
Reactive Avoidance Using Embedded Stereo Vision for MAV Flight

Helen Oleynikova, Dominik Honegger and Marc Pollefeys1

Abstract— High speed, low latency obstacle avoidance is
essential for enabling Micro Aerial Vehicles (MAVs) to function
in cluttered and dynamic environments. While other systems
exist that do high-level mapping and 3D path planning for
obstacle avoidance, most of these systems require high-powered
CPUs on-board or off-board control from a ground station.

We present a novel entirely on-board approach, leveraging
a light-weight low power stereo vision system on FPGA. Our
approach runs at a frame rate of 60 frames a second on VGA-
sized images and minimizes latency between image acquisition
and performing reactive maneuvers, allowing MAVs to fly more
safely and robustly in complex environments. We also suggest
our system as a light-weight safety layer for systems undertak-
ing more complex tasks, like mapping the environment.

Finally, we show our algorithm implemented on a light-
weight, very computationally constrained platform, and demon-
strate obstacle avoidance in a variety of environments.

I. INTRODUCTION

Due to their mobility, Micro Aerial Vehicles (MAVs) are

very well suited for a variety of robotics applications, from

disaster scene surveillance to package delivery. However, in

order to function in unstructured human environments, it is

essential that they are able to avoid obstacles and navigate

autonomously.

There exist many sophisticated systems showing this type

of obstacle avoidance, in addition to building up a full map

of the environment, and using advanced 3D path planning

techniques. However, most of these are equipped with high-

power multicore CPU systems to have sufficient power to run

these algorithms, or rely on off-board processing on ground

station CPUs, which in turn require communication over a

high-latency wireless link.

Carrying a heavy payload, such as a high-power CPU, not

only increases the power consumption and reduces the flight

time, but also requires larger and more powerful motors and

propellers, making the system more dangerous to be around.

Smaller MAVs are safer, easier to work with, and frequently

cheaper than high-powered MAV systems.

Additionally, using off-board or non-embedded CPUs in-

stead of embedded solutions increases the latency of obstacle

detection and avoidance. Minimizing the latency between

seeing an obstacle and being able to respond to it is also

a very desirable quality in many robotics applications: for

example, being able to navigate through a moving crowd

1The authors are with the Computer Vision and Ge-
ometry Group, Institute for Visual Computing, Computer
Science Department, ETH Zürich, 8092 Zürich, Switzerland
oelena@student.ethz.ch,{dominik.honegger,
marc.pollefeys}@inf.ethz.ch

Dominik Honegger is partially supported by the Swiss National Science
Foundation (SNF) under grant 150151.

of people, or flying through an environment that has many

occlusions. Reducing the time before the robot is able to

react to threats makes for a safer and more robust system.

This paper shows a novel solution to these problems:

using a high-speed, low-latency passive stereo vision on

FPGA system [1], we are able to use simple, fast reactive

avoidance algorithms to avoid a variety of obstacles. Our

approach is shown on a light-weight, inexpensive, and very

computationally constrained MAV platform. The resulting

system is able to fly autonomously in cluttered environments

indoors and outdoors while meeting low power and small

size constraints. Additionally, the stereo vision system pro-

vides disparity images at 640x480 pixels at 60 Hz, which is a

much higher resolution and frame rate than any comparable

system. Having a higher resolution allows us to avoid smaller

obstacles, while having a significantly higher frame rate (at

least double of typical systems) allows us to avoid dynamic

obstacles or move faster.

Since our approach is computationally light, we suggest

to use it as a light-weight safety layer for more complex

systems. Though currently the algorithms run on a mobile

CPU, they could be re-implemented on the FPGA, creating

a one-chip solution for improving the safety and robustness

of MAVs by allowing them to quickly avoid obstacles. The

additional requirements of the FPGA vision system and

mobile CPU are only 5 Watt power draw and 50 g payload.

