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A new simulation technique is developed for calculating the properties of 
chemically reactive and associating (hydrogen bonding, charge transfer) sys- 
tems. We call this new method reactive canonical Monte Carlo (RCMC). In 
contrast to previous methods for treating chemical reactions, this algorithm is 
applicable to reactions involving a change in mole number. Stoichiometrically 
balanced reactions are attempted in the forward and reverse directions to 
achieve chemical equilibrium. The transition probabilities do not depend on 
the chemical potentials or chemical potential differences of any of the compo- 
nents. We also extend RCMC to work in concert with the isothermal-isobaric 
ensemble for simulating chemical reactions at constant pressure, and with the 
Gibbs ensemble for simultaneous calculation of phase and chemical equi- 
libria. Association is treated as a chemical reaction in the RCMC formalism. 
Results are presented for dimerization of simple model associating fluids. In 
contrast to previous methods, the reactive Gibbs ensemble can be used to calcu- 
late phase equilibrium for associating fluids with very strong bonding sites. 
RCMC simulations are performed for nitric oxide dimerization and results 
are compared with available experimental data in the liquid phase. Agreement 
with experiment is excellent. Results for a vapour phase simulation are also in 
remarkable agreement with estimates based on second virial coefficient data. 

1. Introduction 

Reliable methods for predicting the thermodynamics of  associating fluids (e.g. 
water, alcohols, amines) are needed in many chemical and biological applications. 
Recently there has been much interest in developing statistical mechanical theories of 
molecular association and in performing computer simulations as a means of testing 
the theories [1-12]. In a previous paper [12] we presented computer simulations 
for phase equilibria of associating fluids with moderately strong bonding sites, 
bond/ LJ ~ 10 ,  where e b~  and e LJ a r e  the well depths for the bonding (associa- 

tion) and Lennard-Jones (LJ) interactions, respectively; for stronger bonding sites 
equilibration was prohibitively slow using conventional simulation methods. The 
models with moderate bonding strengths studied previously show appreciable associ- 
ation in the liquid phase at low temperatures, but little bonding near the critical 
point or in the vapour  phase. Many  real associating fluids exhibit greater bonding, 
and more vapour  phase association than shown by our previous models. In order to 
solve the problem of simulating strongly associating fluids, we have developed a new 
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simulation ensemble that facilitates direct sampling of the formation and destruction 
of  bonds in the fluid. We treat association as a chemical reaction; the new simulation 
technique can be used to study chemical reaction equilibrium as well as physical 
association. We call our method reactive canonical Monte Carlo (RCMC). 

In our previous work we modelled association by using a simple pair potential 
comprised of a reference term ~b ref, and a bonding term ~b b~ 

q5(12) qsref(12) Jr- ~ Z " b ~  ' = q)A8 ~rAB), (1) 
A B 

where (12) stands for the positions and orientations of molecules 1 and 2, q~b~nd is the 
attractive potential between association sites A and B on molecules 1 and 2, rAB is the 
site-site distance between site A on molecule 1 and site B on molecule 2, and 
the summations are over all bonding sites. We used the LJ 6-12 potential for ~b rCr, 

../.bond and square-well attractive sites for ~'AB - For off-centre spherical square-well 
bonding sites the bonding potential is written as 

bond 
. b o n d /  x --(. , if rAB < Orb, 
gAB ~raB)= (2) 

0, i f  r AB > Crb, 

where e b~ is the depth of the square-well and crb is the diameter of  the square-well 
bonding site. The bonding site is located a distance lb from the centre of the reference 
LJ sphere. 

Methods that have previously been developed to simulate chemically reactive 
systems [13-17] have all been confined to reactions that conserve the number of 
molecules, and so are not applicable to association reactions such as dimerization, 
etc. Coker and Watts [13] used a modification of the grand canonical Monte Carlo 
(GCMC) technique to calculate chemical equilibrium. Their method requires the 
specification of the chemical potential difference between any two species. The 
method of Kofke and Glandt [14] involves a modification of GCMC they call the 
semi-grand canonical ensemble. In the semi-grand ensemble the chemical potential 
differences between all the species and a reference species are specified. This method 
has been extended to the isobaric ensemble, and an extension to the Gibbs ensemble 
[18,19] has been outlined, but not implemented [14]. Sindzingre et al. [15,16] 
developed a simulation method also based on chemical potential differences. Shaw 
[17] developed a new isobaric Monte Carlo simulation method based on the atomic 
rather than the molecular viewpoint. Shaw's method is called the NatomsPTensemble,  
and does not involve specifying the chemical potential differences. Our method is 
more similar in spirit to Shaw's than to the other methods cited. 

