
Citation: Lofaj, F.; Kvetková, L.;

Roch, T.; Dobrovodský, J.; Girman, V.;

Kabátová, M.; Beňo, M. Reactive

HiTUS TiNbVTaZrHf-Nx Coatings:

Structure, Composition and

Mechanical Properties. Materials 2023,

16, 563. https://doi.org/10.3390/

ma16020563

Academic Editor: Emilio Jiménez-

Piqué

Received: 15 December 2022

Revised: 2 January 2023

Accepted: 4 January 2023

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Reactive HiTUS TiNbVTaZrHf-Nx Coatings: Structure,
Composition and Mechanical Properties
František Lofaj 1,* , Lenka Kvetková 1, Tomáš Roch 2 , Jozef Dobrovodský 3, Vladimír Girman 1,4,
Margita Kabátová 1 and Matúš Beňo 3
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Abstract: High entropy metal sub-lattice stabilized nitride coatings based on multicomponent refrac-
tory transition metals (TM = Ti, Nb, V, Ta, Zr, Hf) are promising candidates for extreme conditions due
to their high thermal, mechanical, and corrosion properties. The aims of the current work included the
investigations of the possibilities of the novel High Target Utilization Sputtering (HiTUS) technique
applied to reactive sputtering of TiNbVTaZrHf–xN coatings from the viewpoints of hysteresis behav-
ior during reactive sputtering as well as the structure, composition, stoichiometry, and mechanical
properties of the resulting coatings. With increasing nitrogen content, coating structures varied
from amorphous in metallic alloy coatings to textured nano-columnar fcc structures. Despite certain
deviations of TM from equiatomic concentrations, homogeneous solid solutions corresponding to
single-phase multicomponent nitride analogous to high entropy stabilized compounds were obtained.
Mechanical properties were found to be proportional to nitrogen content. The highest hardness
HIT ~ 33 GPa and indentation modulus EIT ~ 400 GPa were found in a slightly sub-stoichiometric
(~42 at% nitrogen) composition. HIT/EIT and limited pillar split measurements suggested that these
coatings exhibit low fracture toughness (around 1 MPa.m1/2). The work confirmed that reactive Hi-
TUS is suitable for the preparation of multicomponent nitrides with the control of their stoichiometry
and mechanical properties only via nitrogen additions.

Keywords: multicomponent nitride coatings; reactive high target utilization sputtering (HiTUS);
hysteresis behavior; micromechanical properties; nanoindentation; structure–properties relations

1. Introduction

Strong nitride formers among transition metals (TM) including Ti, Zr, Hf, V, Nb, and
Ta, form single nitrides with high thermal stability combined with low thermal conductivity,
high hardness, and corrosion resistance [1,2]. Additional control and enhancement of these
properties via simultaneous alloying by several refractory transition metals were greatly
promoted by the introduction of the concept of so-called “high entropy alloys” (HEA) by
Cantor et al. [3] and Yeh [4] in 2004. The main idea of HEA is that homogeneous solid
solutions with fcc (face-centered cubic), bcc (body-centered cubic), or even hcp (hexagonal
close-packed) structures consisting of at least five equimolar metals can be stabilized by
configurational entropy. Additional stabilizing “core” effects involve lattice distortion
due to variations of atomic radii of different metals, sluggish diffusion resulting from
diffusion barriers in such distorted lattice, and the possibility of a synergistic “cocktail”
effect [5,6]. The concept of bulk metallic HEA paved the path for the development of high
entropy ceramics (HEC) via the introduction of boron, carbon, nitrogen, or oxygen [7–11].
In the case of TM-based nitride ceramics, corresponding transition metals were classified
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depending on their affinity to nitrogen. Elements with high formation enthalpies from
groups (3-) 4–5 groups of the periodic table ((Y) Ti, V, Zr, Nb, Hf, Ta) correspond to strong
nitride formers. The metals from 6–10 groups (Cr, Mn, Fe, Co, Ni, Mo, Ru but also Al and
Si) with lower formation enthalpies belong to weak nitride formers and even to no-nitride
formers (e.g., Cu) [12]. Strong nitride formers easily form interstitial solid solutions in
which nitrogen atoms fill voids in the metal sub-lattice, typically with a NaCl-type crystal
structure. It involves a mix of covalent, metallic, and ionic bonding resulting in higher
mechanical and thermal properties than in single TM-N compounds [7,13]. However, high
configurational entropy in the multicomponent nitrides applies only to the metal sub-lattice,
whereas the nitrogen sub-lattice is practically not affected. Thus, high entropy ceramics,
including nitrides, should be more accurately described as “materials with high entropy
metal sub-lattice” [14,15].

The recent reviews on high entropy ceramic coatings can be found in [12,16,17]. Proba-
bly the first multicomponent high entropy-like nitride coatings were deposited in 2004 from
FeCoNiCrCuAl (Mn) targets by reactive DC magnetron sputtering (DCMS) [18]. The metals
involved weak nitride formers, which caused the near-stoichiometric nitrides to be amor-
phous. Subsequent studies were focused on the nitrides containing various combinations of
AlCr-Nb/Si/Fe/Mo/Ni/Ta/Y/Zr/V [12]. The first nitride coatings involving four strong
nitride formers—Hf, Ti, Zr, and V combined with Cr—were prepared in 2011 also by reac-
tive magnetron sputtering [19]. Their structure varied from amorphous without nitrogen
to textured fcc solid solutions in (near-)stoichiometric compositions obtained at sufficiently
high nitrogen contents. The highest hardness of 23.8 ± 0.8 GPa and modulus 267 ± 4 GPa
were reached in the (111) textured coating saturated with nitrogen. In 2012–2013, nitride
coatings involving five (Ti-V-Zr-Nb-Hf and Ti-Zr-Nb-Hf-Ta) strong nitride formers were
deposited by arc [9,20] and reactive magnetron co-sputtering, respectively [10,21]. Hard
textured (111) fcc solid solutions formed in all cases. The first nitride coatings involving six
strong nitride formers (Ti-V-Zr-Nb-Hf-Ta) were produced by arc in 2014 [22] and 2015 [23].
In (111) textured fcc near-stoichiometric coatings, hardness values in the 36–51 GPa range
were obtained [22,23].

