+Y C 4 \mathrm{H})$ COVRH2 $=$ CARBON/HYDROG
PRINT $1007, Y H, Y H 2, Y C 2 H, Y C 2 H 2, Y C 3 H, Y C 4 H, Y C 4 H 2, Y C 1, Y C 2, Y C 3, Y S U M, C O V R$ 1H2, TEMP(L)

29 CONTINUE
18 DO $39 \mathrm{~N}=1,5$,
19 DO $39 M=1,8$,
PRINT 1111
PRINT 2071,TOTALP(N)
PRINT 3005,RATIO(M)
PRINT 1006
$X=0.0000009091$
DO $39 \mathrm{~L}=11,42,1$
$T P=T O T A L P(N)$
$40 \quad \mathrm{X}=1.1 * \mathrm{X}$
50 Al = 11
$50 A 1=(1 .+Q(5, L) * Q(16, L) * X+Q(12, L) *(X * * 2) / Q(11, L)+1 Q(9, L) / Q(5, L$ 1)) * ($(Q(6, L) * Q(12, L) / Q(11, L)) * * 2) *(X * * 4)) / Q(5, L)$
$B 1=1+Q(15, L) * X+Q(6, L) * Q(12, L) *(X * * 2) /(Q(5, L) * Q(11, L))+Q(13$, C $=x+(X * * 2)$, $Q(11, L)+(X * *) /(Q(10, L) * Q(1) / Q(11, L)$
IFIC1)41,39,39
YIPH $=(-81+$ SQRTF $(B 1 * * 2-4 * * A 1 * C 1)) /(2 * * A 1)$
$A M=Q(12, L) *(X * * 2) /(Q(5, L) * Q(11, L))+3 . * Q(9, L) *((Q(6, L) * Q(12, L) /(0$
$1(5, L) * Q(11, L))) * * 2) *(X * * 4)-1.1 Q(5, L)$
$B M=Q(6, L) * Q(12, L) *(X * * 2) /(Q(5, L) * Q(11, L))+2 . * Q(13, L) *(X * * 3) /(Q(1$
$10, L) * Q(11, L))+3 . * Q(14, L) *(X * * 4) / Q(11, L)-1.0$
$C M=(X * * 2) / Q(11, L)+2 * *(X * * 3) /(Q(10, L) * Q(11, L))+T P$
$A 2=A 1 *(R-1.0)-A M$
$B 2=B 1 *(R / 2 .-1)-.B M$
$C 2=-(C 1+C M)$
$C 2=-(C 1+C M)$
IF (A2) 42,52,62
$42 \mathrm{IF}(\mathrm{B} 2) 80,80,43$
$80 \quad X=0.9 * x$
Y2PH2 $=(-82-\operatorname{SQRTF}(B 2 * 2-4 * A 2 * C 2)) /(2 * A 2)$
IF (Y2PH2) 46, 46, 44
44 IF (Y2PH2 - TP) $45,46,46$
$45 \mathrm{Y} 2 \mathrm{PH}=\mathrm{Y} 2 \mathrm{PH} 2$
GO TO 70
$52 \operatorname{IF}(B 2) 40,40,53$
$53 \mathrm{Y} 2 \mathrm{PHAO}=-\mathrm{C} 2 / \mathrm{B} 2$
$54 \mathrm{Y} 2 \mathrm{PH}=\mathrm{Y} 2 \mathrm{PHAO}$
GO 1070
IF (B2) 46,63,46
63 Y2PHBO $=\operatorname{SQRTF}(-C 2 / A 2)$
$64 \mathrm{Y} 2 \mathrm{PH}=\mathrm{Y} 2 \mathrm{PHBO}$
GO TO 70
$46 \mathrm{Y} 2 \mathrm{PH} 1=(-82+\operatorname{SQRTF}(B 2 * * 2-4 * * A 2 * C 2)) /(2 * * A 2)$
$47 \mathrm{Y} 2 \mathrm{PH}=Y 2 \mathrm{PHI}$
IF (SUB)72 - Y2P
IF(SUB)72,81,7
71 IF (SUB-0.0005)81,81,73
73 SUB1 $=$ SUB
$\mathrm{X}_{1}=\mathrm{X}$ SUB GO TO 40
72 IF (SUB +0.0005$) 74,81,81$
4 SUB2=SUB
$\mathrm{X} 2=\mathrm{x}$
$x=(x 1 *$ SUB $2-x 2 *$ SUB1)/(SUB2 - SUB1)

GO TO 50
$81 \mathrm{YPH}=(Y 1 P H+Y 2 P H) / 2$
$Y H=Y P H / T P$
$\left.{ }_{Y C 2 H}=(Y P H * * 2) / Q(5, L)\right) / T P$
$Y C 4 H 2=(Q(9, L) *((Q(6, L) * Q(12, L) /(Q(5, L) * Q(11, L))) * * 2) *(X * * 4) *(Y P H * *$ 121)/TP
$Y C 2 H 2=(Q(12, L) *(X * * 2) *(Y P H * * 2) /(Q(5, L) * Q(11, L))) / T P$
$Y C 3 H=(Q(13, L) *(X * * 3) * Y P H /(Q(10, L) * Q(11, L))) / T P$
$Y C 4 H=(Q(14, L) *(X * * 4) * Y P H / Q(11, L)) / T P$
$Y C H=(Q(15, L) * X * Y P H) / T P$

$Y C 3=((X * * 3) /(Q(11, L) * Q(10, L))) / T P$
YC1 $\mathrm{Y}=\mathrm{X} / \mathrm{TP}$
Y SUM $=Y \mathrm{H}+Y \mathrm{H} 2+Y C 2 \mathrm{H}+Y C 2 \mathrm{H} 2+Y C 3 \mathrm{H}+Y C 4 \mathrm{H}+Y C 4 \mathrm{H} 2+Y C H+Y C H 2+$ $1 Y C 1+Y C 2+Y C 3$
CARBON $=Y C 1+Y C H+Y C H 2+2 *(Y C 2+Y C 2 H+Y C 2 H 2)+3 . *(Y C 3+Y C$ $(3 \mathrm{H})+4$. $\left.{ }^{(Y C 4 H}+Y \mathrm{YC} 4 \mathrm{H} 2\right)$
HYDROG $=(Y H+Y C H+Y C 2 H+Y C 3 H+Y C 4 H) / 2+Y H 2+Y C H 2+Y C 2 H 2+$ YC4H2
PRINT $1008, Y H$, YSUM, COVRH2,TEMP(L)
39 CONTINUE
CALL EXIT
END $(1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)$

SUBROUT INE FREENE(U,T,TETA,SEVERS,PEFMIN,GELTA,ZOGIOK, I, J,L
DIMENSION U(10, 15), T(50), TETA(50), SEVERS(50), PEFMIN(50, 15), GELTA(5
10,15), ZOG10K(50,15
$0020 \mathrm{~L}=1,42,1$
DO $20 \mathrm{~J}=1,13,1$
T(L) = TETA(L)
PEFMIN(L,J) $=$ U(1)
L)*2)/2. +U(4,J)*(T(L)**3)/3.+U(5,J)*(T(L)**4)/4.+U(6,J)

GELTA(L,J) $=(U(7, J) / T(L)) / 1.987$
LOG1OK(L,J) $=(\operatorname{PEFMIN}(L, J)-$ GELTA(L,J) $) * 0.43429448$
20 CONTINUE
RETURN
END $11,0,0,0,0,0,0,0,0,0,0,0,0,0,0$

SUBROUTINE EQCTS(D,ZOGK,CONSK,K,L,J)
DIMENSION D $(50,15)$, ZOGK $(20,50), \operatorname{CONSK}(20,50$ DO $100 \mathrm{~L}=1,42,1$
$99 z=10$.
$1 \operatorname{ZOGK}(1, L)=D(L, 6)-D(L, 5)$
CONSK $(1, L)=Z * * Z O G K(1, L)$
$\operatorname{ZOGK}(2, L)=D(L, 7)-2 . * D(L, 5)$
$\operatorname{CONSK}(2, L)=2 * * 2 O G K(2, L)$
ZOGK $(3, L)=D(L, 8)-3 . * D(L, 5)$

$\operatorname{CONSK}(4, L)=Z * * \operatorname{ZOGK}(4, \mathrm{~L})$
$5 \operatorname{ZOGK}(5, L)=2 . * D(L, 2)-D(L, 1$
$\operatorname{CONSK}(5, L)=Z * * Z O G K(5, L)$
6 ZOGK $(6, L)=D(L, 3)+D(L, 2)-D(L, 4)$
$\operatorname{CONSK}(6, L)=Z * * 20 G K(6, L)$
$\operatorname{ZOGK}(7, L)=D(L, 9)-3 . * D(L, 5)-D(L, 2)$
$\operatorname{CONSK}(7, L)=2 * * 20 G K(7, L)$
ZOGK(8,L) $=D(L, 10)-4 . * D(L, 5)-D(L, 2)$
$\operatorname{CONSK}(8, L)=2 * * \operatorname{ZOGK}(8, L)$
$\operatorname{ZOGK}(9, L)=D(L, 13)-2 \cdot * D(L, 3)$
$\operatorname{CONSK}(9, L)=2 * * 2 O G K(9, L)$
$\operatorname{ZOGK}(10, L)=D(L, 6)+D(L, 7)-D(L, 8$
$\operatorname{CONSK}(10, L)=Z * * \operatorname{LOGK}(10, L)$
$11 \operatorname{ZOGK}(11, L)=2 . * D(L, 6)-D(L, 7)$
$\operatorname{CONSK}(11, L)=Z * * 2$ OGK $(11, L)$
$2 \operatorname{ZOGK}(12, L)=D(L, 4)-D(L, 1)-D(L, 7)$
CONSK $(12, L)=L * 20 G K(12, L)$
ZOGK $(13, L)=0(L, 9)-D(L, 2)-D(L, 8)$
$\operatorname{ZOGK}(14, L)=D(L, 10)-D(L, 7)-2 . * D(L, 6)-D(L, 2)$
$\operatorname{CONSK}(14, L)=2 * * \operatorname{ZOGK}(14, L)$
ZOGK $(15, L)=D(L, 11)-D(L, 6)-D(L, 2)$
CONSK $(15, L)=Z * *$ ZOGK $(15, L)$
ZOGK $(15, L)=D(L, 12)-D(L, 6)-2 . * D(L, 2)$
$\operatorname{CONSK}(16, L)=Z * * \operatorname{ZOGK}(16, L)$
100 CONTINUE
RETURN
END $(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$

TABLE A-3.(COMPUTER OUTPUT)

COMPONENTS ARE (1) H2 (2) H (3) C2H (4)C2H2 (5)C S (6)C1 (7)C2 (8)C3 (9)C3H (10)C4H (11)CH (12)CH2 (13)C4H2
constants used in calculating the free energy functions

A			C	D	E	K	${ }_{6}$		comp
$0.32375731 E$	01	$0.23187578 \mathrm{E}-03$	$0.50938301 \mathrm{E}-08$	-0.39631803E-11	$0.29310414 \mathrm{E}-15$	-0.28803999E 01	O.		1.0
0.24999999 E	01	0.	0.	0.	0.	-0.45931002E-0J	0.51620000 E	05	2.0
0.35134807 E	01	$0.17945357 E-02$	-0.44103585E-06	$0.57630263 \mathrm{E}-10$	-0.30599071E-14	0.46017890 E 31	0.11659799 E	25	3.0
0.39188681 E	01	$0.29099295 \mathrm{E}-02$	-0.70821407E-06	$0.88418587 E-10$	-0.44052944E-14	0.44387525 E-JJ	$0.54329 J J J E$	5	4.
0.16176599 E	01	$0.38497601 \mathrm{E}-03$	-0.32116701E-07	$0.11281200 \mathrm{E}-11$	0.	-0.86884999E O1	0.		5.0
0.26167393 E	01	-0.10759307E-03	$0.38601043 \mathrm{E}-07$	-0.45084646E-11	$0.18258099 \mathrm{E}-15$	0.41143999 E O1	0.16958000		6.0
0.46082999 E	01	-0.43094741E-03	$0.25534049 \mathrm{E}-06$	-0.50605532E-10	$0.34887750 \mathrm{E}-14$	-0.18514978E 01			7.0
0.4577017 OE	01	$0.11354603 \mathrm{E}-02$	-0.20837176E-06	$0.17096995 \mathrm{E}-10$	-0.49578196E-15	-0.99026691E 00	0.18900000 E		8.0
0.39647123 E	01	$0.31001513 \mathrm{E}-02$	-0.75517813E-06	$0.92928222 \mathrm{E}-10$	-0.45250160E-14	0.37058850E O1	0.12710JJJE	06	9.0
0.58736851 E	01	$0.37016899 \mathrm{E}-02$	-0.90964157E-06	$0.11093365 \mathrm{E}-09$	-0.52750488E-14	-0.34665898E 01	$0.15400000 E$	26	0.0
0.28257000 E	01	$0.10263324 \mathrm{E}-02$	-0.27358155E-06	$0.37943584 \mathrm{~F}-10$	-0.20471105E-14	0.51903998 E J1	0.14039799 E	js	11.0
0.29730733 E	01	$0.19864158 \mathrm{E}-02$	-0.43346947E-06	$0.54597060 \mathrm{E}-10$	-0.29521265E-14	0.50497741 E 01	$0.66800000 E$	05	12.0
0.63751955 E	01	$0.48240731 \mathrm{E}-02$	-0.12354182E-05	$0.15976494 \mathrm{E}-09$	-0.81617652E-14	$0.81913174 \mathrm{E} O 1$	$0.11130 J J O E$		13.0

CALCULATIONS OF the equilibrium constants for the following reactions (data of bauer and duff) (3)

TABLE A-4. (COMPUTER OUTPUT)

CALCULATIONS OF THE FREE ENERGY FUNCTIONS - $\left(F_{T}^{\circ}-H_{0}^{0}\right) / R T$

H2	H
18.9550464	16.0429456
19.1358266	16.1649213
19.3091805	16.2812212
19.4757574	16.3923507
19.6361237	16.4987497
19.7907751	16.6008046
19.9401503	16.6988564
20.0846372	16.7932072
20.2245808	16.8841264
20.3602901	16.9718544
20.4920418	17.0566082
20.6200876	17.1385827
20.7446523	17.2179546
20.8659408	17.2948840
20.9841402	17.3695161
21.0994205	17.4419849
21.2119386	17.5124123
21.3218365	17.5809097
21.4292469	17.6475801
21.5342917	17.7125192
21.6370823	17.7758136
21.7377231	17.8375449
21.8363116	17.8977888
21.9329381	17.9566154
22.0276847	18.0140891
22.1206312	18.0702713
22.2118511	18.1252184
22.3014128	18.1789839
22.3893809	18.2316175
22.4758170	18.2831657
22.5607784	18.3336725
22.6443183	18.3831789
22.7264891	18.4317243
22.8073385	18.4793448
22.8869133	18.5260751
22.9652567	18.5719478
23.0424111	18.6169944
23.1184154	18.6612432
23.1933079	18.7047224
23.2671249	18.7474585
23.3399010	18.7894762
23.4116695	18.8307993

C2H	C2H2
30.6425729	30.9335327
30.9246237	31.3039119
31.1963034	31.6614430
31.4583972	32.0070372
31.7115979	32.3415022
31.9565206	32.6655574
32.1937146	32.9798512
32.4236722	33.2849650
32.6468401	33.5814281
32.8636203	33.8697228
33.0743804	34.1502881
33.2794557	34.4235320
33.4791536	34.6898246
33.6737566	34.9495115
33.8635249	35.2029119
34.0486994	35.4503231
34.2295041	35.6920233
34.4061456	35.9282675
34.5788174	36.1593008
34.7476993	36.3853478
34.9129581	36.6066217
35.0747519	36.8233223
35.2332268	37.0356364
35.3885212	37.2437434
35.5407634	37.4478073
35.6900730	37.6479869
35.8365650	37.8444290
35.9803452	38.0372748
36.1215129	38.2266560
36.2601628	38.4126968
36.3963823	38.5955153
36.5302534	38.7752199
36.6618538	38.9519172
36.7912550	39.1257043
36.9185257	39.2966738
37.0437274	39.4649115
37.1669197	39.6305013
37.2881565	39.7935162
37.4074888	39.9540277
37.5249634	40.1121030
37.6406221	40.2678027
37.7545056	40.4211845

$C S$
2.6982423
2.8095562
2.9169239
3.0206742
3.1210945
3.2184368
3.3129240
3.4047542
3.4941034
3.5811298
3.6659759
3.7487701
3.8296293
3.9086587
3.9859551
4.0616074
4.1356964
4.2082965
4.2794770
4.3493016
4.4178288
4.4851137
4.5512077
4.6161580
4.6800086
4.7428020
4.8045763
4.8653687
4.9252136
4.9841434
5.0421885
5.0993782
5.1557399
5.2112991
5.2660807
5.3201082
5.3734041
5.4259889
5.4778832
5.5291064
5.5796765
5.6296115
$C 1$
21.2379642
21.3610518
21.4784193
21.5905893
21.6980155
21.8010960
21.9091813
21.9955812
22.0875719
22.1763990
22.2522833
22.3454235
22.4259987
22.5041709
22.5800857
22.6538808
22.7256758
22.7955830
22.8637052
22.9301376
22.9949657
23.0582726
23.1201296
23.1806073
23.2397685
23.2976730
23.3543761
23.4099298
23.4643815
23.5177770
23.5701578
23.6215639
23.6720324
23.7215984
23.7702942
23.8181515
23.8651996
23.9114659
23.9569757
24.0017564
24.0458295
24.0892174

$1 /$ T	TEMP
0.0005030	2000.0
0.0004762	2100.0
0.0004545	2200.0
0.0004348	2300.0
0.0004167	2400.0
0.0004000	2500.0
0.0003845	2600.0
0.0003704	2700.0
0.0003571	2803.0
0.0003448	2900.0
0.0003333	3000.0
0.0003226	3100.0
0.0003125	3200.0
0.0003030	3300.0
0.0002441	3400.0
0.0002857	3500.0
0.0002778	3600.0
0.0002703	3703.0
0.0002632	3800.0
0.0002564	3900.0
0.0002500	4000.0
0.0002439	4100.0
0.0002381	$420 J .0$
0.0002326	4300.0
0.0002273	4400.0
0.0002222	$450 J .0$
0.0002174	4530.0
0.0002128	4700.0
0.0002083	4800.0
0.0002041	4900.0
0.0002000	5003.0
0.0001961	5100.0
0.0001923	5200.0
0.0001887	5300.0
0.0001852	5400.0
0.0001818	5500.0
0.0001786	5600.0
0.0001754	5700.0
0.0001724	5800.0
0.0001695	5900.0
0.0001667	6003.0
0.0001639	6100.0

C2	C. 3	C3H
28.0952327	31.1199605	34.7962184
28.3110588	31.4208629	35.1800208
28.5173132	31.7099431	35.5505757
28.7148695	31.9881537	35.9088101
28.9044859	32.2563281	36.2555470
29.0868220	32.5152001	36.5915208
29.2624567	32.7654219	36.9173932
29.4318991	33.0075727	37.2337584
29.5955989	33.2421708	37.5411577
29.7539575	33.4696851	37.8400841
29.9073317	33.6905355	38.1309900
30.0560422	33.9051070	38.4142900
30.2003772	34.1137471	38.6903677
30.3405960	34.3167725	38.9595766
30.4769342	34.5144749	39.2222466
30.6096065	34.7071238	39.4786820
30.7388103	34.8949661	39.7291708
30.8647220	35.0782294	39.9739780
30.9875076	35.2571259	40.2133546
31.1073201	35.4318528	40.4475360
31.2243001	35.6025939	40.6767402
31.3385785	35.7695179	40.9011755
31.4502785	35.9327869	41.1210389
31.5595143	36.0925522	41.3365130
31.6663940	36.2489510	41.5477729
31.7710192	36.4021192	41.7549801
31.8734858	36.5521789	41.9582925
31.9738872	36.6992502	42.1578555
32.0723104	36.8434443	42.3538084
32.1688399	36.9848661	42.5462804
32.2635574	37.1236162	42.7353973
32.3565407	37.2597880	42.9212747
32.4478664	37.3934741	43.1040235
32.5376072	37.5247593	43.2837481
32.6258378	37.6537251	43.4605465
32.7126265	37.7804499	43.6345086
32.7980456	37.9050093	43.8057256
32.8821626	38.0274739	43.9742761
32.9650464	38.1479101	44.1402369
33.0467634	38.2663851	44.3036804
33.1273823	38.3829608	44.4646726
33.2069697	38.4976988	44.6232762

C4H
41.1638503
41.6762037
42.1700864
42.6468396
43.1076474
43.5535669
43.9855399
44.4044218
44.8109794
45.2059164
45.5898709
45.9634304
46.3271365
46.6814857
47.0269394
47.3639278
47.6928501
48.0140777
48.3279586
48.6348209
48.9349680
49.2286887
49.5162554
49.7979212
50.0739260
50.3444986
50.6098523
50.8701897
51.1257043
51.3765745
51.6229744
51.8650627
52.1029963
52.3369179
52.5669661
52.7932668
53.0159469
53.2351184
53.4508896
53.6633615
53.8726320
54.0787883
CH
25.4410658
25.6396656
25.8304374
26.0140014
26.1909034
26.3616266
26.5266027
26.6862180
26.8408196
26.9907219
27.1362109
27.2775464
27.4149661
27.5486896
27.6789155
27.8058307
27.9296064
28.0504005
28.1683612
28.2836258
28.3963208
28.5065668
28.6144738
28.7201469
28.8236830
28.9251733
29.0247035
29.1223526
29.2181971
29.3123066
29.4047470
29.4955795
29.5848627
29.6726506
29.7589927
29.8439369
29.9275277
30.0098047
30.0908055
30.1705663
30.2491190
30.3264930
CH2
27.9144166
28.1996579
28.4557176
28.7132671
28.9628990
29.2051401
29.4404626
29.6692891
29.8920023
30.1089489
30.3204455
30.5267808
30.7282197
30.9250066
31.1173656
31.3055060
31.4896209
31.6698885
31.8464753
32.0195408
32.1892262
32.3556690
32.5189958
32.6793265
32.8367710
32.9914346
33.1434155
33.2928047
33.4396887
33.5841479
33.7262578
33.8660889
34.0037084
34.1391754
34.2725492
34.4038815
34.5332236
34.6606197
34.7861118
34.9097404
35.0315385
35.1515398

C4H2	TEMP
41.4614277	2000.0
42.0617399	2100.0
42.6408553	2200.0
43.2002749	2300.0
43.7413316	2400.0
44.2552140	2500.0
44.7729907	2600.0
45.2656283	2700.0
45.7440028	2800.0
46.2089128	2900.0
46.6610894	3000.0
47.1012073	3100.0
47.5298858	3200.0
47.9476986	3300.0
48.3551754	3400.0
48.7528176	3500.0
49.1410813	3600.0
49.5203986	3700.0
49.8911738	3800.0
50.2537847	3900.0
50.6085863	4000.0
50.9559097	4100.0
51.2960701	4200.0
51.6293626	4300.0
51.9560637	4400.0
52.2764349	4500.0
52.5907221	4600.0
52.8991599	4700.0
53.2019653	4800.0
53.4993453	4900.0
53.7914915	5000.0
54.0785890	5100.0
54.3608069	5200.0
54.6383066	5300.0
54.9112396	5400.0
55.1797452	5500.0
55.4439569	5600.0
55.7039962	5700.0
55.9599743	5800.0
56.2119989	5900.0
56.4601669	6000.0
56.7045660	6100.0

TABLE A-5. (COMPUTER OUTPUT)

LOGARITHMS OF K FOR INDIVIDUAL COMPONENTS
LOG $10 \mathrm{~K}(C O M P)=\left(-\left(F_{T}^{0}-H_{0}^{\circ}\right) / R T-\left(D E L T A H_{O}^{\circ}\right) / R T\right) \times 0.434295$

LOGK KZ	LOGKH	LOGK C2H	LOG K C LH2
8.2320719	1.3261244	0.5544615	7.4969738
8.3105837	1.6477282	1.2842612	7.9405555
8.3858703	1.9424460	1.9543471	8.3528547
8.4582138	2.2136828	2.5722615	8.7376198
8.5278600	2.4642840	3.1443062	9.0979953
8.5950242	2.6966471	3.6757894	9.4366404
8.6598971	2.9128070	4.1712151	9.7558222
8.7226470	3.1145021	4.6344302	10.0574850
8.7834237	3.3032269	5.0687433	10.3433083
8.8423615	3.4802735	5.4770138	10.6147517
8.8995805	3.6467653	5.8617283	10.8730891
8.9551901	3.8036833	6.2250588	11.1194410
9.0092878	3.9518887	6.5689123	11.3547939
9.0619628	4.0921403	6.8949698	11.5800232
9.1132962	4.2251095	7.2047191	11.7959075
9.1633618	4.3513929	7.4994829	12.0031432
9.2122277	4.4715226	7.7804409	12.2023548
9.2599558	4.5859740	8.0486482	12.3941028
9.3066036	4.6951737	8.3050531	12.5788958
9.3522239	4.7995065	8.5505087	12.7571921
9.3968652	4.8993185	8.7857856	12.9294093
9.4405730	4.9949237	9.0115813	13.0959270
9.4833895	5.0866069	9.2285297	13.2570920
9.5253538	5.1746271	9.4372073	13.4132224
9.5665017	5.2592201	9.6381396	13.5646082
9.6068679	5.3406020	9.8318065	13.7115177
9.6464843	5.4189699	10.0186489	13.8541967
9.6853803	5.4945054	10.1990700	13.9928725
9.7235844	5.5673748	10.3734406	14.1277550
9.7611231	5.6377316	10.5421032	14.2590388
9.7980214	5.7057174	10.7053723	14.3869036
9.8343023	5.7714627	10.8635386	14.5115151
9.8699887	5.8350890	11.0168718	14.6330299
9.9051011	5.8967082	11.1656204	14.7515910
9.9396600	5.9564246	11.3100159	14.8673326
9.9736841	6.0143350	11.4502721	14.9803792
10.0071918	6.0705298	11.5865884	15.0908475
10.0402000	6.1250930	11.7191496	15.1988450
10.0727254	6.1781030	11.8481282	15.3044726
10.1047838	6.2296335	11.9736847	15.4078245
10.1363900	6.2797530	12.0959680	15.5089879
10.1675587	6.3285258	12.2151179	15.8080450