2. Derivation of reactive canonical Monte Carlo 

The grand canonical partition function for a mixture of C components is 

. . . .  Q ( N 1 , . . . , N c ,  V , T ) e x p  3 ~ _ , N i a i  , (3) 
N I =0 Nc=O i=1 

where Ni is the number of molecules of  type i, V is the volume of the system, 
/3 = 1 /kT ,  T is the temperature, k is Boltzmann's constant, Q( . - .  ) is the canonical 
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partition function for the mixture and #i is the chemical potential for component i in 
the mixture. If we approximate Q semi-classically then we obtain [20] 

e . . . . . . .  exp / 3 Z N i #  i -  Z l n ( N / ! )  
NI=0 Nc=O i=l i=1 

+ ~ Ni In (qi) - / 3~ dsN~ dcoN~ ' "  daNe dcvNc, (4) 
i=1 

where s = r / V  1/3 is a set of scaled position coordinates [21] sNi~  Sl "''SNi, and 
co Ni - co I - �9 �9 tONi are the orientations of the N i molecules of type i, qi is the partition 
function for an isolated molecule of type i and q/is the configurational energy of the 
mixture. To a good approximation, the qi s for molecules can be written as a product 
of translational and internal contributions [20] 

qi = qi, tqi, rqi, vqi, e, (5)  

w h e r e  qi ,  t = V/A3 is the translational partition function, with A the de Broglie 
wavelength, and qi, r, qi, v and qi, e are the rotational, vibrational and electronic 
partition functions, respectively. Now consider a chemical reaction involving any 
number of the species in the mixture. This may be written as [22] 

C 

Z l J i M i = O ,  (6) 
i=1 

w h e r e  M i is the chemical symbol for component i and ui is the stoichiometric 
coefficient of  component i (positive for products, negative for reactants, and zero 
for species that do not enter the reaction). For any chemical reaction at equilibrium 
we may write 

C 

~-'~ l,/i#i = O. (7) 
i=1 

There is no need to specify the reaction at this point; the development is for any 
single reaction. Borrowing notation from Shaw [17], we denote as r an arbitrary 
initial state of the system (sUl03 uj "'" sNccoNc). The probability that a system will be 
in state r is 

Pr = ~ e x p  / 3 Z N i # i - Z l n ( N i ! ) +  Ni ln(qi ) - /3~#, .  , (8) 
i=1 i=l i=1 

where q/r is the configurational energy of state r. If a single reaction proceeds in the 
forward direction from state r to a new state s then the probability of  observing that 
state is 

1 [ c c c 
P, = ~ e x p  /3 Z ui# i + 3 ~-~ Ni#i  - Z l n  [(Ni + ui)!] 

~ i=1 i=1 i=1 

+ ~_~ u i in (qi) + Z Ni In (qi) - / 3 ~ s  �9 (9) 
i=I i=1 

Taking the ratio P,/P,. = P,.~s gives the transition probability for a single reaction in 
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the forward direction. If  we assume chemical equilibrium we obtain 

/ ~  [" -Ni! ] /~1 } Pr ~s = exp in + ui In (qi) - ~ r  ~ s  (10) 
i:1 k(ui ~- yi) !] , 

where 5 ~ r ~  = ags - q/r. The chemical potentials have dropped out of equation (10) 
by application of equation (7). Equation (10) can be re-written as 

C C N i [  (11) 
P ~ ,  = exp (-/35aRr~) H q/~i H (U; /)i)! " + i=1 i=I 

We note that the term IIC_1 q[~ is related to the ideal gas equilibrium constant defined 
by Hill [23], 

C 
Hq? 

) = _ i:1 (12) C 
i=1 H g u i  

i=1 
where V is the volume of the system. 

Now consider a single reaction in the reverse direction with the final state labelled 
as t. The transition probability for a reaction in the reverse direction, P ~  t, can be 
generated simply by replacing u i by - u i  in equation (11). 

Neither the chemical potentials nor the chemical potential differences appear in 
equation (11). For  a single reaction in a two component mixture the Gibbs phase 
rule states that there are two degrees of freedom to specify. We may therefore choose 
to specify the temperature, and either the density or the pressure of the system. The 
first choice corresponds to the RC N V T  ensemble, and the second corresponds to the 
RC N P T  ensemble, where N stands for the number of atoms, rather than the number 
of molecules. In contrast, the pressure cannot be specified in a GCMC simulation 
because this would over-specify the system. 

3. Results for 2A ~-  B 

The development so far has been general, without specifying the reaction. Now 
let us consider the specific reaction of monomers associating to form dimers (e.g. 
nitric oxide or acetic acid dimerization), or equivalently, a chemical reaction such as 
atomic hydrogen forming H2. This can be written in general as a chemical reaction 

2A ~ B, (13) 

where A is a monomer molecule and B is a dimer molecule. Applying equation (11) 
to this reaction gives 

Pros  = exp ( - ~ ) ~ r - ~ s )  (NA) (NA - 1)qB (NB + 1)q~ ' (14) 

for the forward reaction. The reverse reaction is given by 

NBq  
P r - , t  = exp (-flS~#r~t) (NA + 2)(NA + 1)qs" (15) 

The extension to reactions involving three chemical species (A + B ~ - C )  is 
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straightforward. We present here an algorithm for performing a simulation using 
RCMC for the 2A ~ B reaction. We choose a move at random with fixed 
probability from the list below and iterate to equilibrate and collect averages: 

(1) Choose a molecule at random and attempt a change in position and 
orientation. 