The contributions of this work are as follows: we first show

related work in the field of obstacle avoidance on MAVs

from depth or image data (Section II). Second, we provide

a simple and robust obstacle detection algorithm based on

disparity maps (Section III). We then present a method of

planning short-term avoidance waypoints in the map space

(Section IV). We then show an efficient implementation in

our test hardware (Section V). Lastly, we give results of the

obstacle detection in indoor and outdoor scenarios, including

video of selected test flights (Section VI).

II. RELATED WORK

There has been a substantial amount of work done in

allowing MAVs to safely navigate around a variety of

environments. While many of these approaches use very

sophisticated techniques, one drawback they all share in

common is the need for powerful onboard or off-board CPUs

to do the heavy processing required.

For example, a similar result is available on a small-

size quadrotor platform demonstrating high-speed reactive

avoidance of trees in a dense forest environment [2], but

there are a few key differences to our approach. While

their approach focuses on a monocular camera and extensive

training data from a skilled pilot, which is processed off-

board the quadrotor platform at 10 Hz and sent back to the

robot over a wireless link. In comparison, our approach does

not rely on any training data, is entirely on-board, and runs

at 60 Hz with very low latency while achieving comparable

results.

There are other projects that integrate obstacle avoid-

ance algorithms into a global mapping framework, e.g.

laser SLAM, visual SLAM, and other long-term mapping

algorithms. The applications of these systems are quite

compelling, such as power line detection and avoidance [3]

or reactive avoidance of poles and other small obstacles

[4]. Others show high level planning from 3D maps from

stereo [5] [6], or from Kinect [7] [8]. Other systems solve

similar use-cases as ours: vision-based avoidance in GPS-

denied environments [9]. Another approach uses push-broom

stereo to detect and avoid obstacles, but relies on predictable

forward motion of the robot [10]. However, all of these

approaches use high-power off-board workstations or feature

much bigger, power-hungry, and dangerous platforms with

laptop CPUs onboard.

Again, our method obviates the need for high-power on-

board or off-board processing, and requires only the most

basic computations capable of being carried out easily on a

mobile CPU. The fact that we only use a short-term map

also decreases our reliance on accurate odometry or position

estimates.

Other approaches focus on doing faster avoidance by

simplifying the data coming from depth sensors: such as

filtering depth camera data into planes [11], or converting

dense stereo into digital elevation maps [12], or even single-

image depth from training data [13]. But again, all of these

approaches demonstrate a frame rate of 20-30 Hz and require

substantial off-board processing, while our conversion of

disparity images to U-maps requires much less computing

power.

While some other works do demonstrate entirely on-board

processing, for example using reactive avoidance on a ground

robot, the latency is much higher and this paper features

much more sophisticated approach to obstacle avoidance

[14]. Others show flow-based navigation through corridors,

though again our approach is more flexible to different types

of obstacles [15].

Schmidt et al. also use a stereo vision system on FPGA

to do high-level navigation on a quadrotor [16]. However,

their system is significantly heavier (the vision stack payload

requirement alone is 740 grams), processes stereo disparities

at only 15 Hz, and has an overall processing latency of 250

ms - which is insufficient for high-speed, reactive avoid-

ance. Though they demonstrate very compelling waypoint

following and navigation capabilities, in order to function in

changing, dynamic environments, there needs to be another

extremely low-latency reactive obstacle avoidance compo-

nent, which we propose in this paper.

(a)

(b) (c)

(d)

Fig. 1: A grayscale (a) and disparity image (b), collected

in an outdoor forest environment. The disparity map can be

split into two further maps. In the V-map (c), which is a

histogram of disparity values accumulated over rows of the

image, the ground plane is visible as a white diagonal line.

The other representation is the U-map (d), accumulated over

the columns of the image, showing obstacles as contiguous

horizontal lines.

III. OBSTACLE DETECTION

In this section we describe the obstacle detection algorithm

based on column accumulated dense disparity images. The

overall flow of the obstacle detection algorithm is to convert

the disparity image into a U-disparity map (U-map, an

accumulation of disparity values along columns), exploit the

special structure of this representation to detect objects in

the U-map, and then cluster them into distinct obstacles.