LOG K C2 -9.4366206 -8.3124969 -7.2862020
-6.3451384 -6.3451384
-5.4787956 -4.6783339 -3.9362651
-3.2462035 -3.2462035
-2.6026697 -2.0009343 -1.4368944 -0.9069720 0.4080337 0.0626774 0.5075965
0.9288831 0.9288831 1.3284594 1.7080404
2.0691640 2.0691640
2.4132117 2.7414286 3.0549399 3.3547655
3.6418321 3.6418321
3.9169832 4.1809892 4.4345550 4.6783273
4.9129001
4.9129001
5.1388209
5.3565947
5.5666885
5.5666885
5.7695349
5.9655351
6.1550637
6.3384675
6.5160726
6.6881820
6.8550807
7. 0170354
7.1742975
7.3271036

LOGK K C
-7.1394424
-6.0252064
-5.0055188
-4.0683036
-3.2034792
-2.4025635
-1.6583655
-0.9647485
-0.3164442
0.2910999
0.8618339
1.3992076
1.9062436
2.3856033
2.8396403
3.2704439
3.6798747
4.0695952
4.4410965
4.7957199
5.1346751
5.4590555
5.7698541
6.0679731
6.3542332
6.6293862
6.8941183
7.1490607
7.3947921
7.6318458
7.8607138
8.0818498
8.2956756
8.5025809
8.7029274
8.8970519
9.0852685
9.2678694
9.4451269
9.6172968
9.7846179
9.9473152

LOG K C3H	LOG K C4H
1.2218135	1.0475022
2.0499249	2.0714304
2.8121533	3.0144806
3.5167441	3.8867387
4.1705906	4.6966377
4.7795019	5.4512890
5.3484108	6.1567304
5.8815327	6.8181280
6.3824946	7.4399247
6.8544347	8.0259690
7.3000838	8.5796088
7.7218288	9.1037732
8.1217680	9.6010379
8.5017519	10.0736747
8.8634216	10.5236984
9.2082354	10.9529033
9.5374973	11.3628910
9.8523741	11.7550970
10.1539158	12.1308125
10.4430687	12.4912030
10.7206876	12.8373209
10.9875487	13.1701229
11.2443582	13.4904788
11.4917579	13.7991805
11.7303355	14.0969518
11.9606274	14.3844573
12.1831276	14.6623051
12.3982888	14.9310548
12.6065284	15.1912231
12.8082300	15.4432845
13.0037502	15.6876802
13.1934168	15.9248158
13.3775347	16.1550701
13.5563862	16.3787923
13.7302338	16.5963092
13.8993198	16.8079219
14.0638731	17.0139146
14.2241037	17.2145491
14.3802085	17.4100704
14.5323719	17.6007078
14.6807643	17.7866762
14.8255466	17.9681745

> LOG K CH -4.2945544 -3.4776620

LOG K CH2	LOG K C4H2	TEMP
4.8229082	5.8431637	2000.0
5.2900710	6.6830815	2102.0
5.7216438	7.4611377	2200.0
6.1220404	8.1848537	2300.0
6.4949530	8.8605310	2400.0
6.8434950	9.4934937	2503.0
7.1703158	10.0882739	2600.0
7.4776759	10.6487566	2700.0
7.7675251	11.1782925	2800.0
8.0415510	11.6797892	2903.0
8. 3012228	12.1557832	3000.0
8.5478258	12.6085005	3100.0
8.7824905	13.0399010	3200.0
9.0062147	13.4517235	3300.0
9.2198830	13.8455036	3400.0
9.4242831	14.2226191	3500.0
9.6201191	14.5843081	3630.0
9.8080235	14.9316759	3700.0
9.9885546	15.2657216	3800.0
10.1622334	15.5873485	3900.0
10.3295187	15.8973768	4000.0
10.4908303	16.1965504	4100.0
10.6465493	16.4855497	4200.0
10.7970235	16.7649956	4300.0
10.9425697	17.0354562	4400.0
11.0834783	17.2974534	4500.0
11.2200156	17.5514662	4600.0
11.3524263	17.7979381	4700.0
11.4809350	18.0372758	4800.0
11.6057491	18.2698555	4900.0
11.7270598	18.4960253	5000.0
11.8450440	18.7161088	5100.0
11.9598655	18.9304037	5200.0
12.0716746	19.1391881	5300.0
12.1806124	19.3427200	5400.0
12.2868088	19.5412383	5500.0
12.3903850	19.7349663	5600.0
12.4914528	19.9241114	5703.0
12.5901166	20.1088643	5800.0
12.6864738	20.2894061	5900.0
12.7806140	20.4659035	6000.0
12.8726215	20.6385107	6100.0

TEMP

LOG K G S	LOG K C1	1/T	TEMP
1.1718317	-9.3088442	0.0005000	2000.0
1.2201748	-8.3728937	0.0004762	2100.0
1.2668039	-7.5196544	0.0004545	2200.0
1.3118621	-6.7384348	0.0004348	2300.0
1.3554741	-6.0203173	0.0004157	2403.0
1.3977493	-5.3578041	0.0004000	2500.0
1.4387846	-4.7445450	0.0003846	2603.0
1.4786659	-4.1751256	0.0003704	2700.0
1.5174698	-3.6449000	0.0003571	2800.0
1.5552649	-3.1498605	0.0003448	2900.0
1.5921131	-2.6865298	0.0003333	3000.0
1.6280701	-2.2518768	0.0303226	3100.0
1.6631868	-1.8432468	0.0003125	3200.0
1.6975089	-1.4583051	0.0003030	3300.0
1.7310783	-1.0949900	0.0002941	3400.0
1.7639336	-0.7514731	0.0002857	3500.0
1.7961101	-0.4261283	0.0002778	3600.0
1.8276399	-0.1175041	0.0002703	3700.0
1.8585532	0.1756995	0.0002632	3800.0
1.8888776	0.4546503	0.0002564	3900.0
1.9186386	0.7203997	0.0002500	4030.0
1.9478601	0.9738977	0.0002439	4100.0
1.9765643	1.2160043	0.0002381	4200.0
2.0047719	1.4475006	0.0002326	4300.0
2.0325019	1.6690965	0.0002273	4403.0
2.0597727	1.8814397	0.0002222	4500.0
2.0866009	2.0851223	0.0302174	4600.0
2.1130027	2.2836854	0.0002128	4700.0
2.1389930	2.4686285	0.0002083	4803.0
2.1645859	2.6494061	0.0002041	4900.0
2.1897946	2.8234395	0.0002000	5000.0
2.2145318	2.9911168	0.0001951	5100.0
2.2391093	3.1527955	0.0001923	5200.0
2.2632384	3.3088102	0.0001887	5300.0
2.2870298	3.4594649	0.0001852	5400.0
2.3104936	3.6050462	0.0001818	5500.0
2.3336397	3.7458191	0.0001786	5303.0
2.3564770	3.8820299	0.0001754	5700.0
2.3790144	4.0139086	0.0001724	5800.0
2.4012603	4.1416693	0.0001695	5900.0
2.4232227	4.2655126	0.0001657	6000.0
2.4449092	4.3856256	0.0001639	5100.0

:

TABLE A-6 (COMPUTER OUTPUT)

LOGARITHMS OF THE EGUILIBRIUM CONSTANTS FOR THE ABOVE REACTIDNS

LOG K1	LOG K2
-10.4806759	-11.7802840
-9.5930684	-10.7528464
-8.7864583	-9.8198098
-8.0502969	-8.9688627
-7.3757913	-8.1897438
-6.7555534	-7.4738325
-6.1833296	-6.8138343
-5.6537915	-6.2035353
-5.1623698	-5.6376094
-4.7051253	-5.1114640
-4.2786429	-4.6211205
-3.8799469	-4.1631123
-3.5064336	-3.7344074
-3.1558140	-3.3323404
-2.8260683	-2.9545601
-2.5154067	-2.5989842
-2.2222384	-2.2637608
-1.9451440	-1.9472394
-1.6828538	-1.6479425
-1.4342274	-1.3645436
-1.1982390	-1.0958487
-0.9739624	-0.8407804
-0.7605600	-0.5983632
-0.5572714	-0.3677117
-0.3634055	-0.1480206
-0.1783330	0.0614438
-0.0014787	0.2613531
0.1676837	0.4523218
0.3296354	0.6349141
0.4848202	0.8096491
0.6336449	0.9770055
0.7764850	1.1374249
0.9136871	1.2913163
1.0455718	1.4390583
1.1724352	1.5810042
1.2945527	1.7174804
1.4121794	1.8487931
1.5255529	1.9752280
1.6348942	2.0970519
1.7404089	2.2145147
1.8422900	2.3278521
1.9407164	2.4372852

LOGK9	LOGK10
4.7342407	-11.6060224
4.1145586	-10.6601840
3.5524435	-9.8003376
3.0403306	-9.0152695
2.5719186	-8.2956336
2.1419148	-7.6335745
1.7458438	-7.0224446
1.3798963	-6.4565806
1.0408059	-5.9311256
0.7257617	-5.4418947
0.4323266	-4.9852580
0.1583829	-4.5580564
-0.0979235	-4.1575240
-0.3382190	-3.7812310
-0.5639375	-3.4270338
-0.7763467	-3.0930339
-0.9765737	-2.7775436
-1.1656206	-2.4790588
-1.3443847	-2.1962331
-1.5136690	-1.9278579
-1.6741943	-1.6728469
-1.8266122	-1.4307180
-1.9715097	-1.1990847
-2.1094191	-0.9786405
-2.2408230	-0.7681536
-2.3661597	-0.5669574
-2.4858315	-0.3744411
-2.6002018	-0.1900471
-2.7096055	-0.0132635
-2.8143508	0.1563812
-2.9147193	0.3193203
-3.0109684	0.4759554
-3.1033399	0.6266557
-3.1920528	0.7717644
-3.2773118	0.9116013
-3.3593059	1.0464618
-3.4382105	1.1766231
-3.5141878	1.3023425
-3.5873921	1.4238623
-3.6579633	1.5414078
-3.7260325	1.6551921
-3.7917252	1.7654139

LOG K3
-10.6549376
-9.6857306
-8.8059305
-8.0038899
-7.2699015
-6.5958114
-5.9747193
-5.4007462
-4.8688535
-4.3746946
-3.9145054
-3.4850028
-3.0833169
-2.7069234
-2.3535945
-2.0213570
-1.7084555
-1.4133247
-1.1345631
-0.8709130
-0.6212408
-0.3845248
-0.1598390
0.0536574
0.2567275
0.4500682
0.6343156
0.8100525
0.9778131
1.1380881
1.2913300
1.4379544
1.5783476
1.7128657
1.8418381
1.9655712
2.0843493
2.1984384
2.3080837
2.4135158
2.5149499
2.6125877
LOG KK
-3.0787615
-2.8103777
-2.5666234
-2.3443183
-2.1408129
-1.9538825
-1.7816441
-1.6224937
-1.4750549
-1.3381394
-1.2107176
-1.0918893
-0.9808676
-0.8769574
-0.7795452
-0.6880858
-0.6020931
-0.5211328
-0.4448141
-0.3727870
-0.3047333
-0.2403662
-0.1794262
-0.1216751
-0.0668973
-0.0148956
0.0345106
0.0814867
0.1261846
0.1687440
0.2092930
0.2479492
0.2848226
0.3200132
0.3536131
0.3857080
0.4163762
0.4456911
0.4737184
0.5005201
0.5261526
0.5506680

LOG K6
-5.6163879
-5.0085661
-4.4560616
-3.9516755
-3.4894052
-3.0642039
-2.6718001
-2.3085527
-1.9713382
-1.6574545
-1.3545955
-1.0906991
-0.8339930
-0.5927132
-0.3660790
-0.1522675
0.0496087
0.2405174
0.4213310
0.5928230
0.7556947
0.9105779
1.0580446
1.1985120
1.3327515
1.4608908
1.5834221
1.7007029
1.8130603
1.9207958
2.0241860
2.1234860
2.2189307
2.3107376
2.3991078
2.4842278
2.5662706
2.6453975
2.7217585
2.7954936
2.8667331
2.9355987
LOG K7
-3.6198060
-3.2583276
-2.9307945
-2.6325251
-2.3601156
-2.1103733
-1.8857500
-1.6689671
-1.4731418
-1.2915334
-1.1233257
-3.9663549
-0.8196813
-0.6827150
-0.5549227
-0.4349585
-0.3223556
-0.2165197
-0.1169176
-0.0230706
0.0654532
0.1499347
0.2280583
0.3028150
0.3736397
0.4407774
0.5043550
0.5647752
0.6221746
0.6767407
0.7286490
0.7780587
0.8251177
0.8699529
0.9127199
0.9535040
0.9924240
1.0295798
1.0650623
1.0989574
1.1313433
1.1622734

LJG KB	IEMP
-4.9559491	2350.0
-4.4569969	2100.0
-3.9751811	2200.0
-3.5743725	2320.0
-3.1995426	2400.0
-2.8353555	2500.0
-2.5112150	2500.0
-2.2113378	2700.0
-1.7331315	2300.0
-1.5753643	2900.0
-1.4350083	3000.0
-1.2121706	3100.0
-1.2535782	3250.0
- 3.838 ¢ 312	3300.0
-3.6257241	3400.0
-7.4542242	3520.0
-0.2932721	3600.0
-9.1414367	3730.0
0. 3014259	3800.0
0.1361859	3700.0
0.2634479	4000.0
J.3837587	4120.0
0.4776145	4200.0
0.6354657	4300.0
0.7077241	4430.0
2.8347545	4500.0
0.8769315	4500.0
J.9845384	4750.0
1.0678763	4800.0
1.1472792	4930.0
1.2227845	5000.0
1.2748259	5100.0
1.3635437	5200.0
1.4291305	5350.0
1.4717655	5400.0
1.5516126	5500.0
1.5088258	5630.0
1.5635481	5730.0
1.7159098	5800.0
1.7665329	5930.0
1.8140324	\$200.0
1.8502121	5100.0

LOG K11
-9.1810678
-8.4332905

LOG K12	LOG K13
8.7015225	7.0351316
7.9424686	6.4274030
7.2531863	5.8752260
6.6245444	5.3713649
6.0489309	4.9097858
5.5199500	4.4854181
5.0321902	4.0939693
4.5810415	3.7317791
4.1625544	3.3957118
3.7733245	3.0830613
3.4104030	2.7914847
3.0712230	2.5189379
2.7535397	2.2636356
2.4553829	2.0240084
2.1750149	1.7986718
1.9108983	1.5863985
1.6616677	1.3860999
1.4261066	1.1968049
1.2031283	1.0176455
0.9917566	0.8478424
0.7911154	0.6866940
0.6004142	0.5335695
0.4189370	0.3878973
0.2460365	0.2491576
0.0811233	0.1168821
-0.0753394	-0.0093608
-0.2268426	-0.1299606
-0.3708351	-0.2452773
-0.5087295	-0.3556385
-0.6409052	-0.4613474
-0.7677125	-0.5626810
-0.8894756	-0.6598957
-1.0064937	-0.7532299
-1.1190452	-0.8429628
-1.2273911	-0.9291182
-1.3317724	-1.0120671
-1.4324169	-1.0919253
-1.5295370	-1.1688586
-1.6233336	-1.2430215
-1.7139946	-1.3145584
-1.8016995	-1.3836066
-1.8866172	-1.4502944

LOG $\times 15$	LOG K16	TEMP
3.6881554	11.4795035	2300.0
3.2475335	15.3675082	2100.0
2.8466168	7.3564061	2200.0
2.4803424	8.4331095	2300.0
2.1443749	7.5867023	2430.0
1.8350709	6.8080058	2500.0
1.5494269	6.0892467	2500.0
1.2847582	5.4237972	2700.0
1.0388723	4.8359713	2820.0
0.8098359	4.2308545	2950.0
0.5958919	3.6942221	3000.0
0.3956592	3.1923361	3120.0
0.2078584	2.7219597	3200.0
0.0313366	2.2802393	3300.0
-0.1348891	1.8646541	3400.0
-0.2716976	1.4727704	3500.0
-0.4398598	1.1232522	3650.0
-0.5801527	0.7535766	3700.0
-0.7130194	3.4225078	3800.0
- 3.8391798	2.1285752	3930.0
- 2.9570873	-0.1995179	4200.0
-1.0731757	-0.4727147	+120.0
-1.1817168	-2.7426686	4200.0
-1.2956236	-5.7997312	4300.0
-1.3845542	-1.2449669	4400.0
-1.4793181	-1.4791352	4500.0
-1.5675971	-1.133)464	4500.0
-1.6566505	-1.7172707	4730.0
-1.7398136	-2.122443J	4800.0
-1.8196352	-2.3191202	4700.0
-1.8962252	-2.5078144	5000.0
-1.9698588	-2.6889982	5100.0
-2.0436772	-2.8631090	5200.0
-2.1088383	-3.0305519	5320.0
-2.1744896	-3.1917017	5400.0
-2.2377575	-3.3469073	5520.0
-2.2987793	-3.4964937	5800.0
-2.3577337	-3.5407629	5750.0
-2.4145723	-3.7799979	5800.0
-2.4695583	-3.9144623	5930.0
-2.5227299	-4.3444044	5200.0
-2.5741584	-4.1700555	5100.0

TABLE A-7. (COMPUTER OUTPUT)

EQUILIBRIUM CONSTANTS FOR THE ABOVE REACTIONS

$k 9$
Q. $542301 E 05$ 0. 356815 E 04 $0.109731 E \quad 04$ $0.373180 \mathrm{E} ~$
03
0.13 BS 4 RE $0.556485 \mathrm{E} \quad 02$ $0.239826 \mathrm{E} \quad 02$ $0.109851 E$
$0.531816 E$
0. $0.270599 E$ OI $\begin{array}{ll}0.144007 E & 01 \\ 0.798135 E & 00\end{array}$ 0.798135 E 00
$0.458966 \mathrm{E}-00$ $0.458966 E-00$
$0.272937 E-00$ $0.272937 E-00$
$0.167361 E-00$ $0.167361 E-00$
$0.105542 E-00$ $0.682935 \mathrm{E}-01$ $0.452497 E-01$ 0. $306430 E-01$ $0.211741 \mathrm{E}-01$ $0.149069 \mathrm{E}-01$ $0.106780 \mathrm{E}-01$ $0.777286 E-02$ $0.574351 \mathrm{E}-02$ $0.430368 \mathrm{E}-02$ $0.326715 \mathrm{E}-02$ $0.251072 \mathrm{E}-02$ -.195162E-02 $0.153338 \mathrm{E}-02$ $0.121697 \mathrm{E}-02$ $0.975061 E-03$
$0.788243 \mathrm{E}-03$ $0.788243 E-03$ $0.642610 \mathrm{E}-03$ $0.528066 E-03$ $0.437214 \mathrm{E}-03$ $0.364577 \mathrm{E}-03$ 0.258588E-03 $0.219805 \mathrm{E}-03$ $0.219805 E-03$ $0.161538 \mathrm{E}-03$

Abstract

$K 2$ $0.176666 \mathrm{E}-10$ $0.151423 \mathrm{E}-09$ $0.151423 \mathrm{E}-09$ $0.107433 E-08$ $0.646036 E-08$ $0.335867 E-07$ $0.335867 \mathrm{E}-07$ $0.153520 E-06$ 0. $0.235842 \mathrm{E}-06$ $0.230351 \mathrm{E}-05$ $0.773635 \mathrm{E}-05$ $0.773635 \mathrm{E}-05$ $0.237265 \mathrm{E}-04$ 0.239265E-04 $0.686891 E-04$ $0.184329 E-03$ $0.184329 \mathrm{E}-03$ $0.465221 \mathrm{E}-03$ O. $0.111030 \mathrm{E}-02$ 0. $0.2511030 \mathrm{E}-02$ $0.251777 \mathrm{E}-02$ $0.544803 \mathrm{E}-02$ $0.544803 E-02$ $0.112917 \mathrm{E}-01$ $0.224935 \mathrm{E}-01$ $0.224935 E-01$ $0.431973 \mathrm{E}-01$ 0.801957E-01 $0.801957 E-01$ $0.144284 E-00$ $0.144284 \mathrm{E}-00$ $0.252137 \mathrm{E}-00$ $0.252137 E-00$ $0.428833 E-00$ $0.428833 E-00$ 0.711180 E 00 $0.711180 E$ OO 0.115198 E 0.115198 E OI 0.182538 E O1 0.283349 E O1 0.431434 E OI 0.645133 E O1 $0.949430=01$ 0.137222 F 02 $\begin{array}{ll}0.137222 \mathrm{~F} & 02 \\ 0.195576 \mathrm{E} & 02\end{array}$ $\begin{array}{lll}0.195576 E & 02 \\ 0.274826 E & 02\end{array}$ $\begin{array}{ll}0.274826 E & 02 \\ 0.381069 E & 02\end{array}$ $\begin{array}{ll}0.381069 E & 02 \\ 0.521771 E & 02\end{array}$ $0.521771 E \quad 02$ 0.705981 E $0.944557 \mathrm{E} \mathrm{O2}$ 3.1250415 $\begin{array}{lll}0.163876 E & 03 \\ 0.212741 E & 03\end{array}$ 0.273707E O3

Abstract

$K 3$ 2134 $0.221341 \mathrm{E}-19$ $0.206191 \mathrm{E}-09$ $0.156341 \mathrm{E}-09$ $0.991084 \mathrm{E}-08$ $0.537154 \mathrm{E}-08$ $0.253623 \mathrm{E}-06$ $0.105994 \mathrm{E}-05$ $0.397424 \mathrm{E}-05$ $0.135253 \mathrm{E}-04$ $0.421993 \mathrm{E}-04$ $0.121757 \mathrm{E}-03$ $0.327339 \mathrm{E}-03$ $0.327339 \mathrm{E}=03$ $0.825436 \mathrm{E}=03$ $0.825436 \mathrm{E}-03$ $0.196371 \mathrm{E}-02$ $0.443002 E-02$ $0.952013 E-02$ $0.952013 \mathrm{E}-02$ $0.195679 \mathrm{E}-01$ $0.195679 \mathrm{E}-01$ $0.386078 \mathrm{E}-01$ $0.733562 \mathrm{E}-01$ $0.134613 \mathrm{E}-00$ $0.134613 \mathrm{E}-00$ $0.239199 \mathrm{E}-00$ $0.412549 \mathrm{E}-00$ 0.692088 E 00 $0.113151 E O 1$ $0.113151 E$ OI $0.180604 E$ $0.281883 E$ $0.281883 E$ OI 0.430840 E O1 0.645732 E $\begin{array}{ll}0.645732 E & 01 \\ 0.950196 E & 01\end{array}$ 0.137432 E O2 0.274129 F $0.274129 E$ $0.378746 E$ $0.378746 E \quad 02$ $0.516257 \mathrm{E} \mathrm{O2}$ 0.694765 E O2 $0.923755 E^{0}$ 0.923755 E 0.157920 E 0.259129 F $0.327303 \mathrm{E} ~ 03$ C.409815E 03

$\times 4$ $0.834139 \mathrm{E}-03$
$0.154747 \mathrm{E}-02$ $0.154747 \mathrm{E}-02$
$0.271254 \mathrm{E}-02$ $0.271254 \mathrm{E}-02$ $0.452566 \mathrm{E}-02$ $0.723081 \mathrm{E}-02$ $0.111203 \mathrm{E}-01$ $0.165332 \mathrm{E}-01$ $0.238510 \mathrm{E}-01$ $0.334923 E-01$
$0.459051 \mathrm{E}-01$ $0.459051 \mathrm{E}-01$ $0.615577 \mathrm{E}-01$ $0.809302 \mathrm{E}-01$
$0.104504 \mathrm{E}-00$ $0.104504 \mathrm{E}-00$
$0.132752 \mathrm{E}-00$ $0.132752 \mathrm{E}-00$
$0.166133 \mathrm{E}-00$ $0.166133 E-00$
$0.205076 \mathrm{E}-00$ $0.205076 \mathrm{E}-00$
$0.249981 \mathrm{E}-00$ $0.249981 \mathrm{E}-00$
$0.301208 \mathrm{E}-00$ $0.301208 \mathrm{E}-00$
$0.359076 \mathrm{E}-00$ $0.359076 E-00$
$0.423851 E-00$ $0.423851 \mathrm{E}-00$
$0.495755 \mathrm{E}-00$ $0.495755 \mathrm{E}-00$ 0.574955 E 0
0.661567 E
0.7 $0.661567 E \quad 0$
$0.755657 E \quad 0$ $\begin{array}{ll}0.755657 E & 00 \\ 0.857241 E & 00\end{array}$ $0.857241 E 00$
$0.966283 E \quad 00$ $0.966283 E$ OO 0.108271 E OI $0.120639 E ~ 01$
0.133716 E
01 0.133716 E
01
0.147484 E 01 0.147484 E ol
$\because .161717 \mathrm{E}$ al 0.116940 E 0.192674 E OL
0.208936 E 0.225742 E ol 0.243057 E Ol 0.260841 F 01 0.279056 E O1 0.3 2.502 21 0.335856 E OI $0.355360 \mathrm{E} \mathrm{O1}$