The application of sputtering techniques different from arc and DCMS that provide
higher levels of ionization of the sputtered species, e.g., High Power Impulse Magnetron
Sputtering (HiPIMS), to multicomponent nitride coatings is limited to a few studies up
to now, mostly on AlCrTiVZr-N [24,25] and TiZrNbTFe-N systems [26]. The HiPIMS-
made coatings were denser and exhibited higher hardness (41.8 GPa) than those made by
DCMS (36.2 GPa). Another novel sputtering technique, High Target Magnetron Sputtering
(HiTUS), was originally developed for oxide coatings for optical applications [27,28]. The
main difference between HiTUS and magnetron sputtering is plasma decoupling from the
target (cathode) and plasma generation in an independent RF plasma source. It results in
the absence of a racetrack and sputtering from practically the entire surface of the target,
which gave the technique its name. In the case of reactive processes, it causes low sensitivity
to target poisoning which is reflected in the suppression of hysteresis behavior. HiTUS had
already been successfully applied to the deposition of hard W-C:H coatings using (reactive)
hybrid PVD-PECVD processes based on acetylene or methane additions [29–32]. The
obtained hardness values were equal or often slightly higher than in the case of DCMS and
almost as high as in the analogous HiPIMS-made W-C:H coatings [29–32]. However, HiTUS
has not been applied to the sputtering of multicomponent metallic coatings analogous to
HEA nor to the reactive sputtering in analogous nitride systems. Its potential compared
to DCMS coatings is also not known. Therefore, this work investigates various aspects of
reactive HiTUS in the deposition of hard multicomponent TM-based nitride coatings.
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2. Experimental Procedure
2.1. Coating Deposition

The studied TiNbVTaZrHf-xN coatings were prepared by High Target Utilization
Sputtering (model S500, Plasma Quest Ltd., Hook, UK) from a TiNbVTaZrHf target with a
diameter of 76.2 mm in an Ar atmosphere with variable nitrogen flows. The nominal com-
position of the commercially obtained target (Testbourne, Whitchurch, UK) was Ti—20 at%,
Nb—18 at%, V—20 at%, Ta—18 at%, Zr—12 at%, and Hf—12 at%. The true average con-
centrations of the elements in the target measured by EDS are indicated in Table 1. The
maximum differences between the nominal composition and true target composition were
up to +6.4 at% in V and −5.0 at% in Ta; the deviations in the other TM elements were below
2 at%.

Table 1. The nominal and true average compositions of the target obtained by averaging 7 EDS/SEM
(top view) measurements from the surface area of 900 × 680 µm2.

Target Ti,
at%

Nb,
at%

V,
at%

Ta,
at%

Zr,
at%

Hf,
at%

Nominal composition 20 18 20 18 12 12

EDS * composition
(after sputtering
without nitrogen)

18.5 ± 1.9 19.6 ± 1.3 26.4 ± 3.6 13.0 ± 0.4 10.4 ± 0.3 12.1 ± 0.7

* This standard deviation refers to the scatter of calculated concentrations across seven different sites, not to the
precision of EDS concentration measurement.

The substrates involved polished (0001) sapphire and (111) Si wafers, which were
ultrasonically cleaned in acetone and by plasma just prior to the onset of deposition. The
coatings deposited on Si substrates were used for thickness measurements on the fractured
cross-sections. To ensure good coating adhesion, gradient TiNbVTaZrHf-xN bond layers
were applied. Gradient composition was obtained by a gradual increase of nitrogen flow
additions into the sputtering atmosphere with 1 sccm and 1 min step starting from x = 0
sccm up to a nitrogen flow in top coating. Based on the deposition rate of ~20 nm/min, the
bond layer thicknesses varied from 0 nm up to around 200 nm in the coatings produced
with the highest nitrogen additions. Despite the importance of bond layers for coating
adhesion, their role in structure formation and mechanical properties was not considered.

The common deposition parameters used for all coatings were: RF power on the remote
plasma source–1800 W; RF power on the target—700 W; RF bias on the substrate—5 W (correspond-
ing to DC bias of around −45 V); substrate temperature −300 ◦C; base pressure < 7.5 × 10−3 Pa;
and initial working pressure ~0.76 Pa. This working pressure was obtained in an around
80 dm3 vacuum chamber with a turbomolecular pump with a pumping speed of 1250 L/s
at a constant Ar flow of 120 sccm. The target–substrate distance was 17 cm. The only
variable of the reactive HiTUS included additions of nitrogen in the range from 0 sccm
up to 10 sccm in 2 sccm steps. Nitrogen additions resulted in an increase in the working
pressure up to 0.82 Pa. The constant deposition time of 90 min resulted in the coatings with
thicknesses in the range of 1.2–1.7 µm.

2.2. Structure, Mechanical Properties, and Thermal Stability

The basic structure observations were performed on the fractured cross-sections of
the coatings on Si substrates using scanning electron microscopy (Auriga Compact and
EVO MA15, Zeiss, Germany). Their chemical compositions were primarily measured by
Energy Dispersive Spectroscopy (EDS) with an SDD detector (Oxford Instruments, 80 mm2,
Abingdon, UK) from “point” and “area” measurements, with the contributions from the
substrate intentionally excluded from the calculations.