A. U-V Disparity Maps

We base our obstacle detection method on U-V disparity

maps, as described in [17]. The general idea is split the

disparity image into two histograms: one accumulated along

the columns of the image (the U-map) and one accumulated

along the rows (the V-map). For example, an n×m disparity

image with 32 distinct disparity values will produce a n×32
U-map and 32 × m V-map. Note that as disparity is an

inverse-depth measure, distances are not linear with position

in the U- or V-maps.

Fig. 1a shows a sample image of a forest scene, and its

corresponding disparity map in Fig. 1b. Fig. 1d shows the U-

map generated from the disparity image, where obstacles are

projected onto contiguous horizontal lines. Fig. 1c shows the

V-map, where the ground plane is projected into a diagonal

line, and can be used for ground plane segmentation. Due

to the accumulation step, both U-map and V-map are less

affected by noise and incorrect estimates in the disparity map.

B. Obstacle Detection from U-maps

Our algorithm for segmenting obstacles from the U-map

depends on obstacles mostly spanning a small number of

disparity values. The tree on the right in Fig. 1a is visible in

the U-map in Fig. 1d as a horizontal shape. As the distance

to the camera is the same for the entire tree, all disparity

values of the tree are in the same range.

Obstacle segmentation from this representation depends

simply on finding connected components in this space, as

shown in a red bounding box in Fig. 2a, and projecting

them back into the world frame. We present an efficient

implementation of this in Section V-B.

IV. PATH PLANNING

In this section, we describe how we use the U-map

obstacle detections to build a map of the environment, and

then how that map is used to plan a collision-free path for

the robot.

The method we present for mapping and path-planning

relies on a short-term map: it deals with noise in the image

and intermittent obstacle occlusions, but does not require

accurate odometry and does not keep a globally consistent

map over long periods of time.

Our approach converts the obstacles from Section III-B

into an elliptical approximation, merges them with ellipses

from previous frames to build up a short-term map, and then

plans a piecewise linear shortest path through the map.

Our method has several differences and advantages over

other short-term reactive avoidance methods, such as Vec-

tor Field Histogram+ (VHF+) [18]. VHF+ only plans one

setpoint in advance, while we plan a path into the future,

allowing for smoother trajectory control. Additionally, VHF+

and other methods require switching between an occupancy

grid and a planning representation, while our planning is

performed directly in map space.

A. Short-Term Mapping

The short-term mapping step approximates detected obsta-

cles as ellipses and merges them into the current map. The

main steps are as follows: first, convert the bounding boxes

detected from the U-map into an ellipse in the world frame.

Then, determine if, for each detection, the ellipse is likely

to originate from the same obstacle as an ellipse from the

existing map. If so, merge them together. At the end, clear

out any obstacles that are older than a time horizon to keep

odometry errors from accumulating into fake obstacles.

Obstacles are represented as ellipses, with an angle per-

pendicular to the yaw angle of the quadrotor (an example

can be seen in Fig. 2c). We introduce some notation: p is

the position of a point in 2D space, Gp
x
e is the x component

of the position of the ellipse e expressed in the global frame

(a)

𝒖𝟏 𝒖𝟐
𝒅𝟐

𝒅𝟏

(b)

𝐺𝐩𝑒

Robot

𝐸𝐬𝑒𝑥 𝐸𝐬𝑒𝑦

𝐺𝐩𝑏

𝐺𝜓 𝑏

(c)

Fig. 2: We show a sample segment of a U-map (a), repre-

senting an obstacle with its detection bounding box overlaid

in red. An overlay of an ellipse on the obstacle (b), showing

the different quantities used for the obstacle calculation –

u1, u2, the left- and right- most edges of the obstacles in u,

and d1 the maximum disparity and d2 the mean disparity of

the object. Part (c) shows the resulting ellipse in the world

frame, and the 5 values that describe its center Gpe and size

Ese.

G. G is the global/inertial frame, B is the body frame of the

quadrotor (at the time of ellipse observation), and E is the

ellipse’s local frame. Gψb represents the yaw angle between

the robot’s body frame and the global coordinate frame.