K8	TEMP
$108156 \mathrm{E}-04$	2000.0
347143E-34	2100.0
$131116 \mathrm{E}-03$	2200.0
$266445 \mathrm{E}-03$	2350.0
646335 E-23	2430.0
$145752 \mathrm{E}-32$	2530.0
$358166 \mathrm{E}-32$	2630.0
615123E-92	2750.0
115S32E-j1	2800.0
$211172 \mathrm{E}-51$	2950.0
$365758 \mathrm{E}-91$	3330.0
613493E-J1	3100.0
991749E-j1	3230.0
155417E-Jつ	3350.0
$235742 \mathrm{E}-33$	3430.0
351379E-0才	3530.0
509246E 39	3570.0
722J43E JJ	3750.0
1כJ329E 31	3830.0
136831E 31	3900.0
183420 E 31	4300.0
$241768 \mathrm{E} \mathrm{O1}$	4130.0
$314496 E$ O1	423
4J3149E 01	4330.0
S1J181E J1	4400.0
637718E 31	4500.0
788736E 21	4630.0
965325E 21	4720.0
116717E 22	4300.0
4J349E J2	4700.0
	53.9.
1771536 36	31
232754E 22	5250.0
253515E 32	53:0.
13288E 32	54.30 .0
356133E 22	3500.0
OSZRDE 32	3650.0
S)938E 32	5720.
12	
3489E 22	
$7 E$	

TEMP 2000.0 2100.0 2300.0 2430.0 2530.0 2750.0 2800.0
3320.0
3100.0
3250.0
3430.0
3500.0
3730.0
3820.0
3730.0
4300.0
4230.0
4300.0
4500.0
4630.0
4900.0
4700.0

59~?.?
5250.0
53.0 .2
54.00 .2
3520.0
5720.0
2720.0
31.0 .0
K10
$\begin{aligned} & 0.247730 \mathrm{E}-11 \\ & 0.218684 \mathrm{~F}-10\end{aligned}$
$0.158366 \mathrm{E}-09$
$0.965452 \mathrm{E}-09$
0. $300252 \mathrm{E}-33$
0. 23 $2501 \mathrm{E}-07$
$0.949633 \mathrm{E}-07$
$0.349478 \mathrm{E}-06$
$0.117186 \mathrm{E}-05$
$0.361498 \mathrm{E}-05$
$0.103453 \mathrm{E}-04$
0. $276658 \mathrm{E}-04$
$0.695787 \mathrm{E}-04$
$0.165489 \mathrm{E}-03$
$0.374082 \mathrm{E}-03$
$0.807172 \mathrm{E}-03$
$0.166900 \mathrm{E}-02$
$0.331850 \mathrm{E}-02$
$0.636454 \mathrm{E}-02$
$0.118071 \mathrm{E}-01$
$0.212399 \mathrm{E}-01$
$0.371349 \mathrm{E}-01$
$0.632289 \mathrm{E}-01$
$0.105041 \mathrm{E}-00$
$0.173548 \mathrm{E}-00$
$0.271046 \mathrm{E}-00$
$0.422240 \mathrm{E}-00$
0.645584 E OO
$0.969921 E 00$
0.143345 E 01
. 2.208603 E OI
0.299196 E 01
0.423307 E O1
0.591241 E O1
0.111291 E
0.150184 E O2
0.200605 E
0.265376 E O2
0.265376 E O2
0.452056 F O2
0.582658 E O
$0.659071 \mathrm{E}-09 \quad 0.502947 \mathrm{E}$ 09
$0.176560 \mathrm{E}-07 \quad 0.179137 \mathrm{E} 08$
C. $738362 \mathrm{E}-07 \quad 0.421254 \mathrm{E}$ O7
C. $917753 \mathrm{E}-96$
$0.786960 \mathrm{E}-05$
.. $255527 \mathrm{E}-04$
$0.502590 \mathrm{E}-0$
0. $115834 \mathrm{E}-0$
$0.253057 \mathrm{E}-03$
$0.526672 \mathrm{E}-0$
$0.104885 \mathrm{E}-02$
$0.369074 \mathrm{E}-02$
$0.359974 \mathrm{E}-02$
$\begin{aligned} & 0.659605 \mathrm{E}-02 \\ & 0.114012 \mathrm{E}-01\end{aligned}$
$\begin{aligned} & 0.114012 \mathrm{E}-01 \\ & 0.191529 \mathrm{E}-01\end{aligned}$
$\begin{aligned} & 0.191529 \mathrm{E}-01 \\ & 0.313393 \mathrm{E}-01\end{aligned}$
$0.313393 \mathrm{E}-0$
0.500462E-0
0. $7136 \mathrm{BE}-01$
$0.19466 \mathrm{E}-00$
$0.179130 \mathrm{E}-00$
$0.3818 \mathrm{C}^{0} \mathrm{E}$-00
0.544114 E
0.763916 E 00
. .733916 E OO
$\begin{aligned} & 0.125769 \mathrm{E} \text { OI } \\ & 0.144541 \mathrm{E} \text { OI }\end{aligned}$
$\begin{aligned} & 0.144541 \mathrm{E} \text { OI } \\ & 0.195112 \mathrm{E} \text { OI }\end{aligned}$
0.260342 E OI
$\begin{aligned} & 0.260342 E O \\ & 0.343604 E O\end{aligned}$
0.448833 E O
$\begin{aligned} & 0.448833 \mathrm{E} \text { O } \\ & 0.580585 \mathrm{E} \text { O }\end{aligned}$
$\begin{aligned} & 0.580585 E O \\ & 0.744089 E O\end{aligned}$
$\begin{aligned} & 0.744089 E \\ & 0.945291 E\end{aligned}$
$0.119091 E$
0.148846 E
0.184630 E
$\begin{aligned} & 0.227367 E ~ O 2 \\ & 0.278066 E ~ O 2\end{aligned}$

<13
0.108425803 $0.267549 E \quad 07$ 0.235161 E 06 $0.012429 E$ OS C. 305756 O5 $0.124156 \mathrm{E} \quad 05$ $\begin{array}{lll}0.248721 E & 04 \\ 0.121077 E & 04\end{array}$ $\begin{array}{ll}0.618706 E & 03 \\ 0.330322 E\end{array}$ $\begin{array}{ll}0.183500 E & 03\end{array}$ $\begin{array}{ll}0.105684 E & 03 \\ 0.627030 E & 02\end{array}$ 0.385832 E O2 $0.243276 E \quad 02$ 0.157328 E 02 0.104147 E O2 0.704437 E O1 $0.485065 \mathrm{E} \quad 01$ 0.341641 E O1 0.244285 E O1 0.177483 E 01 $0.130883 E 01$ 0.978677 E 00 $0.741378 E 00$ 0.568490 E 00 $0.440922 \mathrm{E}-00$
$0.345663 \mathrm{E}-00$ $0.345663 \mathrm{E}-00$ $0.273728 \mathrm{E}-00$ $0.218829 \mathrm{E}-00$ $0.176510 \mathrm{E}-00$ $0.143581 E-00$ $0.117729 \mathrm{E}-00$ $0.972597 \mathrm{E}-01$ $0.809235 E-01$
$0.677862 E-01$ $0.677862 \mathrm{E}-01$
$0.571450 \mathrm{E}-01$ $0.571450 \mathrm{E}-01$
$0.484665 \mathrm{E}-01$ $0.413422 \mathrm{E}-01$ 0. $354573 E-01$
$K 14$

$\times 15$ | 0.596603 E |
| :--- |
| 0.28 |
| 0.303377 E |
| 0.26 |
| 0.249772 E |
| 0.312653 E |
| 0.32 |
| 0.364655 E |
| .140774 E |
| 0.19 |
| 0.466958 E |
| 0.199563 E |
| 0.16 |
| 0.106947 E |
| 0.702021 E |
| 0.53 |
| 0.553091 E |
| 0.52 |
| 0.513825 E | 11

16

tEMp 2000.0 2150.3 $22=0.0$
2330.0 2400.2
2520.0 2300.0 2730.0 2990.0 2900.0 3000.0 3100.0 3220.0
3300.0 3300.0
3400.0 3500.0 3600.0 3700.0 3800.0 3950.0 4300.0 4100.0 4200.0 4330.0 4430.0 4500.0 4500.0 4700.0 4320.0
4700.0 4700.0 5000.0 5120.0 5230.0 5300.0 5400.0 5620.0 5620.0 5800.0 5800.0
5900.0 5900.0
5300.0 $\$ 120.0$

Appendix B

(1) Equilibrium Composition at High Temperatures

Reactions considered in the heterogeneous region:
$\mathrm{C}_{\mathrm{S}} \quad \longrightarrow \mathrm{C}_{1} \quad \mathrm{~K} 1=\mathrm{p}_{\mathrm{C}_{1}}$
$2 \mathrm{C}_{\mathrm{S}} \quad \longrightarrow \mathrm{C}_{2} \quad \mathrm{~K}_{2}=\mathrm{p}_{\mathrm{C}_{2}}$
${ }^{3 C} \mathrm{C}_{\mathrm{S}} \quad \longrightarrow \mathrm{C}_{3} \quad \mathrm{~K}_{3}=\mathrm{p}_{\mathrm{C}_{3}}$
$2 \mathrm{C}_{\mathrm{S}}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2} \quad \mathrm{~K}_{4}=\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{p}_{\mathrm{H}_{2}}}$
$\mathrm{H}_{2} \longrightarrow 2 \mathrm{H} \quad \mathrm{K}_{5}=\left(\mathrm{p}_{\mathrm{H}}\right)^{2} / \mathrm{p}_{\mathrm{H}_{2}}$
$\mathrm{C}_{2} \mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H} \quad \mathrm{K}_{6}=\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}} \mathrm{p}_{\mathrm{H}} / \mathrm{p}_{\mathrm{C}_{2} \mathrm{H}_{2}}$
$3 \mathrm{C}_{\mathrm{S}}+\mathrm{H} \longrightarrow \mathrm{C}_{3} \mathrm{H} \quad \mathrm{K}_{7}=\mathrm{p}_{\mathrm{C}_{3} \mathrm{H}} / \mathrm{p}_{\mathrm{H}}$
$4 \mathrm{C}_{\mathrm{S}}+\mathrm{H} \longrightarrow \mathrm{C}_{4} \mathrm{H}$
$\mathrm{K}_{8}=\mathrm{p}_{\mathrm{C}_{4}} / \mathrm{p}_{\mathrm{H}}$
$2 \mathrm{C}_{2} \mathrm{H} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{2} \quad \mathrm{~K}_{9}=\mathrm{p}_{\mathrm{C}_{4} \mathrm{H}_{2}} /\left(\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}}\right)^{2}$

Reactions considered in the homogeneous region:

H_{2}	$\longrightarrow 2 \mathrm{H}$	
$\mathrm{C}_{2} \mathrm{H}_{2}$	$\rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	
$2 \mathrm{C}_{2} \mathrm{H}$	$\longrightarrow \mathrm{C}_{4} \mathrm{H}_{2}$	
C_{3}	$\mathrm{C}_{1}+\mathrm{c}_{2}$	$\mathrm{K}_{10}=p_{C_{1}} p_{C_{2}} / p_{C_{3}}$
C_{2}	$\geq 2 C_{1}$	$K_{11}=\left(p_{c_{1}}\right)^{2} / p_{c_{2}}$
$\mathrm{C}_{2}+\mathrm{H}_{2}$	$\rightarrow \mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{K}_{12}=\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}_{2}} / \mathrm{p}_{\mathrm{C}_{2}} \mathrm{p}_{\mathrm{H}_{2}}$
$\mathrm{C}_{3}+\mathrm{H}$	$\longrightarrow \mathrm{C}_{3} \mathrm{H}$	$\mathrm{K}_{13}=\mathrm{p}_{\mathrm{C}_{3} \mathrm{H}} / \mathrm{p}_{\mathrm{C}_{3}} \mathrm{p}_{\mathrm{H}}$
$\mathrm{c}_{2}+2 \mathrm{c}_{1}$	$+\mathrm{H} \longrightarrow \mathrm{C}_{4} \mathrm{H}$	$\begin{equation*} \mathrm{K}_{14}=\mathrm{p}_{\mathrm{C}_{4}} / \mathrm{p}_{\mathrm{C}_{2}} \mathrm{p}_{\mathrm{H}}\left(\mathrm{p}_{\mathrm{C}_{1}}\right)^{2} \tag{13} \end{equation*}$
$\mathrm{C}_{1}+\mathrm{H}$	$\longrightarrow \mathrm{CH}$	$\mathrm{K}_{15}=\mathrm{p}_{\mathrm{CH}} / \mathrm{p}_{\mathrm{C}_{1}} \mathrm{p}_{\mathrm{H}}$
$\mathrm{C}_{1}+2 \mathrm{H}$	$\longrightarrow \mathrm{CH}_{2}$	$\mathrm{K}_{16}=\mathrm{p}_{\mathrm{CH}_{2}} / \mathrm{p}_{\mathrm{C}_{1}}\left(\mathrm{p}_{\mathrm{H}}\right)^{2}$

Heterogeneous Region

By Dalton's law, the sum of partial pressures must equal the total pressure. In this region, the partial pressures can be reduced to terms involving the various equilibrium constants and the partial pressure of H atoms by manipulating the equations for K_{1} to K_{9}. Collecting the terms containing a common power of p_{H} and rearranging, a quadratic equation results, with the partial pressure of H atoms to be determined

$$
\begin{align*}
\left(p_{H}\right)^{2}\left[\frac{1+k_{4}}{K_{5}}\right. & \left.+K_{9}\left(\frac{k_{6} K_{4}}{K_{5}}\right)^{2}\right]+\left(p_{H}\right)\left[1+\frac{K_{4} K_{6}}{K_{5}}+K_{7}+K_{8}\right) \\
& +\left(K_{1}+K_{2}+K_{3}-T P\right)=0 \tag{17}
\end{align*}
$$

where TP is the total pressure.
The solution of Eq. 17 is straightforward as it depends only on temperature at a fixed pressure. Once the partial pressure p_{H} is determined, all other component concentrations (mole fraction y can be easily derived from the equilibrium constants and the value of p_{H} where applicable at the chosen temperature by inserting p_{H} in Eqs. 1 to 9 and dividing by the total pressure. The sum of mole fractions must also add up to unity.

The carbon to hydrogen ratio in this region is variable and depends on temperature. This can be expressed as:
$\frac{c}{H_{2}}=\frac{y_{C_{1}}+2\left(y_{C_{2}}+y_{C_{2} H}+y_{C_{2} H_{2}}\right)+3\left(y_{C_{3}}+y_{C_{3} H}\right)+4\left(y_{C_{4} H}+y_{C_{4} H_{2}}\right)}{\left(y_{H_{2}}+y_{C_{2} H_{2}}+y_{C_{4} H_{2}}\right)+0.5\left(y_{H}+y_{C_{2} H}+y_{C_{3} H}+y_{C_{4} H}\right)}$

For the computer program discussed in Appendix A, four basic equations were set as follows:

$$
\begin{array}{ll}
A=\frac{1+K_{4}}{K_{5}}+K_{9}\left(\frac{K_{4} K_{6}}{K_{5}}\right)^{2} & \text { positive } \\
B=1+\frac{K_{4} K_{6}}{K_{5}}+K_{7}+K_{8} & \text { positive } \\
C=K_{1}+K_{2}+K_{3}-T P & \text { negative } \\
p_{H}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A} & \tag{22}
\end{array}
$$

The computer loop was closed at the temperature for which the condition imposed on Eq. 21 could no longer be fulfilled, i.e., if C became positive, because this corresponds to an impossible case. Computer results for five different total pressures $(0.1,0.5,1.0,5.0$, and 10.0 atm) are presented in Table B-1.

Homogeneous Region

Two conditions must be fulfilled in this region; besides the condition that the sum of partial pressures must add up to the total pressure, the carbon to hydrogen ratio must also remain unchanged throughout the whole temperature range. From Eqs. 5, 6, 9 to 17, a quadratic equation in p_{H} can be obtained containing the partial pressure of C_{1} as parameters (first condition):

$$
\begin{align*}
& \left(p_{H}\right)^{2}\left(\frac{1}{K_{5}}+K_{16}\left(p_{C_{1}}\right)+\frac{K_{12}}{K_{5} K_{11}}\left(p_{C_{1}}\right)^{2}+K_{9}\left(\frac{K_{6} K_{12}}{K_{5} K_{11}}\right)^{2}\left(p_{C_{1}}\right)^{4}\right) \\
& +\left(p_{H}\right)\left(1+K_{15}\left(p_{C_{1}}\right)+\frac{K_{6} K_{12}}{K_{5} K_{11}}\left(p_{C_{1}}\right)^{2}+\frac{K_{13}}{K_{10} K_{11}}\left(p_{C_{1}}\right)^{3}+\frac{K_{14}}{K_{11}}\left(p_{C_{1}}\right)^{4}\right) \\
& +\left[p_{C_{1}}+\left(p_{C_{1}}\right)^{2} / K_{11}+\left(p_{C_{1}}\right)^{3} / K_{10} K_{11}-T P\right)=0 \tag{23}
\end{align*}
$$

For the computer program, P_{H}, was given the symbol YlPH and $P_{C_{1}}$ the symbol x, and Eq. 23 was labeled as follows:

$$
\begin{align*}
& \mathrm{A} 1=1 / \mathrm{K}_{5}+\mathrm{K}_{16} \mathrm{x}+\frac{\mathrm{K}_{12}}{\mathrm{~K}_{5} \mathrm{~K}_{11}} \mathrm{x}^{2}+\mathrm{K}_{9}\left(\frac{\mathrm{~K}_{6} \mathrm{~K}_{12}}{\mathrm{~K}_{5} \mathrm{~K}_{11}}\right)^{2} x^{4} \tag{24}\\
& \mathrm{~B} 1=1+\mathrm{K}_{15} \mathrm{x}+\frac{\mathrm{K}_{6} \mathrm{~K}_{12}}{\mathrm{~K}_{5} \mathrm{~K}_{11}} x^{2}+\frac{\mathrm{K}_{13}}{\mathrm{~K}_{10} \mathrm{~K}_{11}} x^{3}+\frac{\mathrm{K}_{14}}{\mathrm{~K}_{11}} x^{4} \tag{25}\\
& \mathrm{C} 1=\mathrm{x}+\frac{\mathrm{x}^{2}}{\mathrm{~K}_{11}}+\frac{\mathrm{x}^{3}}{\mathrm{~K}_{10} \mathrm{~K}_{11}}-\mathrm{TP} \quad \text { (negative) } \tag{26}\\
& \mathrm{XIPH}=\frac{-\mathrm{B} 1+\sqrt{(\mathrm{B} 1)^{2}-4(\mathrm{~A} 1)(\mathrm{Cl)}}}{2(\mathrm{~A} 1)} \tag{27}
\end{align*}
$$

Eq. 27 is the only root possible since Al and Bl are always positive and Cl must always be negative, because the sum of partial pressures for carbon vapors cannot be larger than the total pressure.

The second condition concerns the carbon to hydrogen ratio and can be expressed by an equation similar to Eq. 18, but with partial pressures instead of mole fractions; this is converted later to mole fractions and serves to check the specified $\mathrm{C} / \mathrm{H}_{2}$ ratio.

Setting $\mathrm{R}=\mathrm{C} / \mathrm{H}_{2}$ for the sake of simplicity and defining the following values

$$
\begin{align*}
& A M=\frac{K_{12}}{K_{5} K_{11}} x^{2}+3 K_{9}\left(\frac{K_{6} K_{12}}{K_{5} K_{11}}\right)^{2} x^{4}-\frac{1}{K_{5}} \tag{28}\\
& B M=\frac{K_{6} K_{12}}{K_{5} K_{11}} x^{2}+2 \frac{K_{13}}{K_{10} K_{11}} x^{3}+3 \frac{K_{14}}{K_{11}} x^{4}-1 \tag{29}\\
& C M=\frac{x^{2}}{K_{11}}+\frac{2 x^{3}}{K_{10} K_{11}}+T P \tag{30}
\end{align*}
$$

another quadratic expression containing also Eqs. 24, 25, and 26 results. The second equation is separated as before, for computer handling, to yield:

$$
\begin{align*}
& A 2=A 1(R-1)-A M \tag{31}\\
& B 2=B 1\left(\frac{R}{2}-1\right)-B M \tag{32}
\end{align*}
$$

$$
\begin{equation*}
C 2=-(C 1+C M) \quad \text { (negative) } \tag{33}
\end{equation*}
$$

Here, however, two roots are possible, labeled Y2PH1 and Y2PH2, for the plus and minus signs:

$$
\begin{align*}
& \mathrm{Y} 2 \mathrm{PH} 1=\frac{-\mathrm{B} 2+\sqrt{(\mathrm{B} 2)^{2}-4(\mathrm{~A} 2)(\mathrm{C} 2)}}{2(\mathrm{~A} 2)} \tag{34}\\
& \mathrm{Y} 2 \mathrm{PH} 2=\frac{-\mathrm{B} 2-\sqrt{(\mathrm{B} 2)^{2}-4(\mathrm{~A} 2)(\mathrm{C} 2)}}{2(\mathrm{~A} 2)} \tag{35}
\end{align*}
$$

Also two more roots are possible depending on whethex $A 2$ or $B 2$ is equal to zero:
if $B 2=0$, then we have

$$
\begin{equation*}
\mathrm{Y} 2 \mathrm{PHBO}=\sqrt{-\mathrm{C} 2 / \mathrm{A} 2} \tag{36}
\end{equation*}
$$

and if $A 2=0$, we get

$$
\begin{equation*}
\mathrm{Y} 2 \mathrm{PHAO}=-\mathrm{C} 2 / \mathrm{B} 2 \tag{37}
\end{equation*}
$$

The restrictions as to which root applies can be seen in the following diagram:

	A2 $\rangle 0$	A2 $\langle 0$	A2 $=0$
B2 $\rangle 0$	Y2PH1	Y2PH1	Y2PHAO
B2 <0	Y2PH1	Y2PH2	none
B2 $=0$	Y2PHBO	none	none
			none

Where two roots apply ($B 2>0$ and $A 2<0$), the negative root or the one larger than the total pressure must be rejected.

The procedure now consists in choosing a value of $\mathrm{p}_{\mathrm{C}_{1}}=\mathrm{x}$ and trying to match Y1PH of Eq. 27 with one of the Y2PH roots of Eqs. 34, 35, 36, or 37. Trial and error calculations are involved, and a digital computer, such as the M.I.T. computer IBM 7090, is the most useful tool to get quick and accurate results. Once the two roots match, it is a simple procedure to obtain the other partial pressures from Eqs. 5, 6, 9 to 17. Mole fractions are again obtained by division with the total pressure and a check on the accuracy of the calculations is then performed by computing the sum of mole fractions that must add to unity and the carbon to hydrogen ratio from Eq. 18 that must be the same as the specified
ratio R_{0}
It was found necessary to set the initial value of x equal to 10^{-6} in order to get all the mole fractions at various pressures and $\mathrm{C} / \mathrm{H}_{2}$ ratios. Also the computations were obtained from $3,000^{\circ} \mathrm{K}$ up to $6,000^{\circ} \mathrm{K}$, even though at a temperature below the sublimation point of carbon the values do not correspond to reality; they were useful, however, for determining the sublimation point of carbon under the assigned conditions, since curves drawn from both heterogeneous and homogeneous regions must meet at this point. Computer results for the homogeneous region are presented in Table $\mathrm{B}-2$ for the cases examined in this thesis. Other pertinent values can be obtained from the whole computer program input and output which aze on file with Prof. Baddour or from a modification of the original program also on file.

(2) Quench Mechanism

The molecules, atoms and radicals of the equilibrium diagrams, as seen in section (1) of this appendix, were assumed to recombine in the following manner upon quenching of the gas mixture to room temperature:

All $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{H}_{2}$, and $\mathrm{C}_{4} \mathrm{H}_{2}$ present remain unchanged;

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~T})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2} \text { (room temperature) } \\
& \mathrm{H}_{2(T)} \longrightarrow \mathrm{H}_{2} \text { (room temperature } \\
& \mathrm{C}_{4} \mathrm{H}_{2(T)} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{2} \text { (room temperature) }
\end{aligned}
$$

The $\mathrm{C}_{2} \mathrm{H}$ radical combines with an H atom to yield more $\mathrm{C}_{2} \mathrm{H}_{2}$

$$
\mathrm{C}_{2} \mathrm{H}+\mathrm{H} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}
$$

The unused H radicals form molecular hydrogen

$$
\mathrm{H} \text { remaining } \longrightarrow 1 / 2 \mathrm{H}_{2}
$$

The radicals $\mathrm{C}_{3} \mathrm{H}, \mathrm{C}_{2} \mathrm{H}, \mathrm{CH}$ and CH_{2} go to solid carbon and molecular hydrogen

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H} \longrightarrow 3 \mathrm{C}_{\mathrm{s}}+1 / 2 \mathrm{H}_{2} \\
& \mathrm{C}_{4} \mathrm{H} \longrightarrow 4 \mathrm{C}_{\mathrm{s}}+1 / 2 \mathrm{H}_{2} \\
& \mathrm{CH} \longrightarrow \mathrm{C}_{\mathrm{s}}+1 / 2 \mathrm{H}_{2} \\
& \mathrm{CH}_{2} \longrightarrow \mathrm{C}_{\mathrm{s}}+\mathrm{H}_{2}
\end{aligned}
$$

It could be argued that CH could yield directly $\mathrm{C}_{2} \mathrm{H}_{2}$ by dimerization of the radical, but its concentration is so low as not to affect the resulting concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ in the quenched gas.