Due to the limitations of quantitative measurements of nitrogen (and other light ele-
ments) in EDS, a combination of Ion Beam Analysis (IBA) methods was used for the depth
profiling of nitrogen and TM elements concentrations. The measurements were performed
on a 6 MV tandem ion accelerator (Tandetron, HVE, Groningen, The Netherlands) and IBA
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end station [33,34] at the Advanced Technology Research Institute (ATRI) of the Faculty
of Materials Science and Technology in Trnava, Slovak University of Technology. The
employed IBA methods involved Rutherford and Elastic (non-Rutherford) Backscattering
Spectrometry (RBS/EBS), Nuclear Reaction Analysis (NRA), and Particle-Induced X-Ray
Emission Spectrometry (PIXE) [35]. The energy of the primary He+ beam with a cross-
section of 2.5 × 2.5 mm was 5.65 MeV to ensure the measurement of the depth concentration
profile of all present elements over the entire coating thickness with optimum sensitivity
and accuracy.

Although RBS analysis is considered a quantitative method without the use of ref-
erence samples [36], it was practically impossible to distinguish pairs of adjacent TM
elements such as Ti/V, Zr/Nb, and Hf/Ta in the coating. PIXE analysis was therefore used
to determine the ratio between adjacent transition metals and subsequently to calculate the
contribution of each element in the pair. Nitrogen depth profiles were determined from
nuclear reaction 14N(4He,p0)17O for the detector angle of 165◦ to the primary beam. The
backscattered alpha particles were absorbed by a 36 nm thick Kapton absorber foil in front
of the detector.

Simulation SIMNRA ver. 7.03 [37] (for RBS, EBS, NRA) and fitting GUPIXWIN [38] (for
PIXE) programs were used to evaluate the measured energy spectra and to determine the
depth concentration profiles of individual elements. The elastic backscattering differential
cross-section data of 12C((α,α0)12C; 14N((α,α0)14N; 16O((α,α0)16O for SIMNRA simulations
were taken from SigmaCalc 2.0 [39] and the cross-section data for the nuclear reaction
14N((α,p0)17O at theta 165◦ from [40].

The crystal structure of the coatings was analyzed using X-ray diffraction (PANalyt-
ical X’Pert Pro) with CuKα radiation in a symmetrical Bragg–Brentano (B-B) setup with
θ/2θ-scanning and in grazing incidence (GI) setup with detector 2θ-scanning at the fixed
incidence angle of 1.5◦. In symmetric B-B scanning, the diffraction vector was slightly offset
by 2◦ from the strong substrate reflections. GI setup results in a much longer optical path
and signal intensities from the coating than in B-B. The advantage of GI is that it reveals
the crystal planes approximately parallel to the coating surface. The resulting GI and B-B
diffractograms were obtained by averaging three measurements at three various azimuthal
sample positions for improved data statistics. The crystallite size (CS) was calculated from
the average width of the peaks using the Williamson-Hall method. It was also used for the
determination of microstrains (ε).

The details of coating structures were investigated by high-resolution transmission
electron microscopy (TEM) (model JEM 2100F, Jeol, Japan) on thin foils. The foils were
prepared from two as-deposited coatings glued together using a standard procedure
involving polishing, dimpling, and ion milling.

The measurements of mechanical properties of all coatings were based on nanoin-
dentation with diamond Berkovich tip (G200, Agilent, Santa Clara, CA, USA) and the
Continuous Stiffness Method for Thin Films (CSMTF) method [41]. According to the recom-
mendations in [42], the tests were performed in constant strain rate mode (0.05 s−1) with the
amplitude of the sinusoidal signal of 2 nm and frequency of 45 Hz. The measurements were
performed on two sets of 16 indents up to a predefined depth of 800 nm in two locations
approximately 1 mm apart on each coating. The measurement yielded two hardness and
two indentation modulus depth profiles that were averaged from at least 2 × 10 valid
tests. The mechanical properties of the coatings without the influence of substrate were
determined from the maximum and/or plateau on the corresponding profiles extrapolated
to zero depth (load). The depth range for the extrapolation was from >80 nm (given by
the tip surface area calibration) up to around 200–300 nm, i.e., within or even above the
maximum depth limit corresponding to the 10% rule [43]. Such a high upper limit for
extrapolation resulted from improved elimination of substrate influence in the CSMTF
method. The inputs required for calculating the indentation modulus in CSMTF include
coating thickness, Young’s modulus, and Poisson’s ratio of the substrate. The thicknesses
were measured by scanning electron microscopy (SEM) on the fractured cross-sections of
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the coatings deposited on Si wafers. The Young’s moduli of Si and sapphire substrates used
in the calculations were 187 GPa and 435 GPa, and the corresponding Poisson’s ratios were
0.223 and 0.29, respectively. The effects of the bond layer and possible residual stresses on
indentation hardness and modulus values were not considered.

3. Results

Hysteresis behavior during reactive magnetron sputtering relates to the effects of
target poisoning on current, voltage, and working pressure at different flows of reactive
gas [44,45]. Therefore, the possibilities of target poisoning and hysteresis behavior in HiTUS
were investigated at first to understand the differences between conventional and reactive
sputtering in HiTUS and to optimize the deposition conditions.