At the first time step (k = 0), we initialize an ellipse

for each object from the procedure described in Section

III-B. Each ellipse is described by 5 parameters: 2 for the

center Gp
x,y
e (in the global frame), 2 for the size (width and

thickness) Es
x,y
e (in the local frame of the ellipse), and yaw

Gψe of the major axis of the ellipse relative to the world

frame.

These values are derived from the bounding boxes from

Section III-B, where f is the focal length in pixels, b is the

baseline of the stereo setup, u1 is the minimum u value of

the bounding box (left edge), u2 is the right edge, d1 is the

maximum disparity, and d2 is the mean disparity. Fig. 2b

shows the ellipse fitted to a U-map obstacle, and Fig. 2c,

shows the dimensions of the resulting ellipse in the world

frame.

Bpe =

[

b(u1+u2)
2d2

fb
d2

]

(1)

Bse =

[

b(u2−u1)
2d2

fb
d2

− fb
d1

]

(2)

Gψe = Gψb (3)

Then, while the width Es
x
e and thickness Es

y
e of the ellipse

remain in the ellipse’s local frame (which is defined by the

yaw Gψe, and is the same as the robot’s yaw at the time of

observation Gψb), the center coordinates need to be converted

into the robot’s world frame. Below, we describe the state

by the mean µ and covariance σ, which makes it simpler to

perform operations on multiple ellipses.

GRb =

[

cos(Gψb) − sin(Gψb)
sin(Gψb) cos(Gψb)

]

(4)

Gpe = GRb Bpe +G pb (5)

µ =
[

Gp
x
e Bp

y
e Es

x
e Es

y
e

]⊤
(6)

To get the covariance, we find the Jacobian of the equations

derived in Eqs. (1 – 2) above.

J =
∂(xb, yb, ...)

∂(u1, u2, ...)
(7)

=













b
2d2

b
2d2

0 − b(u1+u2)
2d2

2

0 0 0 − fb

d2

2

− b
2d2

b
2d2

0 − b(u2−u1)
2d2

2

0 0 − fb

d2

1

fb

d2

2













(8)

Bσ = J⊤J+Q (9)

Where Q is empirically determined measurement noise,

usually diagonal. Then the covariance is rotated into the

world frame:

GR4b =

[

GRb 0
0 GRb

]

(10)

Gσ = GR
⊤

4b Bσ GR4b (11)

Over subsequent timesteps (k > 0), we again follow a similar

procedure. Each of the detections in the current frame is

transformed into the world frame. Then, for each object in

the current frame, it is compared with objects found in the

previous frames, and a confidence value is calculated for the

detected objects belonging to the same physical entity.

In order to do this check on comparable ellipses, the

ellipses in the existing map are rotated to the quadrotor’s

current yaw. We now introduce a new coordinate frame: N ,

which is the global frame rotated to match the quadrotor’s

current yaw.

Nµ = |GRb|Gµ (12)

Nσ = |GR4b|
⊤

Gσ|GR4b|+Q (13)

We estimate the probability of the two ellipses belonging to

the same object using the Gaussian probability density func-

tion, computing the probability of the means and covariances

originating from the same distribution:

p = pdf(Nµ2 −N µ1,N σ2) (14)

If the two objects are determined to belong to the same

physical entity, then their ellipses, described by the old mean

and covariance Nµ1 and Nσ1 and new Nµ2, Nσ2 are

merged based on minimizing their combined covariance [19].

The output is the merged Nµm and Nσm, and we accept the

latest yaw estimate Gψ2 as the yaw of the resulting obstacle.

Nσm = (Nσ
−1
1 +N σ

−1
2)−1 (15)

Nµm = Nσm (Nσ
−1
1 Nµ1 +N σ

−1
2 Nµ2) (16)

Gψm = Gψ2 (17)

Note that we add to the diagonal of the covariance an extra

error to reflect the additional uncertainty of the merged

estimate, especially since we allow for dynamic obstacles. It

is possible to neglect this term, but then dynamic obstacles

have a very significant time delay between changed position

and update in the map.

B. Waypoint Planning

We plan a path forward directly in front of the quadrotor,

then take the shortest path around any obstacles that are in

the way. The general idea behind the algorithm we use is that

the shortest path is along the edge of an obstacle (assuming

we inflate all obstacles by a safety margin), as long as it

does not overlap with another obstacle.