All carbon species, C_{1}, C_{2}, C_{3} also form solid carbon:

With this mechanism, the output gas would contain only $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2} and also a minute amount of $\mathrm{C}_{4} \mathrm{H}_{2}$ which does not contribute to more than about one half of one percent of the total. The calculated $\mathrm{C}_{2} \mathrm{H}_{2}$ concentrations are presented in the following tables (Tables B-3 to B-6) for various combinations of pressures and $\mathrm{C} / \mathrm{H}_{2}$ ratios.

Example: Pressure: $1.0 \mathrm{~atm} ., \mathrm{C} / \mathrm{H}_{2}$ ratio $=5.0, \mathrm{~T}=3,900^{\circ} \mathrm{K}$

$\mathrm{C}_{2} \mathrm{H}_{2}$		H_{2}	
0.01010	$\mathrm{C}_{2} \mathrm{H}_{2}$	0.02821	H_{2}
0.17915	$\mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	0.02300	remaining H
0.18725	total $\mathrm{C}_{2} \mathrm{H}_{2}$	0.08208	$\mathrm{C}_{3} \mathrm{H}$
		0.10883	$\mathrm{C}_{4} \mathrm{H}$
0,18725	$\mathrm{C}_{2} \mathrm{H}_{2}$	0.00096	$\mathrm{C}_{4} \mathrm{H}_{2}$
0.24579	$\mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{H}_{2}$	0.00055	CH
0.43304	total gas	0.00216	CH_{2}
		0.24579	total $\mathrm{H}_{2}+$
\% $\mathrm{C}_{2} \mathrm{H}_{2}=$	$\frac{0.18725}{0.43304} \times 1$. 3%	

TABLE B-I

CARBON-HYDROGEN SYSTEM,HETEROGENEDUS REGION
TOTAL PRESSURE $(\operatorname{ATM})=0.10$

Y H	$Y \mathrm{H} 2$	Y C2H	Y C 2 Hz	Y C 3 H	$Y \mathrm{C} 4 \mathrm{H}$	Y $\mathrm{C4} 4 \mathrm{~Hz}$	Y C1	Y C2	Y 63	y SUM	C/H2	IEMP
0.00511	0.99405	0.00000	0.00083	0.00000	0.00000	0.00000	0.00000	0.00000	0.00030	1.00000	0.002	2030.0
0.00977	0.98868	0.00002	0.00153	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	0.003	2100.0
0.01758	0.97968	0.00005	0.00266	0.00002	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	0.006	2200.3
0.02999	0.96540	0.00016	0.00437	0.00007	0.00001	0.00000	0.00000	0.00000	0.00000	1.00000	0.009	2300.3
0.04873	0.94374	0.00045	0.00682	0.00021	0.00003	0.00001	0.00000	0.00000	0.00000	1.00000	0.016	2430.3
0.07572	0.91226	0.00116	0.01514	0.00059	0.00011	0.00002	0.00000	0.00000	0.00050	1.00000	0.026	2500.0
0.11277	0.86827	0.00271	0.01436	0.00148	0.00035	0.00004	0.00001	0.00000	0.00051	1.03000	0.343	2600.0
0.16113	0.80909	0.00589	0.01730	0.00345	0.00099	0.00008	0.00002	0.00001	0.00034	1.00000	0.371	2700.3
0.22075	0.73246	0.01187	0.02453	0.00743	0.00257	0.00015	0.00007	0.00002	0.00014	1.00000	0.121	2800.3
0.28926	0.63737	0.02226	0.02926	0.01478	0.00611	0.00026	0.00020	0.00008	0.00342	1.00000	J. 209	2900.0
0.36076	0.52538	0.03872	0.03234	0.02718	0.01323	0.00041	0.00053	0.00324	0.00122	1.03300	0.364	3000.3
0.42502	0.40238	0.06218	0.03256	0.04596	0.02607	0.00056	0.00132	0.00069	0.00327	1.00000	0.624	3100.0
0.46836	0.27968	0.09146	0.02923	0.07094	0.04645	0.00067	0.00312	0.00184	0.00825	1.00000	1.340	3200.0
0.47760	0.17211	0.12214	0.02285	0.09912	0.07423	0.00068	0.00699	0.00465	0.01954	1.03000	1.653	3300.0
0.44583	0.09150	0.14677	0.01520	0.12424	0.10555	0.00059	0.01493	0.01110	0.04433	1.03500	2.490	3400.3
0.37451	0.04051	0.15620	0.00831	0.13757	0.13160	0.00041	0.03052	0.02518	0.09520	1.00000	3.643	3500.0
0.26852	0.01340	0.13985	0.00335	0.12783	0.13674	0.00021	0.05995	0.05448	0.19568	1.05000	5.584	3500.0
0.12951	0.00205	0.08312	0.00362	0.07867	0.09352	0.00005	0.11346	0.11292	0.38638	1.00000	11.563	3700.0

CARBON-HYDROGEN SYSTEM, HETEROGENEOUS REGION
TOTAL PRESSURE $(A T M)=0.50$

	$\gamma{ }^{\text {H2}}$	Y C2H	$Y \mathrm{C} 2 \mathrm{~Hz}$	Y C3 3 H	$Y \mathrm{C} 4 \mathrm{H}$	$Y \mathrm{C} 4 \mathrm{~Hz}$	Y CI	Y 62	Y C3	y SUM	C/H2	TEMP
0.00229	0.99688	0.00000	0.00083	0.00000	0.00000	0.00000	0.00000	0.20000	0.03000	1.00000	0.002	2303.0
0.00438	0.99407	0.00001	0.00154	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	0.303	2100.5
0.00790	0.98938	0.00002	0.00268	0.00001	0.00000	0.00000	0.00000	0.00000	0.30000	1.00000	0.005	2200.3
0.01352	0.98192	3.00007	0.00444	0.00003	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	2.009	$2333 . J$
0.02210	0.97056	0.00021	0.00702	0.00010	0.00091	0.00001	0.00000	0.00000	0.03000	1.05000	0.315	2430.3
0.03463	0.95390	0.00053	0.01061	0.00027	0.00005	0.00002	0.00000	0.00000	0.00000	1.00000	0.024	2500.
0.05220	0.93027	0.00125	0.01538	0.00069	0.00016	0.00004	0.00000	0.00503	0.00050	1.02000	0.337	2600.0
0.07590	0.89771	0.00277	0.02141	0.00163	0.00047	0.00009	0.00000	0.00000	0.00001	1.00000	3.258	273J.
0.10660	0.85401	0.00573	0.02860	0.00359	0.00124	0.00018	0.00001	0.00000	0.00033	1.00000	0.091	2803.3
0.14463	0.79675	0.01113	0.03657	0.00739	0.00305	0.00033	0.00004	0.00002	0.00058	1.03000	0.143	2900.0
0.18934	0.72363	0.02032	0.04454	0.01426	0.00694	0.00056	0.00011	0.00025	0.00024	1.35000	3.230	3000.0
0.23842	0.63312	0.03488	0.05124	0.02578	0.01463	0.00088	0.00026	0.00014	0.00065	1.03000	0.373	3102.0
0.28721	0.52587	0.05609	0.05496	0.04350	0.02848	0.00126	0.00062	0.00037	0.00165	1.05000	0.605	3230.0
0.32832	0.40668	0.08397	0.05399	0.06814	0.05103	0.00162	0.00140	0.00073	0.00393	1.00000	0.970	3300.0
0.35260	0.28616	0.11607	0.04754	0.09826	0.08347	0.00184	0.00299	0.00222	D. 03885	1.03000	1.509	3400.0
0.35218	0.17910	0.14689	0.03673	0.12936	0.12375	0.00181	0.00610	0.00504	0.01904	1.03000	2.242	3500.3
0.32478	0.09802	0.16916	0.02450	0.15461	0.16539	0.00151	0.01199	0.01090	0.23914	1.03000	3.145	3600.0
0.27474	0.04622	0.17632	0.01392	0.16688	0.19837	0.00106	0.02269	0.02258	0.07722	1.05000	4.215	3700.0
0.20902	0.01801	0.16329	0.00647	0.15969	0.20971	0.00060	0.04151	0.04497	0.14871	1.03000	5.636	3800.3
0.13237	0.00496	J. 12446	0.00210	0.12552	0.18113	0.00024	0.07359	0.08639	0.26923	1.00000	8.335	3930.3
0.04570	0.0004	0.05119	0.00021	0.05314	0.083	0.00003	0.12670	0.16539	0.47840	1.05000	21.095	450

CARBON-HYDROGEN SYSTEM, HETEROGENEOUS REGION
TOTAL PRESSURE $($ ATM $)=1.00$

	2	Y C 2 H	C2H2	C3H	C4H	Y C 4 Hz	Y C1	Y C2	Y C3	Y Sum	C/H2	TEMP
0.00162	0.99755	0.00000	0.00083	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.03000	3.302	2303.3
0.00310	0.99535	0.00000	0.00154	0.00000	0.00000	0.00000	0.00000	0.00000	0.00030	1.00000	0.303	2100.3
0.00559	0.99169	0.00002	0.00269	0.00001	0.00000	0.00000	0.00000	0.00000	0.00030	1.00000	3.305	2230.3
0.00958	0.98588	0.00005	0.00446	0.00002	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	0.207	2300.
0.01568	0.97702	0.00015	0.00706	0.00007	0.00001	0.00001	0.00000	0.00000	0.00000	1.03000	2.215	2403.3
0.02461	0.96404	0.00038	0.01072	0.00019	0.00004	0.00002	0.00000	0.00000	0.00030	1.00000	0.223	2500.0
0.03721	0.94561	0.00089	0.01563	0.00049	0.00011	0.00004	0.00000	0.00000	0.00030	1.03000	0.336	2603.2
0.05434	0.92013	0.00198	0.02195	0.00116	0.00033	0.00009	0.00000	0.00000	0.00030	1.00000	0.355	2700.0
0.07677	0.88575	0.00413	0.02967	0.00258	0.00090	0.00019	0.00001	0.00000	0.00001	1.20030	3.283	2803.3
0.10503	0.84031	3.00808	0.03857	0.00537	0.00222	0.00035	0.00002	0.00001	0.00024	1.00000	3.128	2900.0
0.13913	0.78145	0.01493	0.04810	0.01048	0.00510	0.00062	0.00005	0.00002	0.00012	1.03030	3.198	3303.0
0.17814	0.70689	3.02606	0.05721	0.01926	0.01093	0.00098	0.00013	0.00307	D. 20033	1.03000	3.310	3103.0
0.21968	0.61528	0.04290	0.06430	0.03327	0.02179	0.00147	0.00031	0.00018	0.00083	1.23030	2.487	3239.5
0.25937	0.50762	0.06633	0.06739	0.05383	0.04031	0.00202	0.00070	0.00347	0.00176	1.00000	0.770	3300.0
0.29082	0.38934	0.09574	0.06468	0.08104	0.06885	0.00250	0.00149	0.00111	0.03443	1.00000	1.195	3435.0
0.30665	0.27155	0.12790	0.05569	0.11264	0.10775	0.00274	0.00305	0.00252	0.00952	1.00000	1.802	3500.2
0.30140	0.16884	0.15698	0.04221	0.14348	0.15349	0.00260	0.00599	0.00545	0.01957	1.30300	2.585	3503.0
0.27475	0.09244	0.17633	0.02784	0.16688	0.19838	0.00212	0.01135	0.01129	0.03861	1.00000	3.507	3700.0
0.23159	0.04423	0.18092	0.01588	0.17693	0.23235	0.00148	0.02076	0.02249	0.07336	1.00000	4.541	3830.3
0.17828	0.01801	0.16763	0.00763	0.16905	0.24394	0.00086	0.03679	0.04320	0.13461	1.00000	5.823	3905.0
0.11892	0.00561	0.13318	0.00278	0.13826	0.21812	0.00038	0.06335	0.08020	0.23923	1.03000	7.794	4030.0
0.05456	0.00084	0.07209	0.00348	0.07691	0.13203	0.00008	0.10618	0.14428	0.41255	1.03000	14.793	4120.0

TABLE B-I (CONT'D)

CARBON-HYOROGEN SYSTEM,HETEROGENEDUS REGION

TABLE B-2

CARBON-HYDROGEN SYSTEM,HOMOGENEOUS REGION
TOTAL PRESSURE $(A T M)=1.00$
CARBON TO HYOROGEN ZATIO $=0.500$
$\begin{array}{lllllllllll}Y H & Y H Z & Y C 2 H & Y C Z H 2 ~ Y C 3 H ~ Y C 4 H ~ Y C 4 H 2 ~ Y C H ~ Y C H 2 ~ Y C 1 ~ Y C 2 ~ Y C 3 ~ Y S U M ~\end{array}$
 $\begin{array}{llllllllllllllllll}0.17071 & 0.64911 & 0.03665 & 0.07709 & 0.03281 & 0.02255 & 0.00193 & 0.00007 & 0.00725 & 0.00015 & 0.03010 & 0.03558 & 0.99701\end{array}$ $\begin{array}{lllllllllllllll}0.21830 & 0.60758 & 0.04299 & 0.06403 & 0.03348 & 0.02201 & 0.00147 & 0.00011 & 0.00786 & 0.00031 & 0.00019 & 0.00084 & 0.99917\end{array}$ $\begin{array}{llllllllllllllllll}0.27235 & 0.55968 & 0.04906 & 0.05233 & 0.03341 & 0.02100 & 0.00110 & 0.00017 & 0.00829 & 0.00059 & 0.00033 & 0.00115 & 0.99949\end{array}$ $\begin{array}{llllllllllllllllllllll}0.33168 & 0.50643 & 0.05457 & 0.04205 & 0.03266 & 0.01962 & 0.00581 & 0.00026 & 0.00850 & 0.00106 & 0.03755 & 0.00157 & 0.99977\end{array}$ $\begin{array}{lllllllllllllllllll}0.45851 & 0.39074 & 0.06284 & 0.02570 & 0.02946 & 0.01617 & 0.00042 & 0.00051 & 0.00820 & 0.00307 & 0.00143 & 0.00264 & 0.009969\end{array}$
 $\begin{array}{lllllllllllll}0.52140 & 0.33292 & 0.06522 & 0.01955 & 0.02725 & 0.01430 & 0.00029 & 0.00069 & 0.00772 & 0.00501 & 0.05220 & 0.00332 & 0.97987 \\ 0.58049 & 0.27787 & 0.06622 & 0.01457 & 0.02475 & 0.01242 & 0.05020 & 0.00089 & 0.00707 & 0.00793 & 0.05328 & 0.00407 & 0.099978\end{array}$ $\begin{array}{llllllllllllll}0.58049 & 0.27787 & 0.06622 & 0.01457 & 0.02475 & 0.01242 & 0.00020 & 0.00089 & 0.00707 & 0.00793 & 0.0 J 328 & 0.00407 & 0.99978 \\ 0.63368 & 0.22748 & 0.06573 & 0.01064 & 0.02202 & 0.01055 & 0.00013 & 0.00112 & 0.00630 & 0.01222 & 0.03477 & 0.03493 & 0.7995 B\end{array}$ $\begin{array}{lllllllllllllllll} & 0.0278 \\ 0.67960 & 0.18312 & 0.06370 & 0.00760 & 0.01913 & 0.00873 & 0.00009 & 0.00137 & 0.00547 & 0.01833 & 0.00671 & 0.05579 & 0.99963\end{array}$ $\begin{array}{llllllllllllll}0.67960 & 0.18312 & 0.06370 & 0.00760 & 0.01913 & 0.00873 & 0.00009 & 0.00137 & 0.00547 & 0.01833 & 0.00671 & 0.05579 & 0.99963 \\ 0.71741 & 0.14530 & 0.06005 & 0.00529 & 0.01613 & 0.00697 & 0.00005 & 0.00162 & 0.00463 & 0.02673 & 0.00914 & 0.05658 & 0.99991\end{array}$

 $\begin{array}{lllllllllllll}0.79106 & 0.05273 & 0.03191 & 0.00087 & 0.00490 & 0.00148 & 0.00000 & 0.00228 & 0.00180 & 0.08684 & 0.01975 & 0.00633 & 0.99995 \\ 0.79553 & 0.04072 & 0.02400 & 0.00050 & 0.00305 & 0.00080 & 0.00000 & 0.00227 & 0.00133 & 0.10594 & 0.02063 & 0.00518 & 0.99994\end{array}$
 $\begin{array}{llllllllllllll}0.79732 & 0.03160 & 0.01711 & 0.00027 & 0.00176 & 0.00039 & 0.00000 & 0.00218 & 0.00096 & 0.12424 & 0.02521 & 0.05387 & 0.79993 \\ 0.79771 & 0.02469 & 0.01165 & 0.00014 & 0.00095 & 0.00017 & 0.00000 & 0.00204 & 0.00067 & 0.14055 & 0.01868 & 0.00271 & 0.99997\end{array}$ $\begin{array}{llllllllllllll}0.79771 & 0.02469 & 0.01165 & 0.00014 & 0.00095 & 0.00017 & 0.00000 & 0.002 J 4 & 0.00067 & 0.14055 & 0.01868 & 0.00271 & 0.99997 \\ 0.79752 & 0.01946 & 0.00764 & 0.00007 & 0.00049 & 0.00007 & 0.00000 & 0.00186 & 0.00047 & 0.15418 & 0.01645 & 0.00177 & 0.99997\end{array}$
 $\begin{array}{lllllllllllllllllll}0.79692 & 0.01242 & 0.00308 & 0.00002 & 0.00012 & 0.00001 & 0.00000 & 0.00148 & 0.00023 & 0.17330 & 0.011 j 4 & 0.03067 & 0.0 .79978\end{array}$

 $\begin{array}{lllllllllllllllll}0.79740 & 0.00560 & 0.00049 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00088 & 0.00005 & 0.19057 & 0.03488 & 0.00303 & 0.99997 \\ 0.79762 & 0.00467 & 0.00031 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00077 & 0.00004 & 0.19258 & 0.00392 & 0.00005 & 0.99998\end{array}$ $\begin{array}{llllllllllllll}0.79762 & 0.00467 & 0.00031 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00077 & 0.00004 & 0.19258 & 0.00392 & 0.00005 & 0.99998 \\ 0.79784 & 0.00393 & 0.00020 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00068 & 0.00003 & 0.19412 & 0.00316 & 0.00003 & 0.99999\end{array}$

 $\begin{array}{llllllllllllllllllllllllllll}0.79842 & 0.00241 & 0.00006 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00047 & 0.00001 & 0.19691 & 0.00171 & 0.00001 & 1.00000\end{array}$ $\begin{array}{lllllllllllllllllllll}0.79859 & 0.00207 & 0.00004 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00042 & 0.00001 & 0.19747 & 0.00140 & 0.00005 & 1.00000\end{array}$

CARBON-HYDROGEN SYSTEM, HOMOGENEDUS REGION
TOTAL PRESSURE $(A T M)=1.00$
CARBON TO HYDROGEN RATIO $=1.000$
 $\begin{array}{lllllllllllllll}0.11734 & 0.55586 & 0.04834 & 0.13132 & 0.06646 & 0.06339 & 0.00632 & 0.00005 & 0.00702 & 0.00010 & 0.00009 & 0.00092 & 0.99721 \\ 0.15421 & 0.52971 & 0.05794 & 0.111011 & 0.06863 & 0.06241 & 0.00484 & 0.00008 & 0.00782 & 0.00021 & 0.00018 & 0.00135 & 0.99749\end{array}$ $\begin{array}{llllllllllllllllll}0.19747 & 0.49718 & 0.05767 & 0.09118 & 0.06954 & 0.06032 & 0.00366 & 0.00013 & 0.00849 & 0.00041 & 0.00032 & 0.00192 & 0.99829\end{array}$ $\begin{array}{lllllllllllllllllll}0.24663 & 0.45896 & 0.07715 & 0.07452 & 0.06924 & 0.05734 & 0.00273 & 0.00020 & 0.00896 & 0.00077 & 0.05057 & 0.00265 & 0.99973\end{array}$ $\begin{array}{llllllllllllllllll}0.30020 & 0.41485 & 0.03572 & 0.05978 & 0.06758 & 0.05348 & 0.00201 & 0.00031 & 0.00917 & 0.00139 & 0.00096 & 0.00358 & 0.99903\end{array}$ $\begin{array}{llllllllllllllll}0.35704 & 0.36813 & 0.09331 & 0.04730 & 0.06505 & 0.04926 & 0.00146 & 0.00044 & 0.00915 & 0.00242 & 0.00158 & 0.00472 & 0.99985\end{array}$ $\begin{array}{lllllllllllllllll}0.41467 & 0.31958 & 0.09934 & 0.03675 & 0.06158 & 0.04467 & 0.00104 & 0.00061 & 0.00887 & 0.00407 & 0.00251 & 0.0061 J & 0.99978\end{array}$ $\begin{array}{llllllllllllll}0.47099 & 0.27166 & 0.10362 & 0.02805 & 0.05742 & 0.03996 & 0.00073 & 0.00082 & 0.00836 & 0.00654 & 0.05387 & 0.00775 & 0.99987\end{array}$ $\begin{array}{lllllllllllllll}0.52367 & 0.22613 & 0.10588 & 0.02102 & 0.05268 & 0.03519 & 0.00051 & 0.00107 & 0.00766 & 0.01056 & 0.05582 & 0.00965 & 0.99984\end{array}$ $\begin{array}{llllllllllllllllll}0.57071 & 0.18452 & 0.10589 & 0.01543 & 0.04744 & 0.03041 & 0.00034 & 0.00135 & 0.00684 & 0.01634 & 0.00852 & 0.01185 & 0.99960\end{array}$ $\begin{array}{llllllllllllllll}0.61087 & 0.14796 & 0.10351 & 0.01110 & 0.04180 & 0.02565 & 0.00023 & 0.00165 & 0.00594 & 0.02464 & 0.01213 & 0.01408 & 0.99957\end{array}$ $\begin{array}{lllllllllllllll}0.64338 & 0.11686 & 0.09859 & 0.00779 & 0.03582 & 0.02095 & 0.00014 & 0.00197 & 0.00504 & 0.03616 & 0.01674 & 0.0163 J & 0.99973\end{array}$ $\begin{array}{llllllllllllllll}0.66796 & 0.09113 & 0.07105 & 0.00532 & 0.02961 & 0.01636 & 0.00009 & 0.00227 & 0.00416 & 0.05156 & 0.02225 & 0.01815 & 0.0 .99992\end{array}$ $\begin{array}{lllllllllllllllll}0.68471 & 0.07033 & 0.08102 & 0.00351 & 0.02336 & 0.01205 & 0.00005 & 0.00253 & 0.00334 & 0.07124 & 0.02834 & 0.01922 & 0.99970\end{array}$ $\begin{array}{llllllllllllllll}0.69479 & 0.05392 & 0.06913 & 0.00223 & 0.01743 & 0.00827 & 0.00003 & 0.00273 & 0.00261 & 0.09518 & 0.03435 & 3.01917 & 0.99984\end{array}$ $\begin{array}{llllllllllllll}0.69910 & 0.04119 & 0.05624 & 0.00136 & 0.01219 & 0.00521 & 0.00001 & 0.00284 & 0.00199 & 0.12252 & 0.03938 & 0.01782 & 0.99994\end{array}$ $\begin{array}{lllllllllllllll}0.69892 & 0.03143 & 0.04346 & 0.00079 & 0.00794 & 0.00299 & 0.00001 & 0.00286 & 0.00147 & 0.15210 & 0.04252 & 0.01532 & 0.79981\end{array}$ $\begin{array}{lllllllllllll}0.69605 & 0.02408 & 0.03197 & 0.00044 & 0.00482 & 0.00156 & 0.00000 & 0.00279 & 0.00107 & 0.18175 & 0.04324 & 0.01217 & 0.99995\end{array}$ $\begin{array}{llllllllllllll}0.69166 & 0.01856 & 0.02247 & 0.00024 & 0.00274 & 0.00075 & 0.00000 & 0.00264 & 0.00076 & 0.20962 & 0.04154 & 0.05898 & 0.99995\end{array}$ $\begin{array}{llllllllllllllll}0.68694 & 0.01444 & 0.01521 & 0.00013 & 0.00147 & 0.00033 & 0.00000 & 0.00244 & 0.00253 & 0.23430 & 0.03798 & 0.00621 & 0.99999\end{array}$ $\begin{array}{llllllllllll}0.68247 & 0.011344 & 0.01000 & 0.00006 & 0.00076 & 0.00014 & 0.00000 & 0.00221 & 0.00037 & 0.25532 & 0.03333 & 0.00407 \\ 0.67877 & 0.00901 & 0.00646 & 0.00003 & 0.00038 & 0.00006 & 0.00000 & 0.00198 & 0.00026 & 0.27190 & 0.02845 & 0.02253\end{array} 0.99983$ $\begin{array}{llllllllllllll}0.67877 & 0.00901 & 0.00646 & 0.00003 & 0.00038 & 0.00006 & 0.00000 & 0.00198 & 0.00026 & 0.27190 & 0.02840 & 0.03253 & 0.99983 \\ 0.67577 & 0.00723 & 0.00413 & 0.00002 & 0.00019 & 0.00002 & 0.00000 & 0.00176 & 0.00018 & 0.28523 & 0.02368 & 0.00166) & 0.9998\end{array}$ $\begin{array}{llllllllllllllllll}0.67577 & 0.00723 & 0.00413 & 0.00002 & 0.00019 & 0.00002 & 0.00000 & 0.00176 & 0.00018 & 0.28523 & 0.02368 & 0.00163 & 0.99980\end{array}$ $\begin{array}{llllllllllllllll}0.67348 & 0.00587 & 0.00264 & 0.00001 & 0.00009 & 0.00001 & 0.00000 & 0.00155 & 0.00012 & 0.29567 & 0.01948 & 0.00597 & 0.99989 \\ 0.67172 & 0.00480 & 0.00169 & 0.00000 & 0.00005 & 0.00000 & 0.00000 & 0.00137 & 0.0000 & 0.30372 & 0.01589 & 0.00059 & 0.99992\end{array}$ $\begin{array}{lllllllllllllll}0.67172 & 0.00480 & 0.00169 & 0.00000 & 0.00005 & 0.00000 & 0.00000 & 0.00137 & 0.00009 & 0.30372 & 0.01589 & 0.00059 & 0.99992\end{array}$ $\begin{array}{lllllllllllllllll}0.67040 & 0.00396 & 0.00108 & 0.00000 & 0.00002 & 0.00000 & 0.00000 & 0.00120 & 0.00006 & 0.30994 & 0.01291 & 0.00035 & 0.99995 \\ 0.66941 & 0.00329 & 0.00070 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00126 & 0.00004 & 0.31475 & 0.01048 & 0.00922 & 0.99997\end{array}$ $\begin{array}{llllllllllllllllllllll}0.66941 & 0.00329 & 0.00070 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00106 & 0.00004 & 0.31475 & 0.01048 & 0.00022 & 0.99997\end{array}$
 $\begin{array}{lllllllllllllllllllllllll}0.66811 & 0.00232 & 0.00030 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00083 & 0.00002 & 0.32137 & 0.00694 & 0.00003 & 0.99997\end{array}$