3.1. Plasma Conditions during Reactive HiTUS

Decoupling of the target from plasma discharge in HiTUS causes the voltage and
current at the remote plasma source not to be influenced by reactive gas. The only easily
detectable indication of the reactive processes would be the pressure changes [32]. Figure 1a
shows the evolution of the total working pressure p0 (open circles) in the chamber with the
plasma generated by the remote plasma source but without sputtering (RF power on the
target was off). The pressure p0 measured by baratron changed linearly with the increase
and/or decrease of nitrogen flow, and no differences were observed during the whole
cycle. The small full symbols correspond to working pressure p during three cycles of
nitrogen flow increase and decrease after RF 700 W was applied to the target and sputtering
occurred. Immediately after the onset of sputtering at 0 sccm N2, p was systematically
increased from 0.75 to 0.765 Pa. Such an increase cannot be related to reactive sputtering
because of the absence of nitrogen. It was therefore attributed to plasma heating after the
application (addition of energy) of sputtering and subsequent Ar expansion. Thus, the p
increase at 0 sccm N2 was considered an artifact and was subtracted from the experimental
values for further consideration. Three independent cycles of p measurements in Figure 1a
slightly deviated from each other. To reduce the influence of the measurement errors,
these three measurements were averaged, and only the average pav = [p(1) + p(2) + p(3)]/3
values were used. Figure 1b shows the curves of the average pressure difference ∆pav

= pav − p0 during the nitrogen flow increase/decrease cycle. The physical meaning of
∆pav is related to the amount of reactive gas consumed by the reaction with the sputtered
material leading to nitride formation [46]. Figure 1b shows ∆pav dependence after the
elimination of the temperature artifact. Despite the relatively large scatter, all corrected
∆pav values were negative. The curve connecting average points during an increase in
N2 flow decreased up to around 8 sccm N2, implying full nitrogen consumption. In the
8–12 sccm nitrogen flow range, ∆pav and nitrogen consumption remained approximately
constant. At flows > 12 sccm, it increased and then stabilized at values slightly higher than
the minimum. When the nitrogen flow decreased in the second part of the cycle, a very
similar curve simply shifted upward by about 0.015 Pa. This shift was barely larger than
the accuracy of the measurement. The hysteresis behavior, in this case, would therefore be
very small and close to the error of measurement.

Despite almost negligible hysteresis behavior, the conclusion from Figure 1b that is im-
portant for reactive HiTUS deposition optimization is the existence of at least two regimes:

• full consumption of nitrogen at nitrogen flows below 8 sccm;
• decrease and saturation of nitrogen consumption at flows above 8 sccm.
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Figure 1. (a) Changes in working pressure in the deposition chamber due to nitrogen additions into
the Ar sputtering atmosphere without (p0) and with the power of RF 700 W applied to TiNbVTaZrHf
target during three independent nitrogen flow cycles (p(1), p(2), p(3)) (the offset of pressure at 0 sccm
N2 after turning sputtering on is an artifact attributed to plasma heating); (b) average pressure
difference ∆pav = pav − p0 resulting from nitrogen consumption.

3.2. Deposition, Structure, Phase, and Chemical Composition of Coatings
3.2.1. Deposition and Deposition Rates

Table 2 overviews the studied HiTUS coatings deposited at several nitrogen flow
levels. One additional coating without nitrogen and substrate temperature of 500 ◦C and
another one with 6 sccm nitrogen at 300 ◦C but with RF 50 W bias (corresponding to DC
bias of around −295 V) were added to explore the effects of substrate temperature and
bias, respectively. Table 2 also contains coating thicknesses visible on fracture surfaces
ranging from 1.2 to 1.7 µm. The average deposition rates calculated from these thicknesses
are plotted in Figure 2 in dependence on nitrogen concentration taken from later IBA
measurements and nitrogen flow.
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Table 2. The list of the studied TiNbVTaZrHf–N coatings prepared by reactive HiTUS and their
thicknesses measured on fracture cross-sections (see Figure 3).

Sample N2 Flow
sccm

Thickness
nm

HT-6TM-0N 0 1705

HT-6TM-0N-500 ◦C 0 1370

HT-6TM-2N 2 1600

HT-6TM-4N 4 1610

HT-6TM-6N 6 1620

HT-6TM-6N-50Wbias 6 1540

HT-6TM-8N 8 1420

HT-6TM-10N 10 1250
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Figure 2. The average deposition rates of the studied HiTUS TiNbVTaZrHf-xN coatings at different
nitrogen flows as a function of nitrogen atomic concentrations (nitrogen concentrations were taken
from later IBA measurements).

The deposition rates followed two different dependences in two nitrogen flow ranges
and two nitrogen concentration ranges. From 0 sccm up to around 6 sccm N2 resulting
in nitrogen concentrations from 0 to 45.5 at. %, the rates decreased insignificantly from
0.316 nm/s (19 nm/min) to around 0.29–0.300 nm/s (17.4–18 nm/min). Rates dropped
dramatically above 6 sccm and at stoichiometric 50 at% nitrogen concentrations. The reason
for the existence of both ranges can be elucidated from their combination with the two
nitrogen flow ranges related to their consumption mentioned in Figure 1b.

The increase of the substrate temperature to 500 ◦C in the coating without nitrogen
and the bias in the case with 6 sccm N2 resulted in a decrease in deposition rates. The
reasons may be related to the enhanced scattering of sputtered species in Ar atmosphere at
higher temperatures. RF bias of 50 W corresponding to almost −300 V in the DC case was
comparable to the values applied to the target during DC sputtering. Thus, the reduction
of the deposition rate could be attributed to re-sputtering from the growing coating.
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3.2.2. Structure and Chemical Composition

Figure 3 shows fracture surfaces obtained on HiTUS-made coatings. In the coatings de-
posited with 0 sccm and 2 sccm N2 additions, the fracture surfaces were flat and featureless,
indicating a brittle fracture and suggesting an amorphous or nanocrystalline structure. On
the fracture surfaces of the coatings produced with ≥6 sccm N2 additions, columnar grains
implying oriented textured crystalline structures were observed. The topography of the
fracture surface in the coating obtained with 4 sccm N2 was also rough, but the columnar
grains were not so clear. Fracture topography in this coating can be considered to be a result
of a transition from fully brittle to intergranular fracture in crystalline textured structures.
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High-resolution TEM (HRTEM) studies on thin foils confirmed the amorphous struc-
ture of the coating produced with 0 sccm N2 (Figure 4). It agreed with broad featureless
rings in the selected area electron diffraction (SAED) patterns (see insert in Figure 4). The
corresponding azimuthal integral SAED also indicated an amorphous structure. How-
ever, small (~1 nm) crystallites were also occasionally present. They could be assigned to
crystallization nuclei, suggesting an early stage of localized crystallization.
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Figure 4. Structure of HiTUS TiNbVTaZrHf coatings deposited without nitrogen additions. SAED
spectrum indicates an amorphous structure despite the occasional presence of small crystallites de-
tected by HRTEM (see insert). Azimuthal integral SAED also corresponds to an amorphous structure.