The general procedure for this waypoint planning is de-

scribed in Algorithm 1. We use the version of the ellipses

rotated into the current yaw angle of the robot to simplify

calculations, as these are already available from Eq. (12, 13).

For determining whether there is a collision (function

hasCollision in the algorithm) between the waypoint and

an obstacle, we use the following formulas, where a is the

width of the obstacle at the intersection of the waypoint

with the ellipse (Gp
y
w), and ”collision” checks whether the

x coordinate of the waypoint, Gp
x
w, is within the width of

the ellipse or not.

a = Es
x
e

√

1− (Gp
y
w −G p

y
e)2

Gs
y
e
2 (18)

collision =

∣

∣

∣

∣

Gp
x
w −G px

e

a

∣

∣

∣

∣

> 1.0 (19)

The algorithm in described in Algorithm 1 continues to test

waypoint candidates until an allowable collision-free path

is found. In the case that there is no admissible path, the

quadrotor plans a path to the side until an admissible path

is found. However, this algorithm is designed for handling

environments with sparse obstacles, rather than complex

environments.

V. IMPLEMENTATION

In the following section, we introduce the physical test

system and its constituent parts, and then describe an ef-

ficient implementation of the developed obstacle avoidance

algorithms within the different hardware components.

A. Test System

The system consists of three main hardware components:

the stereo vision system on FPGA, mobile CPU for higher-

level vision processing (housed on the same board as the

FPGA), and a PX4 FMU for low-level flight control. An

overview of the components and their respective tasks is

Algorithm 1: Waypoint Checking

Input : waypoints, a list of waypoints in robot’s body

frame, (x, y)
Output: wps out, waypoints representing path with no

obstacle collisions, (x, y)

foreach wp in waypoints do

wps to check.append(wp)

while allowed wps is empty do

foreach wpc in to check wps do

collision ← obstacles.hasCollision(wpc)

if collision then

leftpath ← obstacle.avoidLeft(wpc)

rightpath ← obstacle.avoidRight(wpc)

to check wps.append(leftpath)

to check wps.append(rightpath)

else

allowed wps.append(wpc)

end

end

wps out(k) ← allowed wps.closest(wps out(k − 1))

k++

end

shown in Fig. 3. We use a combination of FPGA and mobile

CPU as presented in [1] to process image data. The mobile

CPU receives disparity values estimated within the FPGA

and calculates the U-map. In conjunction with an FMU for

attitude estimation the detected obstacles are converted into

ellipses in the world frame. Based on a short term map

waypoints are generated and sent to the position controller

on the FMU. An optical flow sensor as shown in [20] is

used to measure local position and support the short term

mapping. Though integrating optical flow leads to some drift,

the advantage of our approach is that it is immune to slow

drift in the position estimate.

We use a Samsung Exynos 4412 System on Chip Module

with a built in Cortex-A9 Quad Core mobile CPU. The FPGA

system is based on a Xilinx Artix7 XC4A100T module and

is connected to the dedicated camera interface of the mobile

CPU. The two cameras are equipped with MT9V034 CMOS

image sensors from Aptina with global shutter. Images with

640x480 pixels resolution and corresponding disparity map

are provided to the mobile CPU with 60 frames per second

update rate.

We use a custom quadrotor based on an ARDrone frame

and motors. A PX4 FMU is used for attitude and position

estimation. This system is powered by a 2200 mAh battery,

running at 11 Volts. This is sufficient for about 15 minutes

of flight time, with all the systems running and doing vision

processing at frame rate. Fig. 4 shows the test system

quadrotor, where the FPGA/mobile CPU vision system is on

top, stereo head mounted in front, and a downward facing

PX4 FLOW optical flow sensor is placed in the back.