(2) If the pressure is held constant attempt a random change in the volume. 
(3) Attempt a forward reaction step. 

(a) Choose a molecule of type A at random. 
(b) Change that molecule to type B, picking a random orientation. 
(c) Choose another molecule of type A at random and delete it from the fluid. 
(d) Accept the move with a probability of min [1, Pr~,s]" 

(4) Attempt a reverse reaction step. 

(a) Choose a molecule of type B at random. 
(b) Change that molecule to type A. 
(c) Randomly insert a molecule of type A into the fluid. 
(d) Accept the move with a probability of min [1, Pr---,t]. 

Note that moves 3 and 4 must be chosen with equal probability in order to ensure 
microscopic reversibility. Note also that only monomers need to be inserted at 
random into the fluid. Dimers are inserted into the cavity created by the deletion 
of a monomer, so this method avoids the problem associated with inserting a chain 
into a dense fluid. This is also true for higher mers, for example with A + A 2 ~ A 3 
trimers would be inserted into a dimer cavity, and in the reverse reaction only a 
monomer would be inserted. Because we are inserting a monomer into the fluid, the 
RCMC method will fail at high densities where Widom's particle insertion method 
[24] will also fail. For  the special case of mole-conserving reactions, (e.g. 
A + B ~ 2C) the algorithm reduces to one similar to that of  Shaw [17]. However, 
unlike Shaw's algorithm RCMC is also valid for reactions that involve a change in 
the number of  moles. 

We have tested the RCMC algorithm for the 2A ~-~ B reaction by comparing with 
results from GC MC simulations for mixtures. We initially used a very simple model 
for a reacting fluid that only required the specification of  the dissociation energy, 
D o and the equilibrium bond length, r e to specify the intra-dimer potential. The 
monomers (A) are LJ spheres and the dimers (B) are two-site LJ diatomics with 
the site-site parameters chosen to be the same as those for the A molecules. To 
calculate the partition functions in equations (14) and (15) for molecules A and B we 
have assumed the following: molecule A is monatomic and so qA consists only of 
translational partition function 

( 2 r c m k T )  3/e 
V, (16) 

q t = \  h 2 J 

where m is the mass of the molecule, h is Planck's constant and V is the volume of the 
system. Molecule B is by definition a homonuclear diatomic, and so has internal 
degrees of freedom. We assume that B is a rigid molecule with a fixed bond length r e. 
This gives a rotational partition function of 

27~2 mr2 k T 
qr -- h 2 , (17) 
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which includes the symmetry  number  of  2. The translational contr ibut ion for B is 
given by equation (16) with m replaced by 2rn. We also consider the vibrational and 
electronic part i t ion functions (assuming that the nuclear contr ibut ion is unity). I f  we 
allow only ground state electronic contributions with no degeneracy, and take the 
zero o f  energy as two separated monomers  at rest, we can write 

exp (/3Do) (18) 
q~ qe = 1 - exp (-/3hu)' 

where D o is the dissociation energy and u is the vibrational frequency. For  
convenience we have chosen flhu >> 1 so that we may replace 1 - e x p  (-/3hu) by 
unity. 

We have performed both  G C M C  and R C M C  simulations on the model pre- 
sented above and the results are reported in the table. For  these simulations we 
have chosen D o = 15e LJ and the mass and LJ parameters for methane: 
m = 16.04 gmo1-1,  eLJ/k = 149.1 K and cr = 3"743 A. We have chosen the diatomic 
bond length as re = or. These choices are completely arbitrary. Because we are using 
rigid diatomic molecules the details of  the intramolecular potential do not  need to be 
specified. The intramolecular  parti t ion functions are completely specified by D o and 
r e. When  performing G C M C  simulations the chemical potentials o f  A and B were 
specified. In order  to ensure chemical equilibrium we specified #B = 2#A, and then 
picked #A as the independent variable. Both type A and B molecules were created 
and destroyed independently during the course o f  a G C M C  run. The G C M C  simu- 
lations gave the thermodynamic  properties as a function of  #~ = #A/e LJ and 
T*= kT/e LJ, where LJ  is the LJ well depth. We report  reduced densities 
p* = N/Vcr 3, mole fractions XA reduced pressures P* = P~73/e LJ and reduced con- 
figurational energies U * =  U/(Ne H) in the table. The average a tomic  density, 
p~ = (XA +2XB)p*,  collected from the G C M C  run was used as the constant  
atomic density in the reactive canonical (RC) NVT simulations. The independent 
variables for the R C M C  simulations were T* and Pa. It is interesting to note that 
there is apparent ly a phase change at T* = 1.6 between #A = --36 and #~ = - 3 7 .  
The agreement between the G C M C  and R C M C  runs is excellent. The G C M C  

Table. A comparison of data from GCMC and RCMC simulations for the reaction 2A ~ B 
where A is a LJ atom and B is a LJ diatomic (see text). The numbers in parentheses are 
one standard deviation uncertainties in the last digits of the reported values. 