TEM observations in the coating deposited with 2 sccm N2 showed a crystalline-like
structure consisting of columnar grains growing perpendicularly to the substrate surface
(Figure 5a). Their diameters were in the 10 nm range, and they were embedded in a
residual amorphous phase. At higher magnifications, the columns were found to consist
of many nanocrystallite domains with distinct preferred orientations and oriented mainly
perpendicular to the substrate surface (Figure 5b). Very intense SAED reflections confirmed
the presence of preferred orientation in a just-forming fcc structure. The spots’ broadening
of ~18◦ in an angular direction was attributed to misorientation from preferred directions.
The diffraction spots in the first circle correspond to 111 reflections. Next to them, a second
ring of weaker 200 reflections can be observed. The existence of both 111 and 200 is strongly
supported by the right shoulder in the most intense first peak of the azimuthal integral
of the SAED pattern. The two strongest spots, overlapping 111 and 200, are oriented in a
direction perpendicular to the substrate surface.
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Figure 5. Structure of the reactive HiTUS TiNbVTaZrHf-xN coating deposited with 2 sccm N2: (a) low
magnification TEM image; (b) HRTEM images and the corresponding SAED with azimuthal integral
SAED; (c) Fast Fourier transformation (FFT) enhanced cut-off with possible boundaries between
selected and highly defect crystalline domains.

Figure 5c shows the image cut-off filtered in frequency space, which displays more
details within these domains. The domains were full of dislocation-like defects resulting
in their small misorientation, which made their structure regular only in a very small size
range. The dotted lines in Figure 5c were introduced as a guide for eyes to indicate possible
small-angle or even twin-like boundaries between such nanocrystalline domains. Thus, the
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structure of 6TM-2N coating could be described as an early stage of crystallization from an
amorphous matrix with an already formed and growing but still only partially developed
texture in the fcc lattice.

At 6 sccm nitrogen, well-defined crystalline columns with two orientations slightly
declining from the normal direction to the substrate surface were identified (see arrows in
Figure 6a), besides some amorphous phases among them. The diameter of the columns
was in the range of 30–40 nm (Figure 6b). HRTEM (Figure 6c) confirmed the presence of
two preferred orientations in the columns: (200) and simultaneously (111) planes close to
parallel with the sample surface. The size of crystalline domains was much larger, and there
were far fewer packing defects than in Figure 5c. Both SAED and its azimuthal integral
showed the presence of much more focused, distinct, and intensive peaks in the first two
rings corresponding to diffractions from (111) and (200) planes which was in full consent
with the results in Figure 6c. The lattice parameter calculated from SAED was 0.4496 nm.
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Figure 6. TEM structure of reactive HiTUS TiNbVTaZrHf-6N coating deposited with 6 sccm N2:
(a) low magnification image demonstrating slightly disoriented columnar grains approximately
perpendicular to the substrate embedded in the amorphous matrix phase; (b) HRTEM of the columnar
grain and (c) FFT enhanced image of the columnar grains and (d) corresponding SAED and its
azimuthal integral.

EDS mapping was subsequently performed on the same thin foils in STEM mode.
Figure 7 visualizes TM distributions in the alloy coating deposited with 0 sccm N2. When a
possible influence of thickness reduction toward the edge is considered, the distributions
of all TM elements seem to be homogeneous.
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Figure 7. EDS mapping of the distribution of transition metal elements in the studied HiTUS–
TiNbVTaZrHf-0N coating (~1705 nm thick).

Semi-quantitative atomic concentrations of individual TM elements in a thin foil
of TiNbVTaZrHf-0N coating were obtained by averaging the data from seven different
areas (Table 3). They varied from ~32 at% of Ti to ~5.5 at% of Hf. These variations
indicated substantial deviations of individual TM concentrations from ideal equiatomic
~16.7 at% concentration in 6-component alloys. A relatively large scatter of TM element
concentrations simultaneously indicated that the alloy is not fully homogeneous in the
<100 nm range. Additional measurements were therefore performed using the top view in
SEM from four areas with a much larger size (900 × 680 µm2) to obtain more representative
average values. Then, the deviations from the equiatomic concentration were in the
range from +2.3 at% (Nb) to +4.2 at% (Ti), whereas the deficits of −6.8 at% and −5.4 at%
were observed in the cases of Zr and Hf, respectively. Despite these macro- and nano-
scale deviations from an equiatomic value, the obtained HT-6TM-0N coating can still be
considered a relatively homogeneous single-phase solid solution.

Table 3. Average concentrations of transition metal elements in the target compared to those in the
HT-6TM-0N coating obtained on thin foil by EDS/TEM and in top view EDS/SEM from a large area
(900 × 680 µm2).

TM
EDS/SEM Concentration
in the Target
at% *

EDS/TEM Concentration
at%
(Thin Foil) *

EDS/SEM Concentration
at%
(Top View) *

Ti 18.5 ± 1.9 32.1 ± 4.7 20.9 ± 0.2

Nb 19.6 ± 1.3 17.2 ± 3.6 19.0 ± 0.2

V 26.4 ± 3.6 22.8 ± 3.3 19.3 ± 0.1

Ta 13.0 ± 0.4 14.2 ± 2.4 19.7 ± 0.2

Zr 10.4 ± 0.3 8.3 ± 1.8 9.9 ± 0.1

Hf 12.1 ± 0.7 5.5 ± 0.7 11.3 ± 0.1
* This standard deviation refers to the scatter of calculated concentrations across four different sites, not to the
precision of EDS concentration measurement.