FPGA Vision System

Sync

Quadrotor

Control

Undist/

Rect

SGM

Stereo

Mobile CPU

Local

Ellipse

Map

Waypoints

PX4 FMU

Attitude

Estimator

Umap

Position

Estimator

Position

Controller

IMU PX4 FLOW

a
tt

it
u

d
e

se
tp

o
in

t

p
o

si
ti

o
n

Fig. 3: System overview, the FPGA vision system estimates

disparity values and transmits them to the mobile CPU.

Obstacles are detected in the mobile CPU based on a U-

map and transformed to ellipses. Generated waypoints are

sent to a position controller running on the FMU. Finally

thrust commands are sent to the motor controllers.

Stereo Head

PX4 FMU

PX4 Flow

FPGA/

Mobile CPU

Fig. 4: Test system quadrotor, with relevant parts labeled.

At the center of the quadrotor, we have the PX4 FMU

which is responsible for the low-level flight control and

state estimation, and above is the stereo vision on FPGA

system, including a mobile CPU where these algorithms

run. Additionally, there is a stereo head in the front, and a

downward-facing optical flow sensor with sonar in the back.

B. Obstacle Detection

In order to be able to run this on a computationally

constrained platform, we need to construct U-maps and

segment obstacles from U-maps very efficiently. Our goal

is to process the images at least at frame rate, so the total

time budget from acquisition to outputting a new waypoint

estimate is only 16 ms.

When we construct a U-map from the disparity image,

we subsample the U-map by a factor of 4 in the horizontal

dimension. We still iterate over every pixel in the original

image, so we do not lose any data, but simply filter out some

of the noise by using larger bins.

Then, we iterate over each horizontal line in the U-map,

and collect all contiguous lines whose individual pixels are

above a certain threshold (10% of the maximum value), and

the sum of whose pixels is also above a different threshold

(200% of the possible value of each individual histogram

bin).

The next objective is to group the contiguous lines into

cohesive objects that may span several disparity ranges. This

is accomplished by iterating over every line, in order of

biggest disparity (closest obstacle) first, and finding any lines

that overlap horizontally in the next farther disparity. If so,

these lines are now considered part of the same object, shown

as red bounding boxes in Fig. 5c.

After iterating through all detected lines and merging into

detection boxes, each detection box now represents a distinct

obstacle.

C. Waypoint Planning

Waypoints are laid out evenly spaced directly in front

of the quadrotor. They are then fixed in one axis, and are

only allowed to move to the left or right to avoid obstacle

collisions.

During our experiments, we used a small number of

waypoints with large spacing. As long as obstacles were

inflated by at least half the waypoint spacing, this is safe and

no obstacles will be missed due to being between waypoints.

An updated version of the closest waypoint, in the world

frame, is sent from the mobile CPU to the FMU with

each new image frame (60 Hz), so the quadrotor is always

following the most current estimate of the world state.

VI. RESULTS

In this section, we first show results of the obstacle

detection and path planning algorithm in indoor and outdoor

environments, including the expected latency. We then show

autonomous flight and obstacle avoidance in both environ-

ments on our physical test platform.

A. Obstacle Detection and Path Planning

Fig. 5a shows a forest scene with trees detected as obsta-

cles. The segmentation of the three closest trees is overlaid

as colors in Fig. 5b. Detected obstacles are visible in the

U-map in Fig. 5c and the corresponding ellipses in a short

term map are presented in Fig. 5d. Obstacle detection and

ellipse representation transformation runs at frame rate of the

disparity maps.

The timing of the individual steps of the pipeline, includ-

ing the cumulative latency is shown in Table I. The timings

are taken from the beginning of the image exposure to the

updated waypoint being sent to the flight controller. The

disparity estimation runs at frame rate of the image sensors.

The radial distortion correction module buffers 40 lines of

the image and therefore causes most of the latency within the

FPGA system. On the mobile CPU, the U-map generation is

the most time-consuming task.