Program T* #} p* XA U* P* 

GCMC 1.6 -36  0.348(5) 0.083(6) -7.70(15) 0.48(7) 
RCMC 1.6 - -  0.3481(9) 0-085(5) -7.69(3) 0.46(5) 
GCMC 1.6 -37  0.0241(1) 0.331(1) -0.519(7) 0.0327(2) 
RCMC 1.6 - -  0.02408(1) 0.3302(9) -0.514(5) 0.0328(2) 
GCMC 2.0 -40  0.414(3) 0.179(9) -7.96(6) 2.61(11) 
RCMC 2.0 - -  0.414(1) 0.176(6) -7.97(3) 2.58(8) 
GCMC 2.0 -42  0.359(3) 0.20(1) -6.80(12) 0.92(20) 
RCMC 2.0 - -  0.3594(7) 0-200(4) -6.799(25) 1.12(5) 
GCMC 2-0 -43  0.307(4) 0-231(12) -5.60(15) 0.55(4) 
RCMC 2.0 - -  0.3068(7) 0-231(4) -5.59(2) 0.541(31) 
GCMC 2.0 -44  0.1048(23) 0.401(4) -1.69(5) 0.147(3) 
RCMC 2.0 - -  0.1048(1) 0.3992(6) -1.70(1) 0.149(2) 
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simulations were equilibrated for around 2 x 106 configurations followed by about 
6 x 106 configurations for collecting averages (1 configuration = 1 move of any 
type). The average number of atoms in the simulation cell ranged from about 200 
to 500 depending on the state point. For the RCMC simulations the number of 
atoms was 500 and averages were collected for 106 configurations, which followed 
106 equilibration moves. In both cases the LJ potential was cut off at 3a and the 
standard long-range corrections were applied. 

The isothermal-isobaric reactive canonical (RC NPT) ensemble code has been 
tested by comparison with RC N V T  simulations for the fluid described above. The 
results from these two simulations agree everywhere within the error bars of the 
simulations. Both the RC N V T  and RC N P T  codes have been tested to ensure 
that they are insensitive to the starting densities and mole fractions. 

In the above development we have used a simple model for an associating fluid. 
We now apply RCMC to fluids with one spherical square-well bonding site as 
described by equations (1) and (2) and in [12], where q5 ~ef is again taken to be the 
LJ potential. In doing so we must calculate the partition functions corresponding to 
the given intermolecular and intramolecular potentials. The monomer molecules 
(type A) are monatomic and qa is given by equation (16). Type B molecules are 
homonuclear diatomics, but they cannot be treated as rigid rotors or harmonic 
oscillators as in equations (17, 18). In order to find qB we use classical statistical 
mechanics to write [23] 

 fIJl q B = ~ g  dPl dql dP2 dq2exp[-/3~Zf(ql,q2, Pl,P2)], (19) 

where the ps and qs are the generalized momenta and position coordinates of 
molecules 1 and 2, which make up a bonded dimer, and Jr is the Hamiltonian for 
the dimer. The factor of 1/2 appears because molecules 1 and 2 are indistinguishable. 
The integrations are restricted to the ranges for which the dimer is bonded. The 
Hamiltonian can be written as 

Pl P2 
= ~mm + ~m + U(rl2)' (20) 

where m is the mass of a monomer and U(rl2 ) is the intramolecular potential. U(rl2 ) 
depends only on the separation of the two monomers, provided that they are 
bonded, and is given by 

U(rl2) = ~(r12) - e b~ (21) 

where qS(r12 ) is the LJ potential. There are no restrictions on the values of the 
momenta, and the integrations can be easily performed to give 

(2~mkT) 3 f 
qB = 2h 6 J d q i  Jdq2exp[-/3U(ri2)]. (22) 

We now change from generalized position coordinates to atomic separation r12 and 
account for the bonding orientations at a given separation. This has been solved 
analytically [5] for the bonding model of equation (2). The result is 

(21~mkT) 3 f 21h+crb (C~b + 2/b -- rl2)2(2Crb -- 2/b + r12) 
qB -- ~ g  47~ 321b--Ob 2412 exp [-/3U(r12)] r12 drl2. 