Table 3 also allows you to compare the TM concentrations in the coating to those in the
target. Excess concentrations in the coating indicated enhanced sputtering of Ta (+6.7 at%)
and Ti (+2.4 at%), whereas less sputtering occurred in V (−7.1 at%). Other elements had
deviations of <1 at%. Thus, additional adjustment of the concentration of each TM in the
target would be necessary to approach equiatomic TM concentrations in the coatings.

Figure 8 shows analogous EDS maps in thin foil made from HT-6TM-2N coating.
Similarly, as in the metallic alloy coating, not only all TM elements but also nitrogen was
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distributed approximately homogeneously at this scale. Nitrogen concentration in thin foil
was above 40 at%, whereas only 29 at% was found on the fracture surface by EDS/SEM.
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Figure 8. The distribution of nitrogen and TM elements in TiNbVTaZrHf-2N coating by EDS.

EDS mapping applied to the 6TM-6N coating produced distributions practically
identical to those in Figure 8 and confirmed the presence of a homogeneous solid solution.
Local variations of element concentrations from thin foil, fracture surface, and average
concentrations from large top view areas are compared in Table 4. The “nano-scale” nitrogen
concentrations obtained by EDS in TEM scattered from 42 at% up to 55 at% with a mean
value of 48 at%. It was the same as the nitrogen concentration obtained on a rough fracture
surface from EDS/SEM. However, the representative average nitrogen concentration from
the top view EDS/SEM measurements exceeded 55 at%.

Table 4. Local and average concentrations of each element in HT-6TM-6N coating obtained by EDS
in three measurement configurations: on TEM foil, on fracture surface in SEM, and in the top view
from four large areas (900 × 680 µm2) in SEM.

Element N,
at%

Ti,
at%

Nb,
at%

V,
at%

Ta,
at%

Zr,
at%

Hf,
at%

Area 1 TEM 50.9 16.4 8.7 8.9 6.8 5.9 2.3
Area 2 TEM 43.1 19.7 9.4 12.2 6.4 6.5 2.8
Area 3 TEM 42.5 16.1 12.6 11.9 7.3 6.9 2.9
Area 4 TEM 55.4 14.0 10.5 8.1 5.3 5.0 1.9

Mean ± standard deviation * 48.0 ± 5.4 16.6 ± 2.0 10.3 ± 1.5 10.3 ± 1.8 6.4 ± 0.7 6.0 ± 0.7 2.5 ± 0.4
SEM (fracture surface) 48.0 11.9 8.0 9.4 10.7 5.1 6.3

SEM (top-view) mean ± standard
deviation * 55.4 ± 0.5 10.1 ± 0.2 8.4 ± 0.1 8.2 ± 0.1 7.9 ± 0.2 5.3 ± 0.1 4.7 ± 0.1

* This standard deviation refers to the scatter of calculated concentrations across four different sites, not to the
precision of EDS concentration measurement.

EDS concentrations of TM elements obtained in TEM and SEM deviated by −6.5 at%
(Ti) up to +4.3 at% (Ta). At the same time, depending on the measurement configura-
tion, their deviations from an ideal equiatomic concentration of 8.3 at% (in stoichiometric
6-TM-50 at% N composition) varied. The smallest differences (+2.8 at% in Ti and −3.6 at%
in Hf) were obtained in top view SEM, which was in the same range as in the metallic
alloy coating.

The average concentrations of nitrogen and TM elements from top view EDS/SEM
measurements for all coatings were summarized in Table 5 and Figure 9. Nitrogen con-
centrations increased rapidly from 0 at% to ~55 at% at 4 sccm N2. They saturated and
remained within the 50–57 at% range at higher nitrogen flows. When the uncertainty due
to the partial overlap of N and Ti peaks in EDS spectra was taken into account, nitrogen
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concentrations obtained at >4 sccm N2 flows could be considered approximately constant
and near stoichiometric.

Table 5. The comparison of the concentrations of transition metals and nitrogen in the studied HiTUS
TiNbVTaZrHf-xN coatings determined by EDS/SEM and by IBA methods.

N2 Flow
Sccm

N
EDS
at%

N
IBA
at%

Ti
EDS
at%

Ti
IBA
at%

Nb
EDS
at%

Nb
IBA
at%

V
EDS
at%

V
IBA
at%

Ta
EDS
at%

Ta
IBA
at%

Zr
EDS
at%

Zr
IBA
at%

Hf
EDS
at%

Hf
IBA
at%

0 0 0 20.9 21.7 18.9 18.0 19.4 20.7 19.7 18.6 9.9 10.1 11.3 10.1

0
500 ◦C 0 - 20.7 - 16.1 - 21.4 - 18.3 - 8.8 - 14.7 -

2 39.7 23.8 12.8 16.8 12.3 12.4 11.1 15.7 10.4 14.5 7.6 8.0 6.1 8.8

4 52.8 41.7 10.4 13.1 8.9 9.4 8.6 12.0 8.5 10.9 5.6 6.2 5.2 6.7

6 55.4 45.5 10.1 11.5 8.4 10.0 8.2 10.5 7.9 10.0 5.3 6.5 4.7 6.0

6 bias 53.8 43.8 10.4 11.4 8.5 10.3 8.5 10.7 8.3 10.5 5.4 6.9 5.0 6.4

8 50.8 49.8 10.9 10.4 8.6 7.8 9.0 10.6 9.6 6.1 5.5 5.2 5.7 6.1

10 51.6 49.9 10.7 11.1 8.5 8.3 8.9 10.7 9.4 5.5 5.4 5.5 5.5 5.5
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Figure 9. Average semi-quantitative EDS compositions of the studied reactive HiTUS TiNbVTaZrHf-
xN coatings (x–flow of nitrogen in sccm) as a function of nitrogen additions in the Ar sputter-
ing atmosphere. The averaging was based on top-view measurements in SEM from four large
(900 × 680 µm2) areas.