B. Image Segmentation

Additionally, as can be seen in the results in Fig. 5b,

this algorithm can also be used for image segmentation by

back-projecting obstacles detected in the U-map back into

image space. This approach gives very clean disparity-based

(a) (b)

(c)

−1 0 1 2 3 4 5 6
−2

−1

0

1

2

x position (m)

y
p

o
si

ti
o

n
 (

m
)

(d)

Fig. 5: An example frame from an outdoor forest scenario

including corresponding image segmentations and planned

waypoints. The grayscale image is shown in (a). Part (b)

shows the disparity map, with the segmentation of the closest

three obstacles shown in colors, the corresponding U-map is

shown in (c), where individual obstacles are highlighted with

red bounding boxes. The current position of the quadrotor in

the world frame (d) is shown as a blue arrow, the suggested

waypoint path around the three elliptical obstacles is shown

in pink. Note that some of the background obstacles are out

of range of the map representation.

Device Operation Time (us)
Cumulative

Latency (us)

Camera Image Capture 3000 us 3000 us

FPGA
Undistort./Rectification 1200 us 4200 us
SGM Stereo 300 us 4500 us

Mobile CPU

Camera Driver 4100 us 8600 us
Umap Extraction 5300 us 13900 us
Obstacle Segmentation 80 us 13980 us
Ellipse Map 110 us 14090 us
Waypoint Planning 20 us 14110 us

TABLE I: Table of timings of individual parts of the algo-

rithm and overall latency. The timings begin at the beginning

of image exposure and end at waypoint generation.

segmentation of obstacles. If further accuracy is needed,

then the ground plane pixels can also be removed from the

segmentation using the V-map and ground plane estimation

[17].

C. Dataset Testing

In order to validate both our image segmentation and

planning algorithms, we recorded 17 diverse datasets by

carrying our system around hand-held, and avoiding running

into obstacles. Of the datasets, 7 were in an indoor/lab

setting, 5 were taken in a dense forest, 3 in a more sparsely

occupied park, and 2 datasets had quickly moving dynamic

obstacles. In each of the situations except the dynamic obsta-

cle scenarios, the quadrotor was moved at a speed between 1

and 5 m/s. We confirmed correct obstacle segmentation and

reasonable avoidance behavior by inspection of the planned

path.

D. Autonomous Flight

We verified the system in indoor and outdoor test flights.

We set a start and an end waypoint with obstacles in direct

line of sight. With the obstacle detection and path planning

algorithm enabled the quadrotor sucessfully avoided any

obstacles on the way to the end waypoint. This paper is

accompanied by a video showing the flight tests.

VII. CONCLUSION

In this work, we have presented a low latency obsta-

cle avoidance system that is suitable for running on low-

power embedded devices. We demonstrate successful obsta-

cle avoidance on an MAV platform in a variety of outdoor

and indoor environments.

Our algorithm has two major contributions over existing

work: first, it uses a novel method of segmenting obstacles

directly from the U-map representation of a disparity map,

which is much faster than plane fitting or more complex

obstacle detection schemes. Second, it demonstrates the very

low computational power requirements of our system, by

processing 640x480 pixel images at a frame rate of 60 Hz,

which is a larger resolution and twice the frame rate of

other systems, on-board a low power mobile CPU and FPGA

combination.

Due to the simplicity of the algorithm, this system is

suitable for conversion into a single safety layer chip, which

would output obstacle positions and object segmentations at

a high frame rate with minimum latency. The cumulative

latency from image exposure to waypoint planning is 14.1

milliseconds. At a flight speed of 5 m/s the system is

therefore able to react to an obstacle within 0.07 m flight

distance. This could then be used as an additional level of

robustness for more complex systems, or a pre-processing

step for object detection or mapping. Such a fall-back safety

layer is essential in any applications in which robots are

placed in the same environment as humans, who tend to be

the most unpredictable dynamic obstacles.

REFERENCES

[1] D. Honegger, H. Oleynikova, and M. Pollefeys, “Real-time and low
latency embedded computer vision hardware based on a combination
of fpga and mobile cpu,” in Intelligent Robots and Systems (IROS),

IEEE International Conference on, IEEE, 2014.

[2] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive uav
control in cluttered natural environments,” in Robotics and Automation

(ICRA), 2013 IEEE International Conference on, pp. 1765–1772,
IEEE, 2013.

[3] S. Hrabar, “3d path planning and stereo-based obstacle avoidance for
rotorcraft uavs,” in Intelligent Robots and Systems, 2008. IROS 2008.