TABLE B-2 (CONT'D)

CARBON-HYDROGEN SYSTEM,HOMOGENEOUS REGION

TOTAL PRESSURE $(A T M)=1.00$
CARBON TO HYDROGEN RATIO $=2.500$

			YC2H2								res	YSUM	C/H2	IEMP
08603	0.29876	0.07566	0.15069	0.15200	0.21184	0.01549	0.00005	0.00552	0.00015	0.00020	0.00285	0.99924	2.499	3000.0
0.11358	0.28735	0.09004	0.12601	0.15491	0.20459	0.01167	0.00009	0.00616	0.00031	0.00037	0.00413	0.79921		
0.14578	0.27097	0.10472	0.10416	0.15578	0.19563	0.00875	0.00014	0.00670	0.00050	0.00368	0.00582	0.99973	2.500	3200
0.18202	0.24998	0.11900	0.08483	0.15439	0.18486	0.00650	0.00022	0.00705	0.00112	0.00119	0.00803	0.99917	2.499	33
0.22146	0.22577	0.13250	0.06817	0.15120	0.17317	0.00479	0.00033	0.00723	0.00201	0.00232	0.01085	0.99947	. 500	3400.0
0.26270	0.19929	0.14449	0.05390	0.14613	0.16052	0.00349	0.00047	0.00719	0.00350	0.00332	0.01442	0.99941	2.500	35
0.30428	0.17208	0.15454	0.04195	0.13948	0.14735	0.00252	0.00065	0.00695	0.00592	0.00531	0.01884	0.99987	500	36
0.34445	0.14530	0.15197	0.03206	0.13121	0.13351	0.00179	0.00088	0.00653	0.00971	0.0082	0.0242	0.99989	2.503	37
. 38178	0.12019	0.16632	0.02407	0.12146	0.11911	0.00125	0.00115	0.00598	0.01550	0.0125	0.0355	J.9999	. 5	
0.41506	0.09760	0.16706	0.01771	0.11024	0.10407	0.00086	0.00145	0.00533	0.02407	0.01849	0.03773	0.79963	2.500	3930.0
0.44365	0.07804	0.16386	0.01276	0.09769	0.08850	0.00057	0.00177	0.00463	0.03638	0.02645	0.04533	0.99960	2.500	4
0.46716	0.06161	0.15637	0.00898	0.08397	0.07256	0.00036	0.00211	0.00393	0.05345	0.03656	0.05261	0.99967	. 530	4130.0
48543	0.04813	0.14454	0.00614	0.06947	0.05674	0.00022	0.00243	0.00325	0.07620	0.04861	0.05858	0.99976	500	
0.49846	0.03727	0.12878	0.00	0	0.04182	0.00013	0.00272	0.00262	0.1052	0.0618	0.0620	0.99985	2.500	
0.50636	0.028	0.1	0.00	0.04	0.02	0.00007	0.00294	0.00205	0.14065	0.07500	0.0618	0.99991	2.500	
0.50939	0.02187	0.08975	0.00158	0.02879	0.01822	0.00003	0.00307	0.00156	0.18148	0.08625	0.05775	0.99975	2.499	45
0.50826	0.01662	0.05985	0.00093	0.01896	0.01062	0.00002	0.00309	0.00116	0.22610	0.09396	0.05031	0.99988	2.500	46
0.50378	0.01261	0.05184	0.00052	0.01169	0.00568	0.00001	0.00302	0.00084	0.27204	0.09688	0.04082	0.99973	99	4700.0
0	0.00959	0.03692	0.00028	0.00680	0.00282	0.00000	0.00287	0.00059	0.31690	0.09495	0.03102	0.99996	00	4830.0
0.48967	0.00734	0.02535	0.00015	0.0037	0.00130	0.00000	0.00266	0.00041	0.35832	0.0888	0.02225	0.99998	503	
0.48212	0.00566	0.01694	0.00008	0.00200	0.00057	0.00000	0.00242	0.00029	0.39486	0.07991	0.01513	0.99996	. 500	
0.47522	0.00442	0.01110	0.00004	0.00103	0.00024	0.00000	0.00217	0.00020	0.42596	0.06969	0.00992	0.99999	2.500	
0.	0.00349	0.00719	0.00002	0.00052	0.00010	0.00000	0.00193	0.00014	0.45147	0.05932	0.00633	0.99976	2.499	5200.0
0.46429	0.00279	0.00464	0.00001	0.00026	0.00004	0.00000	0.00171	0.00009	0.47235	0.04971	0.00397	0.99987	. 479	53
0.46026	0.00225	0.00299	0.00001	0.00013	0.00002	0.00000	0.00151	0.00007	0.48899	0.04118	0.00247	0.99988	. 499	5500
0.45704	0.00184	0.00194	0.00000	0.00007	0.00001	0.00000	0.00133	0.00005	0.50223	0.03390	0.00153	0.99992	. 500	5500.0
0.45448	0.00152	0.00126	0.00000	0.00003	0.00000	0.00000	0.00117	0.00003	0.51259	0.02781	0.00095	0.99995	. 500	5
0.45245	0.00126	0.00083	0.00000	0.00002	0.00000	0.00000	0.00103	0.00002	0.52096	0.02279	0.00059	0.99995	2.503	
0.45085	0.00106	0.00055	0.00000	0.00001	0.00000	0.00000	0.00092	0.00002	0.52750	0.01869	0.00037	0.99998	2.500	58
0.44959	0.00089	0.00037	0.00000	0.00001	0.00000	0.00000	0.00081	0.00031	0.53270	0.01537	0.00024	99998	. 500	
59	0.00076	0.00025	0.00000	0	0	0	0.00072	- 0.00001	0.53683	0.01267	0.00015		-	

CARBON-HYDROGEN SYSTEM,HUMOGENEOUS REGION
TOTAL PRESSURE $($ ATM $)=1.00$
CARBON TO HYDROGEN RATIO $=5.000$
$\begin{array}{llllllllll}Y H & Y H Z & Y C 2 H \quad Y C 2 H 2 ~ Y C 3 H ~ Y C 4 H ~ Y C 4 H 2 ~ Y C H ~ Y C H Z ~ Y C 1 ~ Y C 2 ~ Y C 3 ~ Y S U M ~\end{array}$ $\begin{array}{lllllllllllllllllllll}0.04453 & 0.08004 & 0.07982 & 0.08228 & 0.22893 & 0.45549 & 0.01724 & 0.00004 & 0.00211 & 0.00022 & 0.03040 & 0.00831 & 0.99739\end{array}$ $\begin{array}{llllllllllllllll}0.05895 & 0.07741 & 0.09485 & 0.06890 & 0.23250 & 0.43750 & 0.01296 & 0.00006 & 0.00237 & 0.00044 & 0.00976 & 0.01194 & 0.99863\end{array}$ $\begin{array}{llllllllllllllllll}0.07562 & 0.07291 & 0.11043 & 0.05698 & 0.23425 & 0.41944 & 0.00973 & 0.00010 & 0.00257 & 0.00085 & 0.00138 & 0.01683 & 1.00115\end{array}$ $\begin{array}{llllllllllllllll} & 0.09410 & 0.06681 & 0.12545 & 0.04623 & 0.23242 & 0.39740 & 0.00722 & 0.00016 & 0.00269 & 0.00159 & 0.00243 & 0.02337 & 0.99988\end{array}$ $\begin{array}{lllllllllllllllllll}0.13489 & 0.05255 & 0.15250 & 0.02921 & 0.22111 & 0.34822 & 0.00389 & 0.00035 & 0.00272 & 0.005 J 2 & 0.00582 & 0.04243 & 0.99976\end{array}$ $\begin{array}{lllllllllllllll}0.15638 & 0.04545 & 0.16318 & 0.02276 & 0.21110 & 0.31965 & 0.00281 & 0.00048 & 0.00263 & 0.00849 & 0.01091 & 0.05547 & 0.99934\end{array}$ $\begin{array}{lllllllllllllllll}0.17833 & 0.03894 & 0.17130 & 0.01756 & 0.19834 & 0.28844 & 0.00200 & 0.00065 & 0.00250 & 0.01388 & 0.01690 & 0.07067 & 0.99954\end{array}$ $\begin{array}{llllllllllllllllllllll}0.20062 & 0.03319 & 0.17616 & 0.01339 & 0.18264 & 0.25428 & 0.00140 & 0.00085 & 0.00234 & 0.022 J 1 & 0.02528 & 0.08741 & 0.99958\end{array}$ $\begin{array}{lllllllllllllllllllll}0.22316 & 0.02821 & 0.17715 & 0.01010 & 0.16416 & 0.21766 & 0.00096 & 0.00109 & 0.00216 & 0.03381 & 0.03647 & 0.10443 & 0.99937\end{array}$ $\begin{array}{lllllllllllllllllll}0.24575 & 0.02394 & 0.17391 & 0.00750 & 0.14351 & 0.17997 & 0.00064 & 0.00136 & 0.00197 & 0.05036 & 0.05067 & 0.12015 & 0.99973\end{array}$ $\begin{array}{llllllllllllllll}0.26782 & 0.02025 & 0.16593 & 0.00546 & 0.12123 & 0.14253 & 0.00041 & 0.00165 & 0.00176 & 0.07271 & 0.05767 & 0.13249 & 0.99989\end{array}$ $\begin{array}{llllllllllllllllllll}0.28854 & 0.01700 & 0.15321 & 0.00387 & 0.09833 & 0.10725 & 0.00025 & 0.00193 & 0.00153 & 0.10176 & 0.08668 & 0.13951 & 0.99988\end{array}$ $\begin{array}{llllllllllllllllll}0.30683 & 0.01412 & 0.13629 & 0.00265 & 0.07612 & 0.07611 & 0.00014 & 0.00219 & 0.00130 & 0.13804 & 0.10537 & 0.13978 & 0.99995\end{array}$ $\begin{array}{lllllllllllllllllll}0.32157 & 0.01155 & 0.11625 & 0.00174 & 0.05587 & 0.05051 & 0.00008 & 0.00241 & 0.00107 & 0.18142 & 0.12479 & 0.13274 & 0.99998\end{array}$ $\begin{array}{lllllllllllllllll}0.33183 & 0.00928 & 0.09472 & 0.00109 & 0.03867 & 0.03115 & 0.00004 & 0.00254 & 0.00084 & 0.23099 & 0.13973 & 0.11908 & 0.99997\end{array}$ $\begin{array}{lllllllllllllllllllll}0.33725 & 0.00732 & 0.07362 & 0.00065 & 0.02518 & 0.01778 & 0.00002 & 0.00259 & 0.00064 & 0.28497 & 0.14925 & 0.10073 & 0.99998\end{array}$ $\begin{array}{llllllllllllllllllll}0.33817 & 0.00568 & 0.05461 & 0.00037 & 0.01543 & 0.00939 & 0.00001 & 0.00254 & 0.00047 & 0.34078 & 0.152 J 2 & 0.08025 & 0.99972\end{array}$ $\begin{array}{lllllllllllllllllllll}0.33545 & 0.00437 & 0.03888 & 0.00020 & 0.00895 & 0.00463 & 0.00000 & 0.00242 & 0.00034 & 0.39597 & 0.14824 & 0.06052 & 0.99998\end{array}$ $\begin{array}{lllllllllllllllllll}0.33047 & 0.00334 & 0.02672 & 0.00011 & 0.00495 & 0.00214 & 0.00000 & 0.00224 & 0.00023 & 0.44776 & 0.13870 & 0.04333 & 0.99999\end{array}$ $\begin{array}{lllllllllllllllllllll}0.32444 & 0.00256 & 0.01786 & 0.00005 & 0.00264 & 0.00094 & 0.00000 & 0.00204 & 0.00016 & 0.49433 & 0.12524 & 0.02968 & 0.99994\end{array}$ $\begin{array}{lllllllllllllllllllll}0.31827 & 0.00198 & 0.01172 & 0.00003 & 0.00137 & 0.00040 & 0.00000 & 0.00182 & 0.00511 & 0.53479 & 0.10786 & 0.01964 & 0.99999\end{array}$ $\begin{array}{llllllllllllllllllll}0.31265 & 0.00155 & 0.00760 & 0.00001 & 0.00070 & 0.00017 & 0.00000 & 0.00162 & 0.00008 & 0.56865 & 0.09411 & 0.01264 & 0.99978\end{array}$ $\begin{array}{lllllllllllllllllllll}0.30767 & 0.00122 & 0.00491 & 0.00001 & 0.00035 & 0.00007 & 0.00000 & 0.00143 & 0.00005 & 0.59679 & 0.07935 & 0.00801 & 0.99987\end{array}$ $\begin{array}{llllllllllllllll}0.30351 & 0.00098 & 0.00317 & 0.00000 & 0.00018 & 0.00003 & 0.00000 & 0.00126 & 0.00004 & 0.61957 & 0.06512 & 0.00502 & 0.99987\end{array}$ $\begin{array}{llllllllllllllllllll}0.30008 & 0.00079 & 0.00205 & 0.00000 & 0.00009 & 0.00001 & 0.00000 & 0.00111 & 0.00003 & 0.63792 & 0.05469 & 0.00313 & 0.99992\end{array}$ $\begin{array}{llllllllllllllllllll}0.29731 & 0.00065 & 0.00134 & 0.00000 & 0.00005 & 0.00000 & 0.00000 & 0.00098 & 0.00002 & 0.65258 & 0.04505 & 0.00195 & 0.99994\end{array}$ $\begin{array}{llllllllllllllllllll}0.29508 & 0.00054 & 0.00088 & 0.00000 & 0.00002 & 0.00000 & 0.00000 & 0.00086 & 0.00001 & 0.66428 & 0.03705 & 0.00123 & 0.99996\end{array}$ $\begin{array}{llllllllllllllllllll}0.29330 & 0.00045 & 0.00058 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00076 & 0.00001 & 0.67360 & 0.03048 & 0.00077 & 0.99997\end{array}$ $\begin{array}{lllllllllllllllllllll}0.29187 & 0.00038 & 0.00039 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00067 & 0.00001 & 0.68104 & 0.02512 & 0.00047 & 0.99998\end{array}$ $\begin{array}{llllllllllllllllllll}0.29073 & 0.00032 & 0.00026 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00060 & 0.00001 & 0.68699 & 0.02076 & 0.00032 & 0.99999\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0.28982 & 0.00027 & 0.00018 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00053 & 0.00000 & 0.69176 & 0.01721 & 0.0025 & 0.99997\end{array}$

TABLE B-2 (CONT'D)

CARBON-HYDROGEN SYSTEM,HOMOGENEOUS REGION

TOTAL PRESSURE $(A T M)=1.00$
CARBON TO HYDROGEN RATIO $=\mathbf{7 . 5 0 0}$

| $Y H$ | $Y H 2$ | $Y C 2 H$ | $Y C 2 H 2$ | $Y C 3 H$ | $Y C 4 H$ | $Y C 4 H 2$ | $Y C H$ | $Y C H 2$ | $Y C 1$ | $Y C 2$ | $Y C 3$ | $Y S U M$ |
| :---: | :---: | ---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00712 | 0.00205 | 0.03956 | 0.00652 | 0.19975 | 0.69958 | 0.00424 | 0.00001 | 0.00010 | 0.00038 | 0.03124 | 0.04532 | 1.00587 | $\begin{array}{llllllllllllllllllll}0.00712 & 0.00205 & 0.03956 & 0.00652 & 0.19975 & 0.69958 & 0.00424 & 0.00001 & 0.00010 & 0.00038 & 0.03124 & 0.04532 & 1.00587\end{array}$ $\begin{array}{llllllllllllll}0.01054 & 0.00248 & 0.04934 & 0.00641 & 0.20624 & 0.66182 & 0.00351 & 0.00002 & 0.00013 & 0.00075 & 0.00220 & 0.05922 & 1.00265\end{array}$ $\begin{array}{llllllllllllll}0.01524 & 0.00296 & 0.06057 & 0.00630 & 0.21196 & 0.62608 & 0.00293 & 0.00003 & 0.00017 & 0.00141 & 0.00375 & 0.07578 & 1.00720\end{array}$ $\begin{array}{llllllllllllll}0.02162 & 0.00353 & 0.07272 & 0.00616 & 0.21397 & 0.58106 & 0.00243 & 0.00006 & 0.00023 & 0.00253 & 0.00612 & 0.09363 & 1.00405\end{array}$ $\begin{array}{lllllllllllll}0.02995 & 0.00413 & 0.08569 & 0.00596 & 0.21382 & 0.53550 & 0.00200 & 0.00010 & 0.00029 & 0.00440 & 0.03965 & 0.11343 & 1.00497 \\ 0.04067 & 0.00478 & 0.09865 & 0.00570 & 0.20951 & 0.48334 & 0.00163 & 0.00015 & 0.00036 & 0.00736 & 0.01464 & 0.13353 & 1.00031\end{array}$ $\begin{array}{lllllllllllll}0.04067 & 0.00478 & 0.09865 & 0.00570 & 0.20951 & 0.48334 & 0.00163 & 0.00015 & 0.00036 & 0.00736 & 0.01464 & 0.13353 & 1.00031 \\ 0.05383 & 0.00539 & 0.11136 & 0.00535 & 0.20286 & 0.43249 & 0.00131 & 0.00023 & 0.00044 & 0.011955 & 0.02164 & 0.1549 J & 1.00174\end{array}$ $\begin{array}{lllllllllllll}0.05383 & 0.00539 & 0.11136 & 0.00535 & 0.20286 & 0.43249 & 0.00131 & 0.00023 & 0.00044 & 0.01195 & 0.02164 & 0.1549 J & 1.00174 \\ 0.06977 & 0.00596 & 0.12268 & 0.00492 & 0.19218 & 0.37813 & 0.00103 & 0.00034 & 0.00052 & 0.01878 & 0.03094 & 0.17508 & 1.00032\end{array}$ $\begin{array}{lllllllllllllllllll}0.06977 & 0.00596 & 0.12268 & 0.00492 & 0.19218 & 0.37813 & 0.00103 & 0.00034 & 0.00052 & 0.01878 & 0.03094 & 3.17503 & 1.00032\end{array}$ $\begin{array}{llllllllllllllllll}0.08837 & 0.00644 & 0.13189 & 0.00442 & 0.17827 & 0.32359 & 0.00079 & 0.00049 & 0.00059 & 0.02889 & 0.04297 & 0.19371 & 1.00021\end{array}$ $\begin{array}{llllllllllllll}0.10943 & 0.00678 & 0.13799 & 0.00386 & 0.16116 & 0.26930 & 0.00058 & 0.00068 & 0.00066 & 0.04251 & 0.05793 & 0.20905 & 1.00003\end{array}$ $\begin{array}{lllllllllllll}0.13242 & 0.00695 & 0.14013 & 0.00326 & 0.141441 & 0.21685 & 0.00042 & 0.00090 & 0.00070 & 0.06158 & 0.07578 & 0.21971 & 1.00007\end{array}$ $\begin{array}{lllllllllllll}0.15649 & 0.00691 & 0.13761 & 0.00265 & 0.11978 & 0.16778 & 0.00028 & 0.00115 & 0.00071 & 0.08663 & 0.09604 & 0.22405 & 1.00008 \\ 0.18045 & 0.00665 & 0.13016 & 0.00205 & 0.09737 & 0.12378 & 0.00018 & 0.00141 & 0.00370 & 0.11861 & 0.11777 & 0.22093 & 1.00002\end{array}$ $\begin{array}{llllllllllllll}0.18045 & 0.00665 & 0.13016 & 0.00205 & 0.09737 & 0.12378 & 0.00018 & 0.00141 & 0.00070 & 0.11861 & 0.11776 & 0.22293 & 1.00002 \\ 0.20281 & 0.00617 & 0.11807 & 0.00152 & 0.07549 & 0.08641 & 0.00011 & 0.00166 & 0.00065 & 0.15803 & 0.13941 & 0.20973 & 1.00005\end{array}$ $\begin{array}{llllllllllllll}0.22197 & 0.00550 & 0.10229 & 0.00106 & 0.05559 & 0.05665 & 0.00006 & 0.00188 & 0.00057 & 0.20483 & 0.15907 & 0.19105 & 1.00043\end{array}$ $\begin{array}{llllllllllllll}0.23678 & 0.00472 & 0.08430 & 0.00069 & 0.03844 & 0.03457 & 0.00003 & 0.00203 & 0.00048 & 0.25797 & 0.17428 & 0.16583 & 1.00018 \\ 0.24642 & 0.00391 & 0.06605 & 0.00042 & 0.02504 & 0.01959 & 0.00001 & 0.00209 & 0.00038 & 0.31577 & 0.18325 & 0.13794 & 0.99997\end{array}$ $\begin{array}{lllllllllllll}0.24642 & 0.00391 & 0.06605 & 0.00042 & 0.02504 & 0.01959 & 0.00001 & 0.00209 & 0.00038 & 0.31577 & 0.18325 & 0.13724 & 0.99997 \\ 0.25097 & 0.00313 & 0.04928 & 0.00025 & 0.01535 & 0.01031 & 0.00001 & 0.00208 & 0.00029 & 0.37576 & 0.18483 & 0.10753 & 0.999833\end{array}$ $\begin{array}{llllllllllllllll}0.25097 & 0.00313 & 0.04928 & 0.00025 & 0.01535 & 0.01031 & 0.00001 & 0.00208 & 0.00029 & 0.37576 & 0.18483 & 0.10753 & 0.99983 \\ 0.25118 & 0.00245 & 0.03519 & 0.00014 & 0.00891 & 0.00506 & 0.00000 & 0.00199 & 0.00021 & 0.43531 & 0.17916 & 0.08041 & 0.99999\end{array}$ $\begin{array}{lllllllllllllllll}0.25118 & 0.00245 & 0.03519 & 0.00014 & 0.00891 & 0.00506 & 0.00000 & 0.00199 & 0.00021 & 0.43531 & 0.17916 & 0.08041 & 0.99997 \\ 0.24859 & 0.00189 & 0.02420 & 0.00007 & 0.00492 & 0.00234 & 0.00000 & 0.00185 & 0.00015 & 0.49139 & 0.16705 & 0.05727 & 0.99972\end{array}$ $\begin{array}{lllllllllllllllll}0.24859 & 0.00189 & 0.02420 & 0.00007 & 0.00492 & 0.00234 & 0.00000 & 0.00185 & 0.00015 & 0.49139 & 0.16705 & 0.05727 & 0.79972 \\ 0.24419 & 0.00145 & 0.01619 & 0.00004 & 0.00262 & 0.00103 & 0.00000 & 0.00168 & 0.00010 & 0.54254 & 0.15286 & 0.03924 & 0.799955\end{array}$ $\begin{array}{lllllllllllllllll}0.24419 & 0.00145 & 0.01619 & 0.00004 & 0.00262 & 0.00103 & 0.00000 & 0.00168 & 0.00010 & 0.54254 & 0.15386 & 0.03924 & 0.79995 \\ 0.23940 & 0.00112 & 0.01062 & 0.00002 & 0.00136 & 0.00044 & 0.00000 & 0.00151 & 0.00007 & 0.58693 & 0.13232 & 0.02595 & 0.99975\end{array}$ $\begin{array}{lllllllllllllllllllll}0.23940 & 0.00112 & 0.01062 & 0.00002 & 0.00136 & 0.00044 & 0.00000 & 0.00151 & 0.00007 & 0.58693 & 0.13232 & 0.02595 & 0.99975\end{array}$ $\begin{array}{llllllllllllllllllll}0.23462 & 0.00087 & 0.00689 & 0.00001 & 0.00069 & 0.00018 & 0.00000 & 0.00133 & 0.00005 & 0.62481 & 0.11362 & 0.01677 & 0.99985\end{array}$