TM element concentrations decreased proportionally to nitrogen concentrations. There
were also deviations from an ideal equiatomic concentration of 8.3 at%. Those of Ti (>10 at%)
were approximately twice higher than those of Zr and Hf (5.0 and 5.5 at%, respectively),
but the concentrations of V, Ta, and Nb were close to the ideal concentration.

To verify the concentrations obtained from EDS measurements, a combination of IBA
methods (RBS-EBS-NRA-PIXE) was used as a reference because RBS is considered to be
an absolute analytical method. Despite that, according to a very conservative estimation,
the general uncertainty of TM concentrations determined by IBA was <5 at%, and that of
nitrogen < 10 at%, IBA results were considered more reliable.

The concentrations from IBA measurements were compared with the earlier results
from EDS in Table 5. The corresponding plot in Figure 10 shows that the coatings produced
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with up to 6 sccm N2 were sub-stoichiometric, and stoichiometry was achieved at 8 sccm
and 10 sccm N2 flows. Nitrogen oversaturation implied from EDS measurements (see
Figure 9) above 4 sccm N2 was not confirmed. In the TM sub-lattice, tendencies remained
the same as in Figure 9, but the spread of V, Ta, and Nb concentrations was larger. Bias in
the coating with 6 sccm N2 caused only a small (−1.6 at%) reduction in nitrogen content.
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Figure 10. The concentrations of TM and nitrogen determined by IBA methods in the studied reactive
HiTUS TiNbVTaZrHf-xN coatings in dependence on the additions of nitrogen.

Figure 11 illustrates the differences between EDS and IBA results. The dotted diagonal
line corresponds to an ideal overlap of EDS and IBA concentrations. Nitrogen concentra-
tions at 2, 4, and 6 sccm N2 located above this line suggested +16 at%, +10 at%, and +10 at%,
respectively, overestimations of nitrogen concentrations by EDS. Very good agreement
between both methods was obtained at 8 sccm and 10 sccm. The absolute deviations of
TM concentrations from the ideal line were much smaller, usually below 3 at%. They were
clearly influenced by the nitrogen concentration error as a result of the normalization of all
element concentrations to 100 at%. At the same time, the good accuracy of the measurement
of heavy TM elements by EDS was also confirmed by their overlap with the diagonal in the
case of metallic alloy coating.
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3.2.3. Phase Composition

The analysis of X-ray diffraction (XRD) measurements was difficult due to the presence
of amorphous and nanocrystalline structures in the coatings as well as the lack of diffraction
data for the newest multicomponent ceramics in the X-ray diffraction databases. The
diffractograms were therefore compared with the results reported for similar transition
metal alloy and nitride coatings and bulk systems, as well as for known binary and ternary
TM intermetallics and nitrides.

In the metallic TiNbVTaZrHf alloy coating, two to three very wide peaks were present
both in B-B and GI configurations (Figure 12a), and they overlapped very well with the
earlier azimuthal integral SAED (Figure 4). All three diffractograms implied an amorphous
structure similar to that in DCMS HfNbTiVZr coating deposited at room temperature [47]
or with a low (16 at%) content of nitrogen [48]. The size of crystallites of only 1 nm, roughly
estimated by the Williamson-Hall method, complied with our TEM observations (Figure 4).
The amorphous structure, on the other hand, was surprising because a crystalline body-
centered cubic (bcc) structure is typical for multicomponent TM alloys [47–50]. Moreover,
substrate temperatures above 275 ◦C were reported to overcome the effect of suppressed
diffusivity and rapid cooling during magnetron deposition, producing and promoting
crystallization in these systems [47]. In our case, the absence of crystallization at a 300 ◦C
substrate temperature in our case can be related to the presence of Ta and the difference
in power densities between HiTUS and DCMS. The peak positions of the current coating
could be compared with those in similar crystalline DCMS TM coatings and with the results
of calculations for bcc structures with the lattice parameters a = 0.341–0.342 nm [47,48],
0.336 nm [49], and 0.338 nm [50] and intermetallic ZrTiNb phase (ICDD: 03–065-7192). The
approximate peak positions for the fcc structure corresponding to crystalline single and
binary nitrides were also added. The experimental peaks did not overlap with the peaks
for bcc or fcc structures confirming the amorphous character of the coating.