IEEE/RSJ International Conference on, pp. 807–814, IEEE, 2008.
[4] S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli, “Flying fast

and low among obstacles,” in Robotics and Automation, 2007 IEEE

International Conference on, pp. 2023–2029, IEEE, 2007.
[5] F. Andert, F. Adolf, L. Goormann, and J. Dittrich, “Mapping and path

planning in complex environments: An obstacle avoidance approach
for an unmanned helicopter,” in Robotics and Automation (ICRA),

2011 IEEE International Conference on, pp. 745–750, IEEE, 2011.
[6] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys,

“Autonomous obstacle avoidance and maneuvering on a vision-guided
mav using on-board processing,” in Robotics and automation (ICRA),

2011 IEEE international conference on, pp. 2472–2477, IEEE, 2011.
[7] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,

and N. Roy, “Visual odometry and mapping for autonomous flight
using an rgb-d camera,” in International Symposium on Robotics

Research (ISRR), pp. 1–16, 2011.
[8] A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin,

D. Maturana, D. Fox, and N. Roy, “Estimation, planning, and mapping
for autonomous flight using an rgb-d camera in gps-denied envi-
ronments,” The International Journal of Robotics Research, vol. 31,
no. 11, pp. 1320–1343, 2012.

[9] S. Ahrens, D. Levine, G. Andrews, and J. P. How, “Vision-based
guidance and control of a hovering vehicle in unknown, gps-denied
environments,” in Robotics and Automation, 2009. ICRA’09. IEEE

International Conference on, pp. 2643–2648, IEEE, 2009.
[10] A. J. Barry and R. Tedrake, “Pushbroom stereo for high-speed nav-

igation in cluttered environments,” in Proceedings of the 2015 IEEE

International Conference on Robotics and Automation (ICRA), 2015.
[11] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot

localization and navigation,” in Robotics and Automation (ICRA), 2012

IEEE International Conference on, pp. 1697–1702, IEEE, 2012.
[12] F. Oniga and S. Nedevschi, “Processing dense stereo data using

elevation maps: Road surface, traffic isle, and obstacle detection,”
Vehicular Technology, IEEE Transactions on, vol. 59, no. 3, pp. 1172–
1182, 2010.

[13] I. Lenz, M. Gemici, and A. Saxena, “Low-power parallel algorithms
for single image based obstacle avoidance in aerial robots,” in In-

telligent Robots and Systems (IROS), 2012 IEEE/RSJ International

Conference on, pp. 772–779, IEEE, 2012.
[14] D. S. O. Correa, D. F. Sciotti, M. G. Prado, D. O. Sales, D. F. Wolf,

and F. S. Osório, “Mobile robots navigation in indoor environments
using kinect sensor,” in Critical Embedded Systems (CBSEC), 2012

Second Brazilian Conference on, pp. 36–41, IEEE, 2012.
[15] A. Beyeler, J.-C. Zufferey, and D. Floreano, “3d vision-based naviga-

tion for indoor microflyers,” in Robotics and Automation, 2007 IEEE

International Conference on, pp. 1336–1341, IEEE, 2007.
[16] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa,

“Stereo vision based indoor/outdoor navigation for flying robots,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International

Conference on, pp. 3955–3962, IEEE, 2013.
[17] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detec-

tion in stereovision on non flat road geometry through” v-disparity”
representation,” in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2,
pp. 646–651, IEEE, 2002.

[18] I. Ulrich and J. Borenstein, “Vfh+: Reliable obstacle avoidance for
fast mobile robots,” in Robotics and Automation, 1998. Proceedings.

1998 IEEE International Conference on, vol. 2, pp. 1572–1577, IEEE,
1998.

[19] J. E. Davis, “Combining error ellipses,” CXC memo, 2007.
[20] D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys, “An open

source and open hardware embedded metric optical flow cmos camera
for indoor and outdoor applications,” in Robotics and Automation

(ICRA), 2013 IEEE International Conference on, pp. 1736–1741,
IEEE, 2013.