 0.217540 .000250 .000530 .000000 .000010 .000000 .000000 .000620 .000010 .74290 .03758
 $\begin{array}{llllllllllllllllllll}0.21535 & 0.00015 & 0.00016 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00044 & 0.00000 & 0.76364 & 0.02597 & 0.00327 & 0.99999\end{array}$

CARBON-HYDROGEN SYSTEM, HOMOGENEOUS REGION
TOTAL PRESSURE $($ ATM $)=1.00$

Abstract

CARBON TO HYDROGEN ZATIO $=15.000$ $$
\begin{array}{llll} \mathrm{YH} & \mathrm{YH} 2 & \mathrm{YC} 2 \mathrm{H} & \mathrm{YC} 2 \mathrm{H} 2 \end{array}
$$ $\begin{array}{llllllllllllllllllllll}0.00146 & 0.00002 & 0.01473 & 0.00008 & 0.07514 & 0.35370 & 0.00010 & 0.00001 & 0.00000 & 0.00439 & 0.01838 & 0.48775 & 0.75575\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.00233 & 0.00002 & 0.01886 & 0.00010 & 0.07918 & 0.33359 & 0.00010 & 0.00001 & 0.00000 & 0.007450 .02730 & 0.54 J 211.00912\end{array}$ $\begin{array}{llllllllllllllllllll}0.00417 & 0.00005 & 0.02538 & 0.00015 & 0.08540 & 0.31213 & 0.00011 & 0.00002 & 0.00001 & 0.01166 & 0.03675 & 0.53595 & 1.30679\end{array}$ $\begin{array}{llllllllllllllll}0.00706 & 0.00009 & 0.03291 & 0.00021 & 0.08997 & 0.28788 & 0.00011 & 0.00005 & 0.00001 & 0.01793 & 0.04874 & 0.52365 & 1.00863\end{array}$ $\begin{array}{lllllllllllllllllllll}0.03959 & 0.00062 & 0.06689 & 0.00046 & 0.08529 & 0.16525 & 0.00009 & 0.00034 & 0.00008 & 0.07781 & 0.12597 & 0.44315 & 1.00054\end{array}$ $\begin{array}{llllllllllllllllllllll}0.05435 & 0.00083 & 0.07185 & 0.00048 & 0.07669 & 0.13170 & 0.00008 & 0.00049 & 0.00011 & 0.10622 & 0.14439 & 0.4130 j 1.00018\end{array}$ $\begin{array}{lllllllllllllllllll}0.07110 & 0.00103 & 0.07337 & 0.00046 & 0.06565 & 0.09982 & 0.00006 & 0.00066 & 0.00013 & 0.14185 & 0.16846 & 0.37798 & 1.00058\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.08893 & 0.00119 & 0.07101 & 0.00040 & 0.05317 & 0.07127 & 0.00004 & 0.00085 & 0.00015 & 0.18507 & 0.19120 & 0.33587 & 1.00015\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.12076 & 0.00123 & 0.05559 & 0.00023 & 0.02882 & 0.02948 & 0.00001 & 0.00117 & 0.00014 & 0.29334 & 0.22535 & 0.24383 & 1.00002\end{array}$ $\begin{array}{llllllllllllllllll}0.13178 & 0.00112 & 0.04486 & 0.00015 & 0.01916 & 0.01690 & 0.00001 & 0.00126 & 0.00012 & 0.35585 & 0.23273 & 0.19614 & 1.00008\end{array}$ $0.141660 .000780 .024690 .000050 .006970 .004420 .000000 .001250 .000070 .485550 .22290 \quad 0.111530 .99992$ $\begin{array}{lllllllllllllllllllllll}0.14171 & 0.00061 & 0.01710 & 0.00003 & 0.00387 & 0.00205 & 0.00000 & 0.00117 & 0.00005 & 0.54711 & 0.20709 & 0.07904 & 0.79985\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.13981 & 0.00048 & 0.01147 & 0.00002 & 0.00207 & 0.00090 & 0.00000 & 0.00107 & 0.00004 & 0.63347 & 0.18565 & 0.05405 & 0.99997\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.13721 & 0.00037 & 0.00753 & 0.00001 & 0.00107 & 0.00038 & 0.00000 & 0.00096 & 0.00003 & 0.65283 & 0.16370 & 0.03572 & 0.79980\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.13424 & 0.00029 & 0.00488 & 0.00000 & 0.00055 & 0.00016 & 0.00000 & 0.00085 & 0.00002 & 0.69515 & 0.14354 & 0.02315 & 0.99987\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.13149 & 0.00022 & 0.00314 & 0.00000 & 0.00028 & 0.00007 & 0.00000 & 0.00075 & 0.00001 & 0.73035 & 0.11884 & 0.01463 & 0.99983\end{array}$ $\begin{array}{llllllllllllllllllllll}0.12901 & 0.00018 & 0.02202 & 0.00000 & 0.00014 & 0.00003 & 0.00000 & 0.00066 & 0.00001 & 0.75930 & 0.09930 & 0.00924 & 0.99989\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.12693 & 0.00014 & 0.00131 & 0.00000 & 0.00007 & 0.00001 & 0.00000 & 0.00057 & 0.00001 & 0.78274 & 0.08234 & 0.00579 & 0.99991\end{array}$ $\begin{array}{llllllllllllllllllll}0.12520 & 0.00012 & 0.00085 & 0.00000 & 0.00004 & 0.00000 & 0.00000 & 0.00050 & 0.00000 & 0.80152 & 0.06798 & 0.00363 & 0.79994\end{array}$ $\begin{array}{llllllllllllllllllll}0.12379 & 0.00009 & 0.00056 & 0.00000 & 0.00002 & 0.00000 & 0.00000 & 0.00044 & 0.00000 & 0.81675 & 0.05601 & 0.00228 & 0.99995\end{array}$ $\begin{array}{llllllllllllllll}0.12265 & 0.00008 & 0.00037 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00039 & 0.00000 & 0.82886 & 0.04616 & 0.00144 & 0.99997\end{array}$ $\begin{array}{lllllllllllllllllll}0.12174 & 0.00007 & 0.00025 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00035 & 0.00000 & 0.83857 & 0.03809 & 0.00092 & 0.99998\end{array}$ $\begin{array}{lllllllllllllllllll}0.12100 & 0.00006 & 0.00017 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00031 & 0.00050 & 0.84636 & 0.03151 & 0.00559 & 0.99998\end{array}$ $\begin{array}{lllllllllllllllll}0.12040 & 0.00005 & 0.00011 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00027 & 0.00000 & 0.85262 & 0.02614 & 0.00033 & 0.99999\end{array}$

TABLE B-2 (CONT'D)

CARBON-HYDROGEN SYSTEM,HOMOGENEOUS REGION

TOTAL PRESSURE $(A T M)=0.10$

CARBON TO HYDROGEN RATIO $=5.000$

$\begin{array}{lllllllllllllll}Y H & Y H 2 & Y C 2 H & Y C 2 H 2 & Y C 3 H & Y C 4 H & Y C 4 H 2 & Y C H & Y C H 2 & Y C 1 & Y C 2 & Y C 3 & Y S U M\end{array}$
 $\begin{array}{lllllllllllll}0.15112 & 0.05087 & 0.13261 & 0.02469 & 0.24003 & 0.33354 & 0.00253 & 0.00012 & 0.00115 & 0.00323 & 0.00412 & 0.04803 & 0.99210 \\ 0.18028 & 0.04144 & 0.14357 & 0.01766 & 0.22489 & 0.29737 & 0.00165 & 0.00018 & 0.00108 & 0.00629 & 0.00752 & 0.06798 & 0.78992\end{array}$ $\begin{array}{lllllllllllllll} \\ 0.21028 & 0.03336 & 0.15115 & 0.01245 & 0.20562 & 0.25815 & 0.00105 & 0.00026 & 0.00099 & 0.01171 & 0.01308 & 0.09252 & 0.79062\end{array}$ $\begin{array}{lllllllllllllllllllll}0.24136 & 0.02682 & 0.15506 & 0.00869 & 0.18336 & 0.21762 & 0.00066 & 0.00037 & 0.00089 & 0.02085 & 0.02167 & 0.12577 & 0.99812\end{array}$ $\begin{array}{lllllllllllllllllllll}0.27176 & 0.02133 & 0.15176 & 0.00586 & 0.15464 & 0.17117 & 0.00039 & 0.00049 & 0.00078 & 0.03531 & 0.03371 & 0.14743 & 0.99467\end{array}$ $\begin{array}{lllllllllllllll}0.30158 & 0.01690 & 0.14349 & 0.00386 & 0.12535 & 0.12817 & 0.00022 & 0.00063 & 0.00066 & 0.05730 & 0.04977 & 0.17085 & 0.79877\end{array}$ $\begin{array}{lllllllllllllllllll}0.32794 & 0.01317 & 0.12837 & 0.00242 & 0.09488 & 0.08808 & 0.00011 & 0.00076 & 0.00054 & 0.08861 & 0.06887 & 0.18389 & 0.99765\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.34882 & 0.01003 & 0.10876 & 0.00144 & 0.06720 & 0.05575 & 0.00005 & 0.00089 & 0.00042 & 0.13113 & 0.08978 & 0.18497 & 0.99923\end{array}$ $\begin{array}{lllllllllllllllllllll}0.36181 & 0.00742 & 0.08610 & 0.00080 & 0.04369 & 0.03171 & 0.00002 & 0.00097 & 0.00031 & 0.18511 & 0.10933 & 0.17141 & 0.99868\end{array}$ $\begin{array}{lllllllllllllllllll}0.36587 & 0.00531 & 0.06365 & 0.00041 & 0.02604 & 0.01619 & 0.00001 & 0.00100 & 0.00022 & 0.24969 & 0.12458 & 0.14645 & 0.99942\end{array}$ $\begin{array}{lllllllllllllllllll}0.36176 & 0.00369 & 0.04371 & 0.00019 & 0.01410 & 0.00732 & 0.00000 & 0.00098 & 0.00014 & 0.32112 & 0.13197 & 0.11413 & 0.99914\end{array}$ $\begin{array}{lllllllllllllllllllll}0.35175 & 0.00253 & 0.02808 & 0.00009 & 0.00699 & 0.00296 & 0.00000 & 0.00091 & 0.00009 & 0.39457 & 0.13031 & 0.08132 & 0.99959\end{array}$ $\begin{array}{llllllllllllllllllll}0.33918 & 0.00173 & 0.01699 & 0.00004 & 0.00319 & 0.00107 & 0.00000 & 0.00081 & 0.00005 & 0.46357 & 0.11996 & 0.05294 & 0.99954\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}0.32680 & 0.00119 & 0.00984 & 0.00001 & 0.00136 & 0.00036 & 0.00000 & 0.00071 & 0.00003 & 0.52355 & 0.10392 & 0.03195 & 0.99967\end{array}$
 $\begin{array}{lllllllllllllllllllll}0.30813 & 0.00061 & 0.00307 & 0.00000 & 0.00022 & 0.00003 & 0.00000 & 0.00051 & 0.00001 & 0.60917 & 0.06820 & 0.00984 & 0.99981\end{array}$ $\begin{array}{llllllllllllllllllllll}0.30208 & 0.00045 & 0.00170 & 0.00000 & 0.00009 & 0.00001 & 0.00000 & 0.00042 & 0.00001 & 0.63680 & 0.05308 & 0.00524 & 0.99990\end{array}$ $\begin{array}{llllllllllllllllllll}0.29772 & 0.00034 & 0.00095 & 0.00000 & 0.00004 & 0.00000 & 0.00000 & 0.00036 & 0.00000 & 0.65694 & 0.04080 & 0.00275 & 0.99993\end{array}$ $\begin{array}{lllllllllllllllllllll}0.29458 & 0.00027 & 0.00054 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00030 & 0.00000 & 0.67159 & 0.03120 & 0.00145 & 0.99996\end{array}$ $\begin{array}{llllllllllllllllllll}0.29231 & 0.00021 & 0.00031 & 0.00000 & 0.00001 & 0.00000 & 0.00000 & 0.00025 & 0.00000 & 0.68225 & 0.02386 & 0.00578 & 0.99997\end{array}$ $\begin{array}{lllllllllllllllll}0.29067 & 0.00017 & 0.00018 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00021 & 0.00050 & 0.69004 & 0.01829 & 0.00042 & 0.99998\end{array}$ $\begin{array}{llllllllllllllllll}0.28947 & 0.00013 & 0.00011 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00018 & 0.00000 & 0.69578 & 0.01409 & 0.00023 & 0.99999\end{array}$ $\begin{array}{llllllllllllllllll}0.28858 & 0.00011 & 0.00006 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00016 & 0.00000 & 0.70003 & 0.01092 & 0.00013 & 0.99999\end{array}$ $\begin{array}{lllllllllllllllllll}0.28882 & 0.00009 & 0.00004 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00014 & 0.00000 & 0.70024 & 0.00845 & 0.00007 & 0.99784\end{array}$ $\begin{array}{lllllllllllllll}0.28743 & 0.00007 & 0.00002 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00012 & 0.00000 & 0.70561 & 0.00669 & 0.00004 & 0.99999\end{array}$ $\begin{array}{lllllllllllllllllllll}0.28756 & 0.00006 & 0.00002 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00010 & 0.00000 & 0.70576 & 0.00527 & 0.00002 & 0.99885\end{array}$ $\begin{array}{llllllllllllllllll}0.28766 & 0.00005 & 0.00001 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00009 & 0.00000 & 0.70589 & 0.00418 & 0.00001 & 0.99789\end{array}$ $\begin{array}{llllllllllllllllllll}0.28655 & 0.00004 & 0.00001 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00008 & 0.00000 & 0.70991 & 0.00339 & 0.00001 & 0.99999\end{array}$ $\begin{array}{lllllllllllllllll}0.28662 & 0.00004 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00007 & 0.00000 & 0.70997 & 0.03273 & 0.00001 & 0.99943 \\ 0.28667 & 0.00003 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00006 & 0.00000 & 0.71001 & 0.00222 & 0.00003 & 0.99903\end{array}$ $\begin{array}{llllllllllllllll}0.28667 & 0.00003 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00006 & 0.00000 & 0.71001 & 0.00222 & 0.00005 & 0.99903\end{array}$ $\begin{array}{llllllllllllllllllll}0.28672 & 0.00003 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00005 & 0.00000 & 0.71004 & 0.001810 .00005 & 0.99866\end{array}$

CARBON-HYDROGEN SYSTEM, HOMOGENEOUS REGION
TOTAL PRESSURE $(A T M)=10.00$
CARBON TO HYDROGEN RATIO $=5.000$
$\begin{array}{llllllllllllllllll}Y H & Y H 2 & Y C 2 H & Y C 2 H 2 & Y C 3 H & Y C 4 H & Y C 4 H 2 & Y C H & Y C H 2 & Y C 1 & Y C Z & Y C 3\end{array}$ $\begin{array}{llllllllllllllllllllll}0.01282 & 0.06631 & 0.04499 & 0.13350 & 0.18059 & 0.50283 & 0.05478 & 0.00002 & 0.00245 & 0.00003 & 0.00008 & 0.00228 & 1.00065\end{array}$ $\begin{array}{llllllllllllllllll}0.01781 & 0.07064 & 0.05548 & 0.12175 & 0.18923 & 0.49547 & 0.04433 & 0.00003 & 0.00300 & 0.00006 & 0.00015 & 0.00322 & 1.00115\end{array}$ $\begin{array}{llllllllllllllllllll}0.02401 & 0.07351 & 0.06695 & 0.10969 & 0.19624 & 0.48552 & 0.03578 & 0.00005 & 0.00358 & 0.00012 & 0.00026 & 0.00445 & 1.00015\end{array}$ $\begin{array}{lllllllllllllllllll}0.03151 & 0.07490 & 0.07934 & 0.09790 & 0.20201 & 0.47470 & 0.02889 & 0.00007 & 0.00415 & 0.00022 & 0.00046 & 0.00507 & 1.00023\end{array}$ $\begin{array}{lllllllllllll}0.04032 & 0.07483 & 0.09236 & 0.08651 & 0.20625 & 0.46223 & 0.02328 & 0.00012 & 0.00469 & 0.00039 & 0.00377 & 0.00813 & 0.99989 \\ 0.05042 & 0.07340 & 0.10579 & 0.07573 & 0.20897 & 0.44838 & 0.01873 & 0.00018 & 0.00517 & 0.00068 & 0.00127 & 0.01274 & 0.79945\end{array}$ $\begin{array}{llllllllllllllllll}0.06172 & 0.07081 & 0.11943 & 0.06576 & 0.21039 & 0.43379 & 0.01505 & 0.00026 & 0.00558 & 0.00116 & 0.05202 & 0.01401 & 0.79998\end{array}$ $\begin{array}{llllllllllllllllllllllll} \\ 0.07410 & 0.06724 & 0.13286 & 0.05658 & 0.21018 & 0.41761 & 0.01206 & 0.00037 & 0.00590 & 0.00190 & 0.00315 & 0.01803 & 0.99997\end{array}$ $\begin{array}{llllllllllllllllllllllll} & 0.08736 & 0.06294 & 0.14582 & 0.04829 & 0.20844 & 0.40011 & 0.00962 & 0.00051 & 0.00513 & 0.00303 & 0.00481 & 0.02291 & 0.99997\end{array}$

 $\begin{array}{llllllllllllllll} & 0.14602 & 0.04355 & 0.18656 & 0.02383 & 0.18573 & 0.31424 & 0.00372 & 0.00152 & 0.00659 & 0.01579 & 0.02086 & 0.05207 & 0.99997\end{array}$ $\begin{array}{lllllllllllll} \\ 0.16152 & 0.03913 & 0.19239 & 0.01967 & 0.17597 & 0.28811 & 0.00288 & 0.00189 & 0.00590 & 0.02260 & 0.02852 & 0.06138 & 0.99997\end{array}$ $\begin{array}{lllllllllllllllllllll} & 0.17725 & 0.03509 & 0.19584 & 0.01613 & 0.16456 & 0.26010 & 0.00220 & 0.00232 & 0.00557 & 0.03172 & 0.03814 & 0.07093 & 0.99995\end{array}$ $\begin{array}{lllllllllllllll} \\ 0.19318 & 0.03145 & 0.19661 & 0.01314 & 0.15158 & 0.23052 & 0.00166 & 0.00279 & 0.00540 & 0.04352 & 0.04982 & 0.08518 & 0.79997\end{array}$ $\left.\begin{array}{llllllllllllll} & 0.025\end{array}\right)$ $\begin{array}{llllllllllll}0.22529 & 0.02523 & 0.18904 & 0.00848 & 0.12173 & 0.16895 & 0.00090 & 0.00386 & 0.00477 & 0.07768 & 0.07899 & 0.09504 \\ 0.0 .99995\end{array}$ $\begin{array}{llllllllllllll}0.24108 & 0.02255 & 0.18041 & 0.00669 & 0.10552 & 0.13869 & 0.00064 & 0.00442 & 0.00441 & 0.10061 & 0.09570 & 0.09927 & 1.00000 \\ 0.25627 & 0.02009 & 0.15859 & 0.00519 & 0.08910 & 0.11010 & 0.00044 & 0.00496 & 0.00432 & 0.12773 & 0.11287 & 0.10558 & 0.99994\end{array}$ $\begin{array}{llllllllllll}0.27045 & 0.01781 & 0.15397 & 0.00394 & 0.07306 & 0.08423 & 0.00029 & 0.005466 & 0.00361 & 0.15896 & 0.12951 & 0.09869 \\ 0.0 .99997\end{array}$ $\begin{array}{llllllllllllll}0.28317 & 0.01569 & 0.13713 & 0.00292 & 0.05801 & 0.06186 & 0.00018 & 0.00589 & 0.00318 & 0.19392 & 0.14444 & 0.09361 & 0.79997 \\ 0.29402 & 0.01370 & 0.11891 & 0.00211 & 0.04450 & 0.04350 & 0.00011 & 0.00621 & 0.00275 & 0.23191 & 0.15653 & 0.08575 & 0.99997\end{array}$ $\begin{array}{llllllllllllll}0.29402 & 0.01370 & 0.11891 & 0.00211 & 0.04450 & 0.04350 & 0.00011 & 0.00621 & 0.00275 & 0.23191 & 0.15653 & 0.08575 & 0.99997 \\ 0.30268 & 0.01185 & 0.10032 & 0.00148 & 0.03296 & 0.02925 & 0.00006 & 0.00641 & 0.00232 & 0.27230 & 0.16483 & 0.075833 & 0.999997\end{array}$ $\begin{array}{llllllllllllllllll} \\ 0.30901 & 0.01016 & 0.08239 & 0.00102 & 0.02356 & 0.01881 & 0.00004 & 0.00647 & 0.00192 & 0.31305 & 0.16880 & 0.06477 & 0.999999\end{array}$ $\begin{array}{lllllllllllll}0.31306 & 0.00864 & 0.06596 & 0.00068 & 0.01630 & 0.01160 & 0.00002 & 0.00641 & 0.00156 & 0.35391 & 0.16833 & 0.05353 & 0.79999\end{array}$ $\begin{array}{llllllllllllll} \\ 0.31547 & 0.00614 & 0.03961 & 0.00028 & 0.00716 & 0.003996 & 0.00000 & 0.00523 & 0.00125 & 0.39350 & 0.16381 & 0.04292 & 1.20000\end{array}$ $\begin{array}{lllllllllllllllllllll}0.31462 & 0.00515 & 0.02993 & 0.00018 & 0.00460 & 0.00222 & 0.00000 & 0.00564 & 0.00076 & 0.46565 & 0.14568 & 0.02555 & 1.00005\end{array}$ $\begin{array}{llllllllllllllllllllll}0.31293 & 0.00433 & 0.02235 & 0.00011 & 0.00290 & 0.00122 & 0.00000 & 0.00528 & 0.00059 & 0.49723 & 0.13391 & 0.01914 & 1.2030 J\end{array}$ $\begin{array}{lllllllllllllllllll}0.31075 & 0.00365 & 0.01655 & 0.00007 & 0.00181 & 0.00066 & 0.00000 & 0.00490 & 0.00046 & 0.52555 & 0.12148 & 0.01412 & 1.00005\end{array}$ $\begin{array}{llllllllllllllllllll}0.30835 & 0.00308 & 0.01219 & 0.00004 & 0.00113 & 0.00035 & 0.00000 & 0.00453 & 0.00035 & 0.55053 & 0.10904 & 0.0103 J 1.00003\end{array}$

C/H2	TEMP
5.001	3300.0
5.001	3100.0
5.000	3200.0
5.303	3300.0
5.000	3400.0
4.999	3500.0
5.000	3500.0
5.30)	3700.0
5.005	3300.0
5.000	3930.0
5.030	4000.0
5.003	4100.0
5.000	4230.0
5.000	4330.0
5.000	4400.0
5.035	4530.0
5.030	4630.0
5.000	4730.0
5.000	4300.0
5.0כコ	4900.0
5.303	5300.0
5.000	5100.0
5.030	5200.0
5.030	5300.0
5.003	5430.0
5.000	5530.0
5.003	5630.0
5. 3 J	5730.0
5.035	5330.0
5.003	5730.0
5.035	5000.0

Table B-3

Maximum Calculated Vol. \% $\mathrm{C}_{2} \mathrm{H}_{2}$ in Quenched Gas at One Atm. Pressure

$\underline{T}{ }^{\circ}{ }^{\circ} \mathrm{K}$	Hetero.		Homogeneous region for $\mathrm{C} / \mathrm{H}_{2}$ ratios of					
	regio	0.5	1.0	2.5	5.0	7.5	10.0	15.0
2500	1.12	-	-	-	-	-	-	-
2700	2.46	-	-	-	-	-	-	-
2900	4.96	-	-	-	-	-	-	-
3100	9.53	-	-	-	-	-	-	-
3300	17.0	12.42	-	-	-	-	-	-
3500	27.9	12.47	20.1	-	-	-	-	-
3700	38.5	12.56	20.7	34.2	-	-	-	-
3900	43.2	12.79	20.7	35.5	43.3	-	-	-
4100	42.9	11.73	20.0	35.5	45.4	46.5	46.2	42.7
4300		9.87	17.7	32.6	43.8	46.2	49.0	49.4
4500		6.95	13.5	26.2	37.5	41.5	44.2	46.7
4700		3.90	8.1	17.3	25.4	29.2	32.0	34.7
4900		1.90	4.3	9.3	14.3	17.1	18.6	20.5
51.00		0.7	2.9	4.5	6.9	8.2	9.2	20.2
5300			1.0	1.9	3.1	3.6	4.1	4.6
5500			0.6	1.0	1.3	1.7	1.8	1.9

Table B-4
Maximum Calculated Vol. $\% \mathrm{C}_{2} \mathrm{H}_{2}$ in Quenched Gas at 0.1 Atm . Pressure

T. ${ }^{\circ} \mathrm{K}$	Hetero. region	0.5	Homog 1.0	$\begin{aligned} & \text { eous } \\ & \underline{2.5} \end{aligned}$	ion for 5.0	$\begin{array}{r} \mathrm{C} / \mathrm{H}_{2} \\ 10.0 \\ \hline \end{array}$	ios of 15.0
2500	1.2	-	-	-	-	-	-
2700	2.8	-	-	-	-	-	-
2900	6.2	-	-	-	-	-	-
3100	13.3	11.3	-	-	-	-	-
3300	24.9	11.5	18.7	-	-	-	-
3500	36.7	11.3	18.6	31.5	-	-	-
3700	43.0	9.9	16.6	29.7	38.9	42.7	-
3900		6.8	12.3	23.4	32.0	38.0	40.6
4100		3.3	7.0	14.1	20.1	25.6	27.7
4300		1.2	2.9	6.4	9.1	12.1	13.5
4500		0.3	0.9	2.2	3.4	4.5	5.1
4700				0.8	1.2	1.5	1.7
4900							
5100							
5300							
5500							