(23) 
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The integral in equation (23) must be performed numerically for the desired values of 
o-b, Ib, e b~ and T. 

The bonded dimers interacting through the potential of equations (1) and (2) 
have a variable bond length. The RCMC simulations of this fluid must therefore 
include Monte Carlo moves in the bond length. The new bond length must be chosen 
randomly from a non-uniform distribution P(r12) which describes the distribution of 
possible bond lengths. For  the square-well model used here P(rla) is given by 

0, if r12 < 21b-  c% 

P(r12) = (o-b + 21b -- r12)2(2o-b -- 21b + r12)/(r12I), if 21b -- o-b < rl2 < 21b + o-b, 

I, 0, if r12 > 21b + o-b 

(24) 

where r12 is the bond length and I is the normalization integral given by 

[21b+~b (o-b + 21b -- rl2)2(2o-b -- 21b 4- r12) 
I dra2. (25) / 

d2 lb -a  b r12 

P(r12) is determined solely by the geometry of the bonding site. 
The RCMC simulations converge much faster than conventional Monte Carlo 

(MC) simulations for fluids with strong bonding sites. We have used the same 
square-well geometric parameters used by Walsh et al. [25], Ib = 0"4~r and 
o-b = 0"2o-. For  an associating fluid with e b~ = 20e LJ at T* = 1 the fraction of 
monomers in a conventional N V T  MC simulation failed to converge after more 
than 3 x 107 configurations. The fraction of monomers in a RCMC simulation for 
this same system converged in about 4 x 105 configurations. We have compared 
RCMC simulations with conventional N V T  simulations at higher temperatures 
where the N V T  simulations of the square-well associating fluid converged in a 
reasonable amount  of cpu time. The results are presented in figure 1. Both the 
fraction of monomers and the internal energies are calculated on an atomic basis. 
Both N V T  and RCMC simulations were performed with 256 atoms. The N V T  
simulations were equilibrated for about 107 configurations, followed by an 
additional 107 configurations for data taking. The RCMC simulations were 
equilibrated for 106 configurations, followed by 106 to 2 x 106 data taking 

0.6  

0 .5  

o~ 0 .4  

0 
m .,~ 0 .3  

o 

0.2  
o 

0.1  

T" = 2.0 

H o RCMC 

- -  Theory 

--+_____ 
-1 

T*= 1.5 

0.0 015 o:6 o17 o 1 8  o19 
p* 

Figure 1. Comparison of RCMC and conventional N V T  simulations for the LJ + SW 
bonding fluid with one bonding site. The bonding site parameters a r e  e b~ = 20e LJ, 
lb = 0"4~r and ~r b = 0.2c~. The lines are calculations from Wertheim's theory [1-7]. 
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configurations. The RCMC reaction moves are computationally more expensive 
than the simple displacement/reorientation moves. However, in our experience the 
RCMC technique is typically about five times faster than conventional MC in terms 
of  cpu time. Results from the two simulation techniques agree within the uncertain- 
ties of  the simulations. Calculations from our implementation [12] of a theory of 
association due to Wertheim [1-7] are also plotted in figure 1; results from both 
RCMC and N V T  simulations agree well with predictions from the theory. 

4. Extension to the Gibbs ensemble 

The reactive canonical ensemble can be combined with Gibbs ensemble MC 
[18, 19] to allow simultaneous calculation of  phase and chemical equilibria. It is 
important to note that only one species of  the mixture needs to be transferred 
between boxes. Equality of the chemical potentials of the other species will be 
achieved by the chemical reaction steps. We are free to choose which species to 
transfer between the boxes; a judicious choice is the monomer species, thus avoiding 
transferring larger, polyatomic molecules between the boxes. For the reaction con- 
sidered above, 2A ~ B, the pressure cannot be specified in advance because to do so 
would violate the Gibbs phase rule. Introduction of a third component into the 
system would provide one more degree of  freedom, and the simulations could 
then be carried out in a constant pressure reactive Gibbs ensemble. 

The reactive Gibbs ensemble technique has been used to calculate the vapour -  
liquid equilibrium properties of a model associating fluid with one square-well 
bonding site. In figure 2 we show the saturation densities for a fluid with 
c b~ = 10e LJ from the theory, conventional Gibbs ensemble simulations and from 
reactive Gibbs ensemble simulations. The conventional and reactive Gibbs simu- 
lations agree very well for this system, and both agree well with the Wertheim 
theory. We show the fraction of monomers for the saturated phases in figure 3. 
We note that this is a weakly associating fluid, with the vapour phase consisting 
of almost all monomers. Agreement between the conventional and reactive Gibbs 
simulations demonstrates that the reactive Gibbs method is reliable for calculating 
the phase equilibrium properties of the LJ + square-well fluid. 

1 . 4  . i . L , i , i �9 f i J 

1.3 

1.2 

1.1 

J 
1.0 1 

0.9 

0.8 

0.0 0.i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
p~ 

Figure 2. Saturation densities from conventional and reactive Gibbs ensemble simulations 
for a fluid with one square-well bonding site with bona = 10~LJ. The line is calculated 
from the Wertheim theory. 
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Figure 3. Fraction of monomers from conventional and reactive Gibbs ensemble simulations 
for a fluid with one square-well bonding site with (2 b o n d  = 10e LJ. The line is calculated 
from the theory. 

We have also used the reactive Gibbs ensemble method to simulate a strongly 
associating fluid with one square-well site and a well depth of e b~ = 20e LJ. The 
results for the saturation densities and fraction of monomers are shown in figures 4 
and 5, respectively. This fluid cannot be simulated using the conventional Gibbs 
ensemble because of the strength of the square-well bond. The simulations and 
theory agree well for both saturation densities and the fraction of monomers for 
T* < 1.6. However, the theory predicts a critical temperature that is significantly 
higher than that estimated from the simulations for this fluid. The theory appears to 
be inaccurate for calculating vapour-liquid equilibrium (VLE) near the critical point 
for strongly associating fluids. From figure 5 we see that there is considerable asso- 
ciation in the vapour phase, and the fraction of monomers in the vapour phase 
increases with increasing temperature. This is in contrast to the results for moder- 
ately strong associating fluids [12] (see figure 3), where the fraction of monomers 
decreases monotonically as the critical temperature is approached. The difference 
between these two systems is a result of competing effects. Higher temperatures 

g- 
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Figure 4. Saturation densities from reactive Gibbs ensemble simulations for a fluid with one 
square-well bonding site with bond = 20(~LJ, The line is calculated from the theory. 



Reactive canonical Monte Carlo 727 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

1.0 

�9 i , 1 l , i . t , i . ~ , 

I Theory RC Gibbs 

0.0 0.1 0.2 0.3 0.4 0.5 0 . 6 '  0' .7'  018 ' 
F r a c t i o n  of  M o n o m e r s  

I , 

0.9 1.0 

Figure 5. Fraction of monomers from reactive Gibbs ensemble simulations for a fluid with 
one square-well bonding site with e b~ = 20e LJ. The line is calculated from the theory. 

favour  a higher fraction o f  monomers ,  but  as the temperature increases the vapour  
phase density also increases, and higher densities favour a lower fraction o f  mono-  
mers. In the case of  moderately strong bonding sites the density effects dominate,  
and the fraction o f  monomers  decreases as the temperature increases. For  the 
strongly bonding  fluids studied here the temperature effects dominate  at lower 
temperatures,  giving an increasing fraction o f  monomers  as the temperature 
increases. Near  the critical temperature the situation is reversed and the fraction 
o f  monomers  in the vapour  phase decreases. Typical RC Gibbs ensemble runs were 
performed with 1000 molecules over several million configurations. The cut-off was 
taken at half  the box length and s tandard  long-range corrections were applied. 

We have also performed RC Gibbs ensemble simulations for the simple associ- 
at ion model  o f  equations (16)-(18), using Do - 25e LJ and r e = (7. The saturation 
densities are shown in figure 6 and the equilibrium fractions of  monomers  are shown 
in figure 7. The concentrat ion of  m o n o m e r s  in both the liquid and vapour  phases is 
very low for this system, indicating that  the RC Gibbs ensemble method is applicable 
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Figure 6. Simulation results from reactive Gibbs ensemble simulations for the reaction 
2A ~ B with D o = 25e LJ and r e = e. The density p; is the atomic number density. The 
lines are from the law of rectilinear diameters and the critical scaling law for the density. 
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Figure 7. The fraction of type A molecules (monomers) for the reaction 2A ~ B from 
reactive Gibbs ensemble simulations. Intramolecular parameters are D o = 25e LJ and 
r e = ~. X~ is the atomic fraction of monomers. The line is drawn as a guide to the eye. 

to systems with very strong bonding. The system size used was N = 512, and the 
first 106 configurations were discarded for equilibration. Averages were collected for 
106 to 2 x 106 configurations. Additional RC Gibbs simulations were performed 
for different values of D o and r e in order to explore their effect on the critical 
temperature [26]. 

5. Comparison with experiment: nitric oxide dimerization 

In this section we present results of  R C M C  simulations for liquid nitric 
oxide dimerization, and compare these results with experimental measurements of  
dissociation. It is well known that nitric oxide associates into dimers, but not higher 
aggregates due to its electronic structure. In addition, it is observed that nitric oxide 
is completely dimerized in the solid phase [27, 28], predominantly associated in the 
liquid phase at low temperatures [28, 29], and almost completely monomeric in the 
vapour  phase at low pressures [27, 30]. Smith and Johnston [29] have used magnetic 
susceptibility measurements to calculate the fraction of monomers in liquid nitric 
oxide at several temperatures in the range 110 K ~< T ~ 120 K. These measurements, 
coupled with the structural simplicity of  the monomer,  and the availability of struc- 
tural and vibrational information for the monomer  and dimer make nitric oxide an 
attractive system to study via computer simulations. 