Table B-5

Maximum Calculated Vol. $\% \mathrm{C}_{2} \mathrm{H}_{2}$ in Quenched Gas at 10.0 Atm. Pressure

T, ${ }^{\circ} \mathrm{K}$	Hetero. region	0.5	Homo 1.0	$\begin{array}{r} \text { eous } \\ 2.5 \end{array}$	5.0	$\begin{gathered} \mathrm{C} / \mathrm{H}_{2} \mathrm{r} \\ 10.0 \end{gathered}$	$\begin{array}{r} \text { os of } \\ 15.0 \end{array}$
2600	1.6	-	-	-	-	-	-
2800	3.3	-	-	-	-	-	-
3000	6.1	-	-	-	-	-	-
3200	10.5	-	-	-	-	-	-
3400	16.8	14.4	-	-	-	-	-
3600	25.2	13.7	21.8	-	-	-	-
3800	34.3	13.3	21.4	-	-	-	-
4000	40.4	13.2	21.5	35.2	-	-	-
4200	41.8	13.2	22.1	36.9	42.6	-	-
4400	39.3	13.2	22.3	38.5	46.2	-	-
4600	37.7	12.8	22.2	39.3	49.1	42.7	37.8
4800	36.2	11.9	21.2	38.9	50.7	50.5	47.9
5000		10.3	19.0	36.4	49.6	53.5	54.2
5200		8.0	15.7	31.5	44.5	52.7	54.2
5400		5.6	11.6	24.4	35.5	44.4	47.7
5600		3.4	7.6	17.0	24.9	32.6	36.0
5800		1.9	4.5	10.6	16.3	21.3	23.5
6000		1.0	2.5	6.2	9.8	12.8	14.2

Table B-6

Maximum Calculated Vol. $\% \mathrm{C}_{2} \mathrm{H}_{2}$ in Quenched Gas at 0.5 and 5.0 Atm. Pressure, for a $c / H_{2}=5.0$ in the homogeneous regions

T, ${ }^{\circ} \mathrm{K}$	Heterogeneous region		Homogeneous region	
	0.5 atm .	5.0 atm .	0.5 atm .	5.0 atm .
2600	1.7	1.7	-	-
2800	3.6	3.5	-	-
3000	7.3	6.4	-	-
3200	14.1	11.1	-	-
3400	24.7	18.0	-	-
3600	36.5	27.4	-	--
3800	42.8	36.5	42.6	-
4000	43.7	41.6	43.6	-
4200		41.7	39.8	44.7
4400		39.2	30.0	47.9
4600			17.9	49.2
4800			8.7	47.6
5000			3.7	40.9
5200			1.5	30.9
5400				20.2
5600				11.8
5800				6.4
6000				3.3

Appendix C

Experimental Results

Explanation of Symbols for Tables $\mathrm{C}-1$ and $\mathrm{C}-2$
P.P - probe plugged
S.S. - small sample, poor sample
S.F. - slow feed rate of the anode
L.A. - lots of air in the sampling bottle, air leak
F.F. - fast feed rate of the anode
M.E. - methane and ethylene concentrations in output gas
S.P.W. - sampling procedure wrong

V	-	voltage
I	-	current
P	-	power
C.V.R.	-	carbon vaporization rate

A.F.B. - air-free basis

A - specific energy, kw-hr/lb $\mathrm{C}_{2} \mathrm{H}_{2}$
B - coefficient of volume expansion
A.O. - arc out for specified time

S - sampling made sideways
EXY - extrapolated from C.V.R. curve and flow rate
Note:
Hydrogen: Series A, B, C: 1/4 in. graphite anodes, probes $5 / 16$ in. o.d.; series $X: 3 / 8$ in. graphite anodes, probes $3 / 8$ in. o.d.

Methane: Series D, E, Y, and Z: 3/8 in. graphite anodes, probes $3 / 8$ in. o.d.

Hydrogen Runs

Run No.	V volts	I amps	$\begin{aligned} & \text { P } \\ & \text { kw } \end{aligned}$	CVR $\mathrm{gm} / \mathrm{min}$.	probe position	```sample size ml```	$\begin{aligned} & \mathrm{C} / \mathrm{H}_{2} \\ & \text { ratio } \\ & \text { (feed) } \end{aligned}$	$\begin{gathered} \% \mathrm{C}_{2} \mathrm{H}_{2} \\ (\mathrm{AFB}) \end{gathered}$	β	$\begin{aligned} & \mathrm{A} \\ & \frac{\mathrm{kw}-\mathrm{hr}}{\mathrm{lb} \mathrm{c}_{2} \mathrm{H}_{2}} \end{aligned}$	Remarks
		H_{2} flow rate: 3.0 lit./min., 19 g . probe (0.043 in. i.d.)									
A-II-1	84	160	13.4	-	$11 / 2$	75	-	7.7	~ 1	407	1/4" anode
III-1	90	180	16.1	0.645	$11 / 4$	15	0.43	8.8		428	for series
-2	77	220	17.7	-	7/8	20	-	17.1		238	A
-3	70	260	18.1	4.88	1	25	3.25	8.9		473	
A-IV-1	72	255	18.5	3.47	1	10	2.33	7.1		413	
-2	62	300	18.6	-	1	5	-	-		-	missed
-3	85	200	17.0	3.95	1	55	2.65	7.3		545	
-4	75	200	15.0	4.32	7/8	25	2.9	14.9		236	
-5	85	180	15.2	4.47	1/2	30	3.0	9.9		359	P.P.
-6	75	220	16.4	5.45	1/2	5	3.65	4.6		827	P.P.
-7	65	250	16.2	7.43	3/4	25	4.97	16.7		227	
-8	70	260	18.2	8.3	3/4	25	5.55	14.4		295	
-9	70	275	19.2	7.6	5/8	15	5.1	15.1		375	
-10	70	320	22.4	8.7	1	25	5.85	12.6		525	
-11	75	310	23.2	10.2	1/2	5	6.83	-		-	S.S.
-12	70	320	22.4	9.85	1/2	20	6.6	16.8		393	
-13	75	335	25	-	1/2	25	-	-	\downarrow	475	S.F.

Table C-I (cont'd)

Run No.	v volts	$\begin{aligned} & \text { I } \\ & \text { amps } \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{kw} \end{aligned}$	CVR $\mathrm{gm} / \mathrm{min}$.	Probe Position	Sample Size ml	C/ H_{2} ratio (AFB)	$\begin{gathered} \%_{2} \mathrm{H}_{2} \\ (A F B) \end{gathered}$	4	A $\frac{\mathrm{kw}-\mathrm{h}}{\mathrm{lb} \mathrm{c}}$	kemarks
			flow	te: 3.0	lit./m	min., 14	probe	10.063	in.	i.d.)	
B-I-1	42	170	7.2	3.89	1/2	55	2.6	17.4	~ 1	122	
-2	53	225	11.9	5.26		100	3.55	19.4		143	
-3	65	260	17.2	6.9		25	4.63	23.6		171	
-4	73	300	22.0	8.1		5	5.43	6.3		595	S.S.
-5	62	310	19.3	8.7		5	5.82	12.4		264	S.S.
-6	62	310	19	6.77		25	4.55	23.2		193	
-7	62	310	19.2	8.7		25	5.83	21.6		208	
-8	70	320	22.4	9.6		50	6.42	25.5		205	
-9	72	350	25.0	10.2		100	6.85	24.9		234	
-10	73	317	23.5	9.4		7	6.3	10.7		512	S.S.
-11	70	350	24.4	10.2	\downarrow	20	6.85	18.1	\downarrow	595	S.F.

Table C-1 (cont'd)

Run No.	V volts	I amps	$\begin{aligned} & \text { P } \\ & \text { kw } \end{aligned}$	CVR $\mathrm{gm} / \mathrm{min}$.	Probe Position in.	$\begin{aligned} & \text { Sample } \\ & \text { Size } \\ & \text { ml } \end{aligned}$	$\begin{aligned} & \mathrm{C} / \mathrm{H}_{2} \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \%_{2} \mathrm{H}_{2} \\ (\mathrm{AFB}) \end{gathered}$	β	A $\frac{\mathrm{kw}-\mathrm{hr}}{\mathrm{lb} \cdot \mathrm{C}_{2} \mathrm{H}_{2}}$	Remarks

H_{2} flow rate: 6.0 lit. $/ \mathrm{min} . ;$ probe: 0.100 in. i.d.

X-I-1	58	170	9.85	3.02	$11 / 2$	100	1.35	13.25	~ 1	116	4.5 lit. Amin
-2	51	170	8.65	2.80	2		0.94	10.9		92.5	0.9\% ME
-3	50	290	14.5	6.75	1		2.26	14.25		119	0.6\% ME
-4	70	305	21.2	6.8			2.28	17.7		140.5	0.4\% ME
-5	63	420	26.4	12 ?			4 ?	14.1		218	S.P.W.
-6	60	395	23.8	13.25			4.41	25.7		108	
-7	55	480	26.4	15.5			5.2	19.6	*	257	S.P.W.
-8	54	500	27.0	16.1	\downarrow	γ	5.36	26.2		121	

H_{2} flow rate: 10.0 lit. $/ \mathrm{min}$. ; probe: 0.100 in. i.d.

X-II-1	45	180	8.1	2.92	3	100	0.59	9.2	~ 1	62.2	
-2	44	290	12.8	6.75			1.35	14.9		60.7	
-3	54	850	18.9	9.0			1.81	17.4		78.1	0.95\% ME
-4	54	470	25.4	14.0			2.82	17.0		105	0.6\% ME
-5	59	490	28.9	11.85	\downarrow	γ	2.38	19.6	\checkmark	140	0.5\% ME

H_{2} flow rate: 16.0 lit./min.; probe: 0.100 in. i.d.

X-III-1	50	520	26	13.7	4	100	1.84	18.3	.991	66.5	15 lit/Min.
-2	52	510	26.5	15.45	5	100	1.94	20.0	.985	59.0	$1.7 \% \mathrm{ME}$
-3	50	270	13.5	4.15	5	40	.52	7.2	.995	82	$0.7 \% \mathrm{ME}$
-4	50	310	15.5	7.12	5	100	.90	14.7	.986	46.9	$1.5 \% \mathrm{ME}$

Table C-2

Methane Runs

Run No.	V volts	amps	$\begin{aligned} & P \\ & \text { kw } \end{aligned}$	CVR $\mathrm{gm} / \mathrm{min}$.	Probe Posi- tion in.	$\begin{aligned} & \text { Sample } \\ & \text { Size } \\ & \mathrm{ml} \end{aligned}$	$\mathrm{C} / \mathrm{H}_{2}$ ratio (feed)	$\begin{gathered} \% \mathrm{C}_{2} \mathrm{H}_{2} \\ (\text { AFB }) \end{gathered}$		$\begin{aligned} & \mathrm{A} \\ & \frac{\mathrm{kw}-\mathrm{hr}}{\mathrm{lb} \cdot \mathrm{C}_{2} \mathrm{H}_{2}} \end{aligned}$	Remarks
		$\mathrm{CH}_{4} \mathrm{f}$	rate:	1.51 it	/min.	robe:	0.100 in	. i.d	(I),	, 0.135	(II)
D-I-3	62	292	18.1	9.12	1	100	6.58	28.8	1.82	160	
-4	50	320	16.0	10.3	2	100	7.4	23.4	1.83	175	
-5	72	260	18.7	8.67	1	20	6.35	35.2	1.66	150	
-6	58	290	16.6	8.39	1/2	20	6.12	28.8	1.49	181	P.P.
-7	60	300	18.0	6.95	1	100	5.15	23.1	1.91	191	
-8	50	360	18.0	11.65		50	8.3	39.2	1.87	123	
-9	64	400	25.6	13.1		40	9.27	39.1	1.85	162	
-10	56	430	24.0	15.2		45	10.7	31.3	1.82	198	
-11	54	430	23.1	15.25	\downarrow	10	10.7	-	-	-	P.P., S.S.
D-II-1	50	110	5.5	1.41	$11 / 2$	100	1.45	9.8	1.84	142	less water
-2	46	170	7.8	3.06	$11 / 2$	100	2.55	10.5	1.89	184	through
-3	57	160	9.1	2.85	1	100	2.41	14.3	1.89	156	probe than
-5	54	310	16.8	8.7	$11 / 2$	100	6.33	15.8	1.93	285	usual
-6	30	180	5.5	3.46	1	100	2.81	9.6	1.92	141	I. A.
-7	60	280	16.8	6.70	1	100	4.99	31.7	1.93	128	A.O. 8 sec .
-8	75	290	21.7	9.40		100	6.8	35.5	1.92	149	P.P.
-9	66	380	25.0	12.8		25	9.1	37.6		162	
-10	55	380	20.8	12.2		100	8.65	34.5		147	
-11	58	440	26.5	15.4		100	10.8	23.2	Y	277	S.P.W.
-12	55	460	25.3	16.3	\downarrow	30	11.45	52.0	1.93	118	P.P.

Table C-2 (cont'd)

Table c-2 (cont'd)

Run No.	v volts	I amps	$\begin{aligned} & \text { P } \\ & \text { kw } \end{aligned}$	CVR $\mathrm{gm} / \mathrm{min}$.	Probe Position	$\begin{aligned} & \text { Sample } \\ & \text { Size } \\ & \text { ml } \end{aligned}$	$\begin{aligned} & \mathrm{C} / \mathrm{H}_{2} \\ & \text { ratio } \\ & \text { (feed) } \end{aligned}$	$\begin{gathered} \%_{2} \mathrm{H}_{2} \\ (A F B) \end{gathered}$	β	$\begin{aligned} & \mathrm{A} \\ & \frac{\mathrm{kw}-\mathrm{hr}}{\mathrm{lb} \cdot \mathrm{C}_{2} \mathrm{H}_{2}} \end{aligned}$	Remarks
			CH_{4}	flow rate	: 5.0	lit./min	. ; prob	be: 0.100	0 in.	i.d.	
Y-I-1	45	320	14.4	4.92	5	100	1.486	16.3	1.91	65	1.15\% ME
-2	55	330	18.1	9.45		50	2.39	17.7	1.91	75	1.35\% ME
-3	50	300	-15.0	7.55		50	2.01	12.8	1.90	86	1.65\% ME
-4	56	220	12.5	5.76		30	1.65	14.0	1.89	66	2.2\% ME
-5	50	150	7.5	1.55		20	0.81	7.3	1.88	76	2.9\% ME
-9	80	400	32.0	ext		100	4.3	20.4	1.92	114	1.0\% ME
-10	55	470	25.9	ext			3.5	18.6	1.92	102	
-11	57	435	24.7	14.55			3.4	20.2	1.90	90	2.0\% ME
-12	55	500	27.5	ext			3.7	19.5	1.88	105	2.5\% ME
-13	70	450	31.5	ext	\downarrow	\downarrow	4.2	12.4	1.90	189	1.7\% ME,S.P.W.
			CH_{4}	flow rate	: 8	lit./min	. ; prob	be: 0.10	0 in .	i.d.	
Y-II-1	52	310	16.1	8.82	5	20	1.62	6.8	1.88	111	P.P., 2.9% ME
-2	52	350	18.2	7.8	5	5	1.47	6.8	1.85	127	P.P., 4.3\% ME
			CH_{4}	flow rate	: 12	lit./min	n.; prob	be 0.100	in. i		
$\mathrm{Z}-\mathrm{I}-1$	55	510	28.0	ext	5	100	1.86	20.4	1.91	42	0.75\% ME
-2	55	510	28.0				1.86	20.6	1.91	42	0.6\%ME
-4	50	340	17.0				1.24	12.1	1.92	43	1.6\% ME
-5	70	170	11.9				0.95	12.6	1.92	29	2.6\% ME
-6	40	250	10.0	\downarrow	γ	\checkmark	0.84	10.4	1.92	29	0.6\% ME

Appendix D

Calculations Pertaining to the $\mathrm{C}-\mathrm{CH}_{4}$ System

The following reactions are considered:
(A) $2 \mathrm{C}_{1}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}$ (at T)
(B) $2 \mathrm{CH}_{4}\left(298^{\circ} \mathrm{K}\right) \longrightarrow 2 \mathrm{CH}_{4}$ (at T)
(C) $2 \mathrm{CH}_{4}($ at T$) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+3 \mathrm{H}_{2}$
the heat given off in reaction (A) serving to bring methane to reaction temperature by reaction (B) and to crack the CH_{4} to acetylene and hydrogen, by reaction (c).

From thermodynamics, the heat of reaction for each reaction is

$$
\begin{equation*}
\Delta H_{R}^{\circ}=\left(\Delta H_{T f}^{\circ}\right)_{\text {products }}-\left(\Delta H_{T f}^{\circ}\right)_{\text {reactants }} \tag{1}
\end{equation*}
$$

The heat of formation of each species can be calculated by means of the relation

$$
\begin{equation*}
\Delta H_{T f}^{\circ}=\Delta H_{O f}^{\circ}+\Delta\left(H_{T}^{\circ}-H_{O}^{\circ}\right) \tag{2}
\end{equation*}
$$

provided the thermodynamic functions $\frac{H_{T}^{\circ}-H_{O}^{\circ}}{R T}$ or $H_{T}^{\circ}-H_{o}^{\circ}$ are available.

Since most of the tabulated thermodynamic functions in the literature (28) are available only up to $1,500^{\circ} \mathrm{K}$, the missing values had to be extended to $4,000^{\circ} \mathrm{K}$ by the method of Bauer and Duff. Using the constants of this last work, the function $\frac{H_{T}^{\circ}-H_{0}^{\circ}}{R T}$ could be calculated from the expression ${ }^{(3)}$.

$$
\begin{equation*}
\frac{H_{T}^{\circ}-H_{o}^{\circ}}{R T}=a+b T+c T^{2}+d T^{3}+e T^{4} \tag{3}
\end{equation*}
$$

where a, b, c, d, e are the constants listed in Table A-3.

For methane, not included in this table, the following values apply:

$$
\begin{aligned}
& \mathrm{a}=2.1142316 \\
& \mathrm{~b} \\
& \mathrm{c}=4.6999314 \times 10^{-3} \\
& \mathrm{c}=-1.1162007 \times 10^{-6} \\
& \mathrm{~d}=1.3638225 \times 10^{-10} \\
& \mathrm{e}=-6.6735613 \times 10^{-15} \\
& \mathrm{k}
\end{aligned}=7.2880040 .
$$

Example: Methane, $2,500^{\circ} \mathrm{K}$
From Eq. 3, $\frac{\mathrm{H}_{T}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}}{\mathrm{RT}}=8.774, \mathrm{RT}=4967$

$$
\mathrm{H}_{\mathrm{T}}^{\circ}-\mathrm{H}_{0}^{\circ}=43.5 \mathrm{kcal} .
$$

If one now considers the CH_{4} formation from the elements

$$
\mathrm{C}_{\mathrm{S}}+2 \mathrm{H}_{2} \longrightarrow \mathrm{CH}_{4}
$$

the heat of formation at any temperature can be calculated from Eq. 2. Values of $\left(H_{T}^{\circ}-H_{0}^{\ominus}\right)$ for $C_{S}+2 H_{2}$ can be obtained from Rossini (28) and this is equal to 49.55 kcal . at $2,500^{\circ} \mathrm{K}$. Then the heat of formation of methane at $2,500^{\circ} \mathrm{K}$ is

$$
\Delta H_{T f}^{\bullet}=-15.987+(43.5-49.55)=-22.04 \mathrm{kcal}
$$

Table $\mathrm{D}-1$ shows $\mathrm{UH}_{\mathrm{Tf}}^{\circ}$ for CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{2}$ and the sensible heat ($H_{T}^{\circ}-\mathrm{H}_{0}^{\circ}$) for CH_{4} calculated in such a way; values for $\mathrm{C}_{1}, \mathrm{H}_{2}$, H, and C_{s} were taken directly from Rossini ${ }^{(28)}$.

The heat of reaction for reactions (A), (B), and (C) was calculated by using Eq. 1. The overall reaction, however, is obtained by adding up all three separate reactions and dividing by two to get

$$
\mathrm{C}_{1}+\mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}
$$

Equilibrium limitation on reaction (C) below $2,000^{\circ} \mathrm{K}$ was taken into account as the yield cannot be 100%. Also $\left(\mathrm{H}_{298}-\mathrm{H}_{0}^{\circ}\right)$ for CH_{4} is 2.4 kcal at $25^{\circ} \mathrm{C}$ for results from room temperature.

Example: $\quad T=2,500^{\circ} \mathrm{K}$

$$
\begin{array}{rlrl}
\Delta H_{R}^{\circ}(\text { reaction } A): 51.38-2(171.09) & =-290.80 \mathrm{kcal} \\
& (\text { reaction } B): 41.1 \times 2 & =82.2 \mathrm{kcal} \\
& (\text { reaction } C): 51.38+2(22.04) & =94.46 \mathrm{kcal} \\
\Delta H_{R}^{\circ}(\text { overall reaction })=\frac{-113.14}{2}= & -56.57 \mathrm{kcal}
\end{array}
$$

To get $\Delta H_{R}^{\circ}=0$, we must take $0.611 \Delta H_{R}^{\circ}$ of reaction A to match exactly the sum of ΔH_{R}° 's for reactions (B) and (C), or $C_{1} / C H_{4}=0.611$ and $\mathrm{C} / \mathrm{H}_{2}=0.805$. The overall reaction can be represented stoichio metrically by

$$
0.611 \mathrm{C}_{1}+\mathrm{CH}_{4} \longrightarrow 0.805 \mathrm{C}_{2} \mathrm{H}_{2}+1.195 \mathrm{H}_{2}
$$

which gives $40.3 \% \mathrm{C}_{2} \mathrm{H}_{2}$ in the product gas.
Results of similar calculations are presented in Table D-2 for the temperature range 1,500 to $4,000^{\circ} \mathrm{K}$. At $1,500^{\circ} \mathrm{K}$ and $1,650^{\circ} \mathrm{K}$, the yields of reaction (C) are 70% and 95% respectively.

Table D-1

Heats of Formation, $\mathrm{AH}_{\mathrm{Tf}}{ }^{\circ}$, and CH_{4} sensible heat in kcal. for the temperature range $1,500-4,500^{\circ} \mathrm{K}$

T, ${ }^{\circ} \mathrm{K}$	1,500	1,650	2,000	2,500	3,000	3,500	4,000
$\mathrm{C}_{2} \mathrm{H}_{2}$	52.55	52.33	52.10	51.38	50.48	49.46	48.46
H	53.72	53.87	54.22	54.61	54.93	55.19	55.40
C_{1}	172.1	171.95	171.64	171.09	170.47	169.84	169.16
CH_{4}	-22.06	-22.16	-22.16	-22.04	-21.89	-21.85	-21.85
H_{2}	0	0	0	0	0	0	0
CH_{4} sensible heat $\left(\mathrm{H}_{\mathrm{T}}^{\circ}-\mathrm{H}_{0}^{\circ}\right)$	18.73	21.75	31.95	43.5	55.5	67.7	80.1

Table D-2

Overall heat of reaction, carbon vapor requirement and calculated $\% \mathrm{C}_{2} \mathrm{H}_{2}$ for null reaction heat for the temperature range $1,500-4,000^{\circ} \mathrm{K}$

$\mathrm{T},{ }^{\circ} \mathrm{K}$	$1,500 *$	$1,650 *$	2,000	2,500	3,000	3,500	4,000
$\Delta \mathrm{H}_{\mathrm{R}}^{\circ}$ $\mathrm{kcal} / \mathrm{mole}$	-95.65	-80.56	-67.83	-56.57	$-45,00$	-33.28	-21.15
$\mathrm{C}_{2} \mathrm{H}_{2}$							

* Equilibrium limitation on reaction (C) taken into account

Appendix E

(1) Calculation of the Coefficient of Volume Expansion, β, from Gas Analyses

This development follows the scheme used by Drahny (10).

Suppose that for methane cracking the following reactions are possible, and, by analysis of output gases from a high temperature zone, correct:

the unreacted methane is not changed

$$
\mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{4}
$$

and any diluent gas is not lost by side reactions

With these assumptions, we can apply stoichiometric considerations that can be used to relate the concentration of individual substances before and after reaction and hence the coefficient of volume expansion, β.