Following Kohler et al. [31], we have modelled nitric oxide as a single LJ sphere, 
and the dimer as a two-site LJ molecule. We have ignored the weak dipole moment  
of  the monomer  (0.2D). In the R C M C  simulations we have used the correct 
molecular partition functions for the monomer  (two atoms) and the dimer (four 
atoms). Using a single LJ site for a diatomic molecule makes the model inconsist- 
ent. However, this is the same approach taken by Shaw [17], and is not expected to 
appreciably affect the results because the anisotropy of the NO molecule is relatively 
small. Note that the LJ potential need only account correctly for the average 
configurational energy, and not the details of  the vibrations and rotations. 

We have used e lk  = 125 K and c~ = 3.1715 ~ for the monomer LJ parameters as 
given by Kohler et al. [31]. The molecular constants for nitric oxide were taken from 
McQuarrie [32], and the electronic level information was taken from Reed and 
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Gubbins [33]. The parameters for the LJ site-site interactions for the dimer were the 
same as the monomer  values. The bond length for the dimer was chosen as the N - N  
bond distance of  2.237 A reported by Kukolich [34]. The dimer rotational constants 
were also taken from Kukolich [34], and the vibrational constants were taken from 
the work of  Smith et al. [35]. The dissociation energy for the dimer can be calculated 
from the heat of  formation of the dimer at a given temperature and the heat capacity 
for nitric oxide from that temperature to 0 K. Unfortunately, estimates for the heat 
of  formation of (NO)2 range from about  10 to 16 kJ tool -1 around 120 K, making the 
determination of the dissociation energy rather uncertain. We have used a value of 
13.6 kJ tool -1, which we obtained by adjusting the value of Do in short simulation 
runs at T = 116 K to achieve rough agreement between simulation and experiment 
for the fraction of monomers.  Fortuitously, 13.6 kJ tool -1 is very close to the average 
of estimates by Smith and Johnston [29] (15.5kJmo1-1) and Guggenheim [30] 
(11.6 kJmol-1);  this indicates that our potential model is at least reasonable. 

No densities or pressures were given with the experimental values for the fraction 
of monomers.  We therefore chose to perform our simulations in the RC N P T  
ensemble, specifying pressures close to the vapour pressures, which range from 
about 0.2 to 0"9 bar for the temperatures involved. The average reduced pressures 
from the simulations were close to zero. Simulations were initially carried out by 
starting with an initial configuration of 500 nitric oxide monomers.  The site-site cut- 
off was 3~, and the standard long-range corrections were applied. The system was 
typically equilibrated for 106 moves, followed by 4 • 106 moves for data taking. 
Some runs were started from previous configurations. The type of move attempted 
at a given step was decided at random with typical probabilities as follows: particle 
displacement/reorientation, 39%; association (2NO ~ (NO)z), 30%; dissociation 
((NO)2 ~ 2NO), 30% volume move, 1%. Results of our simulations are plotted 
along with the experimental fraction of monomer  data of  Smith and Johnston [29] 
in figure 8. Agreement between simulation and experiment is excellent. 

One might ask whether the agreement between simulation and experiment is due 
to adjusting the dissociation energy at 116 K. We have found that the simulations are 
sensitive to changes in the heat of  formation of about 0' 1 kJ mo1-1 or more, and that 
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Figure 8. Fraction of monomers along the saturation line for liquid nitric oxide from RC 
N P T  simulations and from the experiments of Smith and Johnston ~29J. The line is 
drawn as a guide to the eye. 
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if the estimate of  Smith and Johnston is used the simulations give fractions of  
monomers that are too small by about  a factor of two. Hence, the simulations are 
quite sensitive to errors in the dissociation energy, and the limited temperature range 
covered by the experimental data does not pose a stringent test of  our potential 
model. The sensitivity of the simulations to the value of the dissociation energy 
indicates that when there is substantial uncertainty in the value of the dissociation 
energy RCMC will not provide a reliable prediction of the extent of  association or 
reaction. However, most dissociation energies are measured very accurately spec- 
troscopically and in these cases R C M C  should yield good predictions of equilibrium. 