Material Balance

Assume that, of the total moles of original gas,
(1) N_{a} moles of CH_{4} are cracked to $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2}

$$
\mathrm{N}_{\mathrm{a}}\left(\mathrm{CH}_{4}\right) \longrightarrow \frac{1}{2} \mathrm{~N}_{\mathrm{a}}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)+\frac{3}{2} \mathrm{~N}_{\mathrm{a}}\left(\mathrm{H}_{2}\right)
$$

(2) N_{e} to $\mathrm{C}_{2} \mathrm{H}_{4}$ and H_{2}

$$
\mathrm{N}_{\mathrm{e}}\left(\mathrm{CH}_{4}\right) \longrightarrow \frac{1}{2} \mathrm{~N}_{\mathrm{e}}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)+\mathrm{N}_{\mathrm{e}}\left(\mathrm{H}_{2}\right)
$$

(3) N_{C} to C and H_{2}

$$
\mathrm{N}_{\mathrm{C}}\left(\mathrm{CH}_{4}\right) \longrightarrow \mathrm{N}_{\mathrm{C}}(\mathrm{C})+2 \mathrm{~N}_{\mathrm{C}}\left(\mathrm{H}_{2}\right)
$$

(4) N_{m} moles remain unchanged

$$
\mathrm{N}_{\mathrm{m}}\left(\mathrm{CH}_{4}\right) \longrightarrow \mathrm{N}_{\mathrm{m}}\left(\mathrm{CH}_{4}\right)
$$

(5) All N_{p} moles of diluent are unaffected

$$
N_{p}(R) \longrightarrow N_{p}(R)
$$

The total number of moles of CH_{4} is

$$
\begin{equation*}
N_{t}=N_{a}+N_{e}+N_{c}+N_{m} \tag{1}
\end{equation*}
$$

Adding all equations and substituting for N_{c} the value computed from Equation 1, we obtain

$$
\begin{aligned}
& N_{t}\left(\mathrm{CH}_{4}\right)+\mathrm{N}_{\mathrm{p}}(\mathrm{R}) \longrightarrow \frac{1}{2} \mathrm{~N}_{\mathrm{a}}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)+\frac{1}{2} \mathrm{~N}_{e}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)+\mathrm{N}_{\mathrm{m}}\left(\mathrm{CH}_{4}\right) \\
& +\left(\mathrm{N}_{t}-\mathrm{N}_{\mathrm{a}}-\mathrm{N}_{e}-\mathrm{N}_{\mathrm{m}}\right)(\mathrm{C})+\left(2 \mathrm{~N}_{t}-\frac{1}{2} \mathrm{~N}_{\mathrm{a}}-\mathrm{N}_{e}-2 \mathrm{~N}_{m}\right)\left(\mathrm{H}_{2}\right)+N_{p}(\mathrm{R})
\end{aligned}
$$

Volume Balance

Since the solid carbon does not contribute to the volume of the gas, we can pass from the material balance to volume balance by adding up those constituents other than carbon

$$
\begin{equation*}
N_{t}+N_{p} \rightarrow 2 N_{t}+N_{p}-\frac{1}{2} N_{e}-N_{m} \tag{3}
\end{equation*}
$$

and obtain the coefficient of volume expansion by the ratio of the right-hand side to the left hand side of Eq. 3.

$$
\begin{equation*}
\beta=1+\frac{N_{t}-1 / 2 N_{e}-N_{m}}{N_{t}+N_{p}} \tag{4}
\end{equation*}
$$

Concentration Balance

Since the volume concentrations of individual components are determined by gas analysis, in the feed gas, methane concentration is

$$
\begin{equation*}
t=\frac{N_{t}}{N_{t}+N_{p}} \tag{5}
\end{equation*}
$$

and diluent concentration

$$
\begin{equation*}
p=\frac{N_{p}}{N_{t}+N_{p}} \tag{6}
\end{equation*}
$$

In the product gas (primed symbols), we define the analyzed concentrations by the following: $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration:

$$
\begin{equation*}
a^{\prime}=\frac{1 / 2 N_{a}}{2 N_{t}-1 / 2 N_{e}-N_{m}+N_{p}} \tag{7}
\end{equation*}
$$

$\mathrm{C}_{2} \mathrm{H}_{4}$ concentration

$$
\begin{equation*}
e^{\prime}=\frac{1 / 2 N_{e}}{2 N_{t}-1 / 2 N_{e}-N_{m}+N_{p}} \tag{8}
\end{equation*}
$$

Unchanged CH_{4}

$$
\begin{equation*}
m^{\prime}=\frac{N_{m}}{2 N_{t}-1 / 2 N_{e}-N_{m}+N_{p}} \tag{9}
\end{equation*}
$$

H_{2} concentration

$$
\begin{equation*}
h^{:}=\frac{2 N_{t}-1 / 2 N_{a}-N_{e}-2 N_{m}}{2 N_{t}-1 / 2 N_{e}-N_{m}+N_{p}} \tag{10}
\end{equation*}
$$

Diluent concentration

$$
\begin{equation*}
p^{\prime}=\frac{N_{p}}{2 N_{t}-1 / 2 N_{e}-N_{m}+N_{p}} \tag{11}
\end{equation*}
$$

We can then perform the concentration balance as follows

$$
\begin{align*}
& t+p=1 \tag{12}\\
& a^{\prime}+e^{\prime}+m^{\prime}+h^{\prime}+p^{\prime}=1 \tag{13}
\end{align*}
$$

It is possible to recalculate the concentrations of the components in the output gas to the original volume by means of the coefficient β, if consideration is given to their physical meaning and thus a methane balance is obtained.

Note that the concentration $m=\beta m^{\prime}$ takes no part in the reaction, only $t-m=t-\beta m^{\prime}$ is cracked. Of this, a CH_{4} concentration, $2 \mathrm{a}=2 \beta \mathrm{a}^{\prime}$ goes to $\mathrm{C}_{2} \mathrm{H}_{2}, 2 \mathrm{e}=2 \mathrm{Be}$ to $\mathrm{C}_{2} \mathrm{H}_{4}$ and $c=t-m-2 a-2 e=t-\beta\left(m^{\prime}-2 a^{\prime}-2 e^{\prime}\right)$ to carbon

Hydrogen Balance

To obtain the relationship between the analysed concentrations and the coefficient of volume expansion we set from Eq. 12

$$
\begin{equation*}
p=1-t=\beta p^{\prime} \tag{15}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
p^{\prime}=\frac{1-t}{\beta} \tag{16}
\end{equation*}
$$

and we substitute this last equation into Eq. 13.

$$
\begin{equation*}
\beta=\frac{1-t}{1-m^{\prime}-h^{\prime}-a^{\prime}-e^{\prime}} \tag{17}
\end{equation*}
$$

Another independent relation for β can be obtained from its definition, Eq. 4, after substituting for the different concentrations, giving

$$
\begin{equation*}
\beta=1+t-e-m \tag{18}
\end{equation*}
$$

or with the determined actual concentrations in the output gas for e^{\prime} and m^{\prime}

$$
\begin{equation*}
\beta=\frac{1+t}{1+e^{\prime}+m^{\prime}} \tag{19}
\end{equation*}
$$

This can be modified further, by manipulating Eqs. 17 and 19 to get new relations for β. Eliminating the fractions in Eqs. 17 and 19 and adding up the two resulting equations, the following results

$$
\begin{equation*}
\beta=\frac{1}{1-\frac{a^{\prime}+h^{\prime}}{2}} \tag{20}
\end{equation*}
$$

By subtracting, one obtains

$$
\begin{equation*}
\beta=\frac{4 t}{4 m^{\prime}+2 e^{\prime}+2 a^{\prime}+2 h^{\prime}} \tag{21}
\end{equation*}
$$

But Eq. 21 is exactly the hydrogen balance, i.e., the ratio of the number of H atoms in the methane feed gas (numerator) to the number of H atoms in the output gas (denominator). This last equation is most useful for determining the coefficient of volume
expansion, since all concentrations can be easily determined by gas chromatography, for instance.

Example: Run D - II - 10
Feed gas: CH_{4}, commercial grade 95% minimum purity (taken here as being $96.6 \% \mathrm{CH}_{4}$)

Gas Analysis:

H_{2}	64.7%
CH_{4}	0.4%
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.4%
$\mathrm{C}_{2} \mathrm{H}_{2}$	34.5%

$$
\beta=\frac{4 x .966}{2(.647+.345)+4(.004+.004)}=1.92
$$

Carbon-Hydrogen System

If a similar stoichiometric development is applied to reactions of carbon with hydrogen regarding $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CH}_{4}$ formation and unreacted H_{2}, carbon and diluent, the same Eq. 21 reduced by one half because of H_{2} feed instead of CH_{4} and still represented by an hydrogen balance results and can be applied directly to the concentrations determined by gas analysis to calculate the coefficient of volume expansion.

Example: Run X-I-8
Feed gas: H_{2}, commercial grade, 99.98% purity (taken as $100 \% \mathrm{H}_{2}$) Output gas:

H_{2}	73.45%
CH_{4}	0.2%
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.15%
$\mathrm{C}_{2} \mathrm{H}_{2}$	26.2%

$$
\beta=\frac{2.0}{2(.7345+.262)+4(.002+.0015)}=0.996
$$

(2) Calculation of the Efficiency of Carbon Utilization for Acetylene Production, Ω.

The efficiency of carbon utilization for $\mathrm{C}_{2} \mathrm{H}_{2}$ production, Ω, is defined here as the fraction of carbon in the feed that is converted to acetylene in the product gas. The constant quantity that serves as a basis for calculation is the amount of hydrogen which remains unchanged through the various processes taking place under the action of the electric arc.

$$
\begin{equation*}
\Omega=\frac{\mathrm{C} / \mathrm{H}_{2} \text { in product gas }}{\mathrm{C} / \mathrm{H}_{2} \text { in the feed }} \tag{22}
\end{equation*}
$$

The carbon to hydrogen ratio in the feed can be determined by the loss in weight of the anode after a run.

$$
\begin{equation*}
\left(\mathrm{C} / \mathrm{H}_{2}\right)_{\text {feed }}=\mathrm{k} \frac{\mathrm{~W}}{\mathrm{G}} \tag{23}
\end{equation*}
$$

where W is the weight loss of carbon from the anode in $\mathrm{g} / \mathrm{min}$. and G is the flow rate of feed gas in liters $/ \mathrm{min}$. at $70^{\circ} \mathrm{F}$ and atmospheric pressure. k is a constant taking care of the conversion factors to get $\mathrm{C} / \mathrm{H}_{2}$ in mole/mole.

For H_{2} feed and consumable graphite anode

$$
\begin{equation*}
\left(\mathrm{C} / \mathrm{H}_{2}\right)_{\mathrm{H}_{2}} \text { feed }=2.01 \frac{\mathrm{~W}}{\mathrm{G}} \frac{\text { mole } \mathrm{C}}{\text { mole } \mathrm{H}_{2}} \tag{24}
\end{equation*}
$$

and for methane feed

$$
\begin{equation*}
\left(\mathrm{C} / \mathrm{H}_{2}\right)_{\mathrm{CH}_{4}} \text { feed }=0.5+1.005 \frac{\mathrm{~W}}{\mathrm{G}} \tag{25}
\end{equation*}
$$

If the output gas is assumed to contain only acetylene and hydrogen, which is true for most cases, then the carbon to hydrogen ratio can be represented by

$$
\begin{equation*}
\left(C / H_{2}\right)_{g a s}=2 a^{\prime} / a^{\prime}+h^{\prime} \approx 2 a^{\prime} \tag{26}
\end{equation*}
$$

since ethylene and methane concentrations do not amount to more than about 2% in all runs.

Then, by definition,

$$
\begin{align*}
& \Omega=2 a \cdot / 2.01 \frac{W}{G} \quad\left(\mathrm{H}_{2} \text { feed }\right) \tag{27}\\
& \Omega=2 a \cdot / 0.5+1.005 \frac{\mathrm{~W}}{\mathrm{G}}\left(\mathrm{CH}_{4} \text { feed }\right) \tag{28}
\end{align*}
$$

Examples

Run $D-I I-10: \mathrm{CH}_{4}$ feed

$$
\begin{aligned}
& \left(\mathrm{C} / \mathrm{H}_{2}\right)_{\text {feed }}=0.5+1.005 \times \frac{12.2}{1.5}=8.65 \\
& \left(\mathrm{C} / \mathrm{H}_{2}\right)_{\text {gas }}=2 \times 0.345=0.690 \\
& \Omega=\frac{0.690}{8.65}=0.08
\end{aligned}
$$

Run X-I-8: H_{2} feed

$$
\begin{aligned}
& \left(\mathrm{C} / \mathrm{H}_{2}\right)_{\text {feed }}=2.01 \times \frac{16.1}{6.0}=5.36 \\
& \left(\mathrm{C} / \mathrm{H}_{2}\right)_{\text {gas }}=2 \times 0.262=0.524 \\
& \Omega=\frac{0.524}{5.36}=0.098
\end{aligned}
$$

Results for Ω covering both H_{2} and CH_{4} feeds are tabulated

Table E-1

Efficiency of carbon utilization for acetylene production, averaged over the specified number of runs

Feed: H_{2}

G, lit./min	Ω ave	Probe Size	No. of Runs
1.5	0.053	0.100°	9
3.0	0.062	$0.043^{\prime \prime}$ (19g)	10
3.0	0.083	$0.063^{\circ \prime}(14 \mathrm{~g})$	13
6.0	0.125	0.100 "	7
10.1	0.202	0.100 "	5
16.0	0.270	$0.100^{\prime \prime}$	3

Feed: CH_{4}

G, lit. $/ \mathrm{min}$	Ω ave	Probe Size	No. of Runs
0.75	0.051	$0.135^{\prime \prime}(8 \mathrm{~g})$	6
1.5	0.0875	$0.100^{\circ 0}$	8
1.5	0.101	$0.135^{\text {n }}$	9
5.0	0.133	$0.100^{\prime \prime}$	10
12.0	0.230	$0.100^{\circ \prime}$	5

Appendix F

Magnetic Circuit Relations

A current passing through a wire wound in the form of a coil generates a magnetic field in a direction parallel to the axis of the coil. The actual field vector can be determined according to the usual convention by wrapping the right hand around the coil in the direction of the current flow and choosing that direction where the thumb points.

The flux, \varnothing, expressed as Maxwell or lines is related to the current, I, flowing through the wire by

$$
\varnothing=\frac{1.26 \mathrm{~N} \mathrm{I}}{R^{\prime}}
$$

where N is the number of turns of wire and R^{\prime} is the reluctance of the circuit. For nonmagnetic material as air and other gases, the reluctance is given by

$$
R^{\prime}=\frac{1^{\prime}}{A}
$$

where 1° is the length of the magnetic circuit in cm and A the area of the circuit in sq. cm. The flux is often expressed in amperesturns as a measure of the quantity N.

The magnetic field whose strength is given in gauss is the
number of lines per unit area, or

$$
H=\frac{\emptyset}{A}=\frac{1.26 \mathrm{~N} \mathrm{I}}{R^{\prime} \mathrm{A}}
$$

For the case of nonmagnetic material, which is assumed here because no data exist for plasmas, the field expression reverts to

$$
H=\frac{1.26 \mathrm{~N} \mathrm{I}}{1^{\prime}} \text { (gauss) }
$$

The coil wrapped around the reactor at the location of the cathode end was made of 45 turns of No. 24 enameled copper wire over approximately a length of one inch along the reactor outside walls. A battery supply first and a regulated power supply later on was used to provide 3.0 amperes to the circuit, giving 135 amperesturns for the value of N I. Converting l^{\prime} to cm , this gave for the value of H

$$
H=\frac{1.26 \times 135}{2.5}=68 \text { gauss }
$$

This value of H was carefully chosen in view of the following considerations:

When the electrons leaving the cathode strike the anode, they travel in a magnetic field which is at right angle with the electron path; they are then subjected to a centrifugal force which tends to bend their path and which is balanced by the force generated in the magnetic field, i.e.,

where M_{e} is the electron mass, v is the speed of the electrons in $\mathrm{cm} / \mathrm{sec} ., \quad x$ the radius of curvature in cm and e, the electronic charge in e.m.u.

The speed of the electrons is determined by the potential existing between the anode and cathode, as the kinetic energy of the electrons is related to the potential energy by

$$
\frac{M_{e} v^{2}}{2}=v_{A} e
$$

where V_{A} is the arc voltage. In most experiments performed in the high intensity arc, the voltage was varied between 40 and 70 volts, giving

$$
v=\sqrt{\frac{2 \mathrm{v}_{\mathrm{A}} \mathrm{e}}{\mathrm{M}_{\mathrm{e}}}}=5.94 \times 10^{7} \sqrt{\mathrm{v}_{\mathrm{A}}}
$$

Thus, the speed of the electrons was calculated as

$$
v=(3.75 \text { to } 5) \times 10^{8} \mathrm{~cm} / \mathrm{sec}
$$

giving in turn for the radius of curvature

$$
r=\frac{M_{e} v^{2}}{H e v}=\frac{M_{e} v}{H e}
$$

or

$$
\begin{aligned}
& r=\frac{9.1 \times 10^{-28} \times(3.75 \text { to } 5) \times 10^{8}}{68 \times 1.6 \times 10^{-20}} \\
& r=0.314 \text { to } 0.418 \mathrm{~cm}
\end{aligned}
$$

or approximately $1 / 8$ to $3 / 16$ in.
But this is exactly of the same order of magnitude as the
gap spacing between the anode and cathode, as shown in section Apparatus and Procedure and shown in the details of the reactor. Should the magnetic field have been too large, the radius of curvature would have become so small as to focus the electrons instead of bending their path; on the other hand, should it have been too small, no bending would have occurred. Thus, a magnetic field of 70 gauss was adequate to induce swirling of the electrons and provide additional mixing of the plasma.

Appendix G

Gas Chromatography Analysis

The quenched gas from the arc zone was analyzed with a
Perkin Elmer Fractometer Model 154. A one-meter silica gel column was held at a constant temperature of $125^{\circ} \mathrm{C}$ under a pressure of 10 psi with helium carrier gas. The variables of the unit, temperature and pressure, were fixed at the above values after a number of trials to determine the best operating conditions that would allow separation of all components together with good sensitivity Components like hydrogen, air, carbon monoxide and methane have approximately the same retention time, but the recorder chart speed was increased threefold over the normal speed. This gave enough separation between the different peaks to enable identification of all components. As hydrogen gives a weak double peak with helium as carrier gas, its concentration was obtained by assuming that the remainder of the gas, after identification of all other components, was hydrogen. Verification of this assumption was made by running several samples through the fractometer with argon gas as carrier gas, which gave good separation and strong peaks for H_{2}, air, CO and CH_{4}. It might be mentioned that operation with only one carrier gas (helium) was really an advantage, since no waiting period was necessary for the stabilization of the unit after change of the carrier gas.

The chromatography apparatus was calibrated by mixing H_{2}, air, $\mathrm{CO}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CO}_{2}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$ in definite proportions in a
gas mixing apparatus, running the different mixtures (covering the whole range of concentrations for each component) through the chromatograph and reading the peak height on the recorder chart. The peak heights were sharp enough as not to warrant taking the area under the curves as a measure of concentrations. The peak heights were all related to concentrations as determined in the mixing apparatus by a straight line. For ease of actual determination of an unknown sample, the peak height was reduced to a standard value giving one percent of a given component for an attenuation of $1 / 1$, thus gas concentrations were determined by dividing the peak heights read on the chart by the peak height giving one percent of the gas.

Since the peak heights and retention times change a little over the months, the last determinations are given in Table G-1.

Table G-1

Gas Chromatography Determinations. Carrier gas: helium; Pressure: 10 psi ; Temperature: $125^{\circ} \mathrm{C}$; Detector voltage: 4.0 volts; sensitivity attenuation: 1.

Component	Time for maximum of peak to appear	Peak height for l\% concentration
H_{2}	$46-50 \mathrm{sec}$.	-
air	58 sec.	13.7
CO	1 min .3 sec.	12.8
CH_{4}	1 min .11 sec.	10.3
$\mathrm{C}_{2} \mathrm{H}_{6}$	2 min .6 sec.	7.1
CO_{2}	2 min .38 sec.	5.77
$\mathrm{C}_{2} \mathrm{H}_{4}$	2 min .53 sec.	6.0
$\mathrm{C}_{2} \mathrm{H}_{2}$	5 min .2 sec.	2.08

* Note: Peak heights given in standard chart graduation.

NOMENCLATURE

Greek Symbols
α - emissivity
B - coefficient of volume expansion
π - total pressure, atm.
σ - radiation constant
Ω - efficiency of carbon utilization for $\mathrm{C}_{2} \mathrm{H}_{2}$ production

BIBLIOGRAPHY

(11) Anderson, J. E., Case, I. K., I\&EC Process Design and Development, 1,161 (1962).
(2) Baddovr, R. F., Iwasyk, J. M., I\&EC Process Design and Development, I, 169 (1962).
(3) Bauer, S. H., Duff, R. E., "The Equilibrium Composition of the C/H. System at Elevated Temperatures ", Ios Alamos Scientific Laboratory Report IA- 2556 , Chemistry, TID-4500, 16th Ed., Office of Technical Services, U. S. Dept. of Commerce, Washington 25, D. C.
(4) Bergmann, E. D., "The Chemistry of Acetylene and Related Compounds ", Interscience Publishers, Inc., N. Y. (1948).
(5) Bone, W. A., Jordan, D. S., Chem. Soc. (London) Journal, 71, 41 (1897).
(6) Chupka, W. A., Meschi, D. J., Berkowitz, J., "Reaction of Graphite with H_{2}. Heat of Formation of the Methylene Radical ${ }^{n \prime}$, Symposium on Chemical and Thermodynamic Properties at High Temperatures, XVIIIth International Congress of Pure and Applied Chemistry, Montreal, Canada, August 6-12, 1961.
(7) Cobine, J. D., "Caseous Conductors", Dover Publications Inc., New York, 1958.
(8) Dickerman, P.S., Conference on Extremely High Temperatures, Boston, Mass., March 18-19, 1958, p. 77.
(9) Dow, W. G.. "Eundamentals of Engineering Electronics", J. Willey and Sons, N. Y., 1955.
(10) Drahny, M., Chem. prumys1 6/31, No. 12, 410 and 490 (1956) (translation).
(11) Drowart, J., Burns, R. P., De Maria, G., Ingram, M. G., J. Chem. Phys., 31, 1131 (1959).
(12) Eremin, E. N., et al., Zhurnal Fizicheskoi Khimii, 32, 2315, 2543, and 2767 (1958).
(13) Grey, J., "Heat Transfer from an Ionized Gas to a Gaseous Coolant", ASTIA AD 235082, (1959).
(14) Howard, W. B.,Wood, B. H., Kaltenbacher, E. J., Chem. Eng. Prog., 57 (11), 50, (1961).
(15) Ing, S., M.I.T. Progress Report, (1956).
(16) Iwasyk, J. M., "The Carbon-Hydrogen System at Temperatures above $2,500^{\circ} \mathrm{C} ", S c . D$. Thesis in Chemical Engineering, M.I.T., Cambridge, Mass. (1960).
(17) Jackson, E. A., "A Servey of the Research of Ionized Media", AFCRC-TR-59-174, ASTIA AD 228696 (1959).
(18) Kaepeller, H. J., "Stochastic Theory of Transport Phenomena in Reacting Plasma at Extreme Temperatures", WADC-TR-58-858, ASTIA AD 230245 (1958).
(19) Kroepelin, H., Winter, E., "Thermodynamic and Transport Properties of Gases, Liquids, and Solids", ASME Symposium on Thermal Properties, McGraw-Hill, N. Y., (1959).
(20) Kunugi, T., Tamura, T., Naito, T., Chem. Eng. Prog., 57 (11), 43 (1961).
(21) Leroux, P. J., Mathieu, P. M., Chem. Eng. Prog., 57 (11), 54, (1961).
(22) Leutner, H. W., Stokes, C. S., Ind. Eng. Chem., 53 (5), 341 (1961).
(23) Lobo, W. E., Chem. Eng. Prog., 57 (11), 35 (1961).
(24) Marynowski, C. W., Phillips, R. C., Phillips, J. R., Hiester, N. K., I\&EC Fundamentals, 1, 52 (1962).
(25) Pearce, W. J., "Plasma Jet Temperature Study", WADC-TR-59-346, (1960).
(26) Plooster, M. N., Reed, T. B., J. Chem. Phys., 31, 66 (1959).
(27) Proceedings of an International Symposium on High Temperature Technology, Alisomar, California, Oct. 6-9, 1959, McGraw-Hill Book Co., N. Y., p. 21.
(28) Rossini, NBS Circular 500. Tables of Thermochemical Data.
(29) Skrivan, J. F., Freeman, M. P., "Kinetics of Decomposition of Ammonia and Methane in a Plasma Jet", Symposium on Flames and Plasmas in Chemical Processing, A.I.Ch.E., 54 th Annual Meeting, New York City, Dec. 6, 1961.
(30) Slysh, R. S., Kinney, C. R., J. Phys. Chem., 65, 1044 (1961).
(31) Suits, C. G., J. Applied Phys., 10, 728 (1939).
(32) Szabo, Z., J. Amer. Chem. Soc., 723497 (1950).
(33) Turner, T. D., WThe Properties and Uses of an Arc Plasma Jet Generator", ASTIA AD 236253 (1960).
(34) Vick, G. L., "On the Propagation of Acoustic Waves in Gases at High Temperatures and Reduced Pressures", LMSD-TR-49762 (1959).
(35) Weir, H. M., "Production of Compounds by Means of the Electric Arc", US Patent 2,731,410, Jan. 17, 1956.

BIOGRAPHICAL NOTE

The author was born in Quebec City, Quebec, Canada, on the 27th of April, 1935. He attended from 1947-54 le Petit Seminaire de Quebec, affiliated with Laval University, Quebec City, from which he received his Baccalaureate of Arts in 1954, and Laval University from 1954 to 1958, where he received his B.S. in Chemical Engineering. In 1958-59, he worked as a Patent Examiner at the Patent Office in Ottawa and as a Research Associate in the Department of Chemical Engineering of Laval University. In September 1959 he entered M.I.T. where he received in June 1960 his M.S. in Chemical Engineering, and has continued since then his studies at M.I.T.

He is a member of the Chemical Institute of Canada, of the Engineering Institute of Canada and registered with the Corporation of Professional Engineers of Quebec. Upon graduation, he will become Auxiliary Professor in the Department of Chemical Engineering of Laval University.

He is coauthor of two scientific papers on partial mixing and adiabatic reactors, which have appeared in Can. J. Chem. Eng., 38, 1 (1960) and 39, 192 (1961), and of a Note to the Editor, which has appeared in Can. J. Chem. Eng., 40, 31 (1962).