While we do not know of any other experimental measurements of  the fraction of 
monomers in liquid nitric oxide, Guedes, [36] in connection with experimental 
studies of the thermodynamic properties of nitric oxide, has extrapolated the data 
of  Smith and Johnston to higher temperatures. We have used these data as a further 
test of  our simulation model. Guedes used the equilibrium constant and the heat of 
dissociation at 120K from Smith and Johnston, and a value for  the volume of 
dissociation at 116 K from Kohler et al. [31]. He assumed that both the heat and 
volume of dissociation were independent of  temperature and pressure. With this 
information he extrapolated the fraction of monomers from 120 to 170K at 
saturation pressures, which range from 0.9 to 43'3bar.  We have performed RC 
N P T  ensemble simulations at the temperatures and saturation pressures Guedes 
reports, and these simulation results are compared to the extrapolated fractions of 
monomers in figure 9. The simulations agree with the extrapolated data up to 140 K, 
but for T > 140K the simulations predict a higher fraction of monomers  than the 
extrapolation. There are several possible causes of  the discrepancy. The most 
obvious is that the heat of  formation of the dimer is not a constant, as assumed 
by Guedes. Experimental data of  Billingsley and Callear [37] for nitric oxide dimer- 
ization in the gas phase indicate that the heat of  formation of the dimer decreases 
markedly above 140 K; this alone could account for the discrepancy. Other factors 
may include the use of  an oversimplified pair potential, and temperature dependence 
of  both the effective pair potential parameters and the volume of dissociation, 
although these latter effects are expected to be small. 
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Nitric oxide is unusual in that dimerization in the vapour phase is remarkably 
low considering that the liquid is almost entirely dimerized at the normal boiling 
point. This contrasts with many other associating fluids. For example, acetic acid 
shows appreciable dimerization in both the liquid and vapour phases around its 
normal boiling point. Early estimates [27, 29, 35] indicated that dissociation of the 
nitric oxide dimer in the vapour was about 99% at the normal boiling point 
(121.4K). Guggenheim [30] used the principle of corresponding states to analyse 
second virial coefficient data for nitric oxide, and calculated that the degree of 
dissociation in the saturated vapour is 98% at 121.4K. We have performed a 
vapour phase RC N P T  simulation at a pressure of 1.01 bar (P* = 0-0019) and 
T =  121.4K. The results of this simulation give the fraction of monomers as 
0.98 4- 0-0007, in remarkable agreement with Guggenheim's estimate. By assuming 
ideal gas behaviour we calculate a density that is about 3% lower than the value 
from the simulation (Pi*deal : 1.93 x 10 -9 while Ps*m = 1"98 X 10-3), but the fraction 
of monomers calculated from the ideal gas equilibrium constant is essentially the 
same as from the simulation. 

6. Conclusions 

We have developed a new simulation technique (RCMC) that facilitates the 
calculation of the properties of strongly associating fluids and chemically reacting 
mixtures. RCMC has also been implemented in conjunction with the isothermal- 
isobaric and Gibbs ensembles, in order to simultaneously calculate the phase and 
chemical equilibria of reactive mixtures. 

The RCMC method has been tested by comparing with conventional grand 
canonical Monte Carlo simulations. Vapour-liquid phase equilibrium calculations 
for model associating fluids have been obtained from the reactive Gibbs ensemble. 
The temperature dependence of the fraction of monomers in the vapour phase for 
strongly associating f l u i d s  @bond : 20LJ) is qualitatively different from fluids with 
moderately strong bonding sites. 

In contrast to the methods of Coker and Watts [13] and Kofke and Glandt [14], 
the RCMC method does not require the specification of chemical potential dif- 
ferences or fugacity fractions. The RCMC method does not constrain the values 
of the chemical potentials beyond the requirement of chemical equilibrium. No 
additional simulations are required to determine the properties of the system. 
Also, RCMC is applicable to reactions involving changes in the number of 
molecules. 

We have compared experimental data for nitric oxide dimerization with RCMC 
simulations. Agreement for the fraction of monomers is excellent. Simulations at 
higher temperatures were compared to extrapolated data, and good agreement was 
found for temperatures below 140 K. For T > 140 K the simulations predict a higher 
fraction of monomers than does the extrapolation from experimental data. We have 
performed a vapour phase simulation at the normal boiling point and have found 
excellent agreement with estimates for dissociation in the vapour phase. Additional 
simulations for other chemical reactions are needed to verify the predictive 
capabilities of RCMC. 

The RCMC technique has limitations. RCMC will fail at high fluid densities 
because monomers must successfully be inserted into the fluid. Cavity bias methods 
[38] or configurational bias methods [39-41] may be useful in extending the range of 
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applicability. In practice, this method could become too cumbersome to implement 
for systems with many possible chemical reactions. Each species would need to be 
monitored and each reaction would need to be sampled with sufficient frequency to 
reach equilibrium and obtain accurate statistics. For some associating fluids the 
complement of possible reactions in unknown. Because of this it is unlikely that 
the RCMC method will be useful for treating associating fluids with multiple 
bonding sites, such as methanol and water. 
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Research Laboratory. We thank the Gas Research Institute for support of this 
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