The diffractograms obtained from highly sub-stoichiometric nitride deposited with
2 sccm N2 flow (Figure 12b) were very similar to the HEA case. Only the relative intensity
of the main peak in the ≥35◦ region obtained in B-B was considerably higher than in GI
and in the metallic alloy case. Azimuthal integral SAED principally agreed with both X-ray
diffractograms, but a shift of the main peak position toward lower 2θ, shoulder above
40◦, and additional peaks at 60◦ and 67◦ were emphasized. XRD peaks were between the
positions of fcc peaks in nitrides (HfTiN2, (ICDD:03–065-9258), HfTaN2 (ICDD:03–065-9257),
NbTiN2 (ICDD:01–089-5134), or TiN (ICDD: 00–038-1420), and NbN (ICDD: 00–038-1155))
and in intermetallics [47–50]. The size of crystallites obtained by the Williamson-Hall
method was around 2 nm, and the microstrains of around 2% corresponded to microstresses
over 5.5 GPa. The similarities and differences between the previous coating and GI vs. B-B
suggested that the coating structure would be mostly in an amorphous state. The presence
of highly localized fcc crystallites seen in Figure 5b,c may not be visible directly by XRD
in a much larger coating volume, but it can be anticipated from a narrower and more
intense main peak and agreement with the azimuthal integral of SAED. Thus, the structure
of this coating can be described as a more pronounced early stage of crystallization and
a transition from an amorphous to a textured nanocrystalline structure with crystalline
(nano-)columns in nitrogen-rich regions.
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Figure 12. X-ray diffraction patterns of the studied reactive HiTUS TiNbVTaZrHf-xN (HT-6TM-xN)
coatings in symmetrical θ/2θ (Brag–Brentano (B-B)), grazing incidence (GI), and azimuthal integral
of SAED (AI SAED) from TEM observations and prepared: (a)—without nitrogen addition (0 sccm
N2); (b)—with 2 sccm N2 and (c)—6 sccm N2. (*—from [47–50]).
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In (near-)stoichiometric HT-6TM-6N coating, narrow and intensive XRD peaks typical
for crystalline materials appeared, especially in the GI case (Figure 12c. The main GI and B-B
peaks at ~41◦ and ~59◦ approximately overlapped with the (200) and (220) reflections of fcc
nitrides reported in the literature [15,48,51] and with those in TaNbN2 (ICDD: 01–089-5133),
HfTiN2, TiNbN2, and/or even single nitrides (e.g., TiN, TaN or NbN). The existence of
one dominant peak at 41◦ implied a texture with [100] orientation. Indeed, the texture
coefficient for <100> orientation, calculated as a relative intensity of 200 peak to the sum
of intensities of all peaks in the B-B diffractogram, was TC(200)

BB = 0.691, confirming its
dominant role. The calculated crystallite size was 10–15 nm. The microstresses estimated
from the microstrains of around 0.9% were in the range of 3.2 GPa, which was lower than
in the previous sub-stoichiometric coating. The lattice parameter derived from the first
five GI peaks was a = 0.4409 nm. All peaks detected in B-B and GI were present in integral
SAED, but with many enhanced intensities of 111, 220, 311, and 222 reflections. The peak
positions in SAED and XRD were essentially the same.

3.2.4. Mechanical Properties

The results of nanoindentation were summarized as a function of nitrogen flow
(Figure 13a) and nitrogen concentration (Figure 13b). Hardness and indentation modulus
increased proportionally and almost linearly up to 4 sccm N2. Above 4 sccm, stabilization
or a small reduction of the obtained values can be seen. Higher substrate temperature in
the coating without nitrogen caused a slight increase in the corresponding values, while
additional bias caused a slight decrease. However, nitrogen concentration dependences
in Figure 13b provided much better physical insight. They reveal a clear maximum at
41.7 at% N2 (4 sccm) followed by a mild decrease at 45.5 at% (6 sccm) and abrupt degra-
dation after stoichiometric 50 at% concentration was approached at 8 sccm and 10 sccm
N2 flows.

The highest hardness of around 33 GPa and indentation modulus of around 400 GPa
were achieved in slightly sub-stoichiometric coating with 41.7 at% of nitrogen. The cor-
responding values in similar slightly sub-stoichiometric 5-TM component nitrides with
nitrogen concentrations in the range from 45 at% to 49 at% produced by reactive DCMS
were 33–34 GPa and 385–470 GPa, respectively [15,21,48,51]. The overlap with the me-
chanical properties of the current reactive HiTUS is obvious. Furthermore, a drop in
mechanical properties at 50 at% of the nitrogen concentration limit was observed in DCMS
coatings [15,48].

The ratio H/E is often used to estimate the toughness of the coatings, assuming 0.1 as
a limit for a transition from brittle to ductile behavior [52,53]. The ratio HIT/EIT calculated
from the values in Figure 13 is shown in Figure 14 as a function of nitrogen content. In
metallic coating, the ratio was in the range of 0.085 to 0.090, whereas in the nitride coatings,
the majority of the values were even below 0.085, especially in the case of excessive nitrogen
flows (10 sccm). The only values exceeding 0.1 were obtained in the coating produced with
2 sccm N2. However, it may be an exclusion related to an overestimation of the hardness of
this coating (see the deviation from linearity in Figure 13). This assumption was based on
the presence of high microstrains and microstresses discussed earlier.
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Figure 13. The dependences of hardness and indentation modulus in the studied reactive HiTUS 
TiNbVTaZrHf-xN coatings on (a) nitrogen flow in Ar sputtering atmosphere and (b) IBA nitrogen 
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To confirm the low toughness prediction based on the H/E ratio, additional pillar
splitting tests were performed on the coating deposited with 6 sccm nitrogen. The basic
formula for the calculation is [54]

KC = γ·Fc/[R3/2],

where Fc is the critical load when the pillar splits, R is the radius of the pillar, and γ is a
dimensionless geometrical factor depending on the coating hardness and elastic moduli of
the coating and substrate. The geometrical factor γ ~ 0.231 was taken from FEM results
in [55] for H/E =~12 on a stiff substrate (Esubstrate/Ecoating = 435 GPa/400 GPa = 1.09).
The possible difference between cube corner and Berkovich geometry for which the γ was
reported was neglected. The tests were performed on four pillars with the diameters R in
the range 3.3–3.75 µm using a diamond cube corner indenter. The measured critical loads
Fc ranged from 8.6 to 12.1 mN. The average fracture toughness value calculated from these
four tests was KC = 1.07 ± 0.19 MPa.m1/2. Thus, the brittle nature of these coatings implied
by their low H/E ratio was confirmed.

4. Discussion

At first, reactive HiTUS should be discussed from the viewpoints of hysteresis behavior,
target poisoning, and their influence on the deposition rates, stoichiometry, and resulting
mechanical properties. As described in Figures 1, 2, 10 and 12, up to 4–6 sccm additions of
nitrogen caused a small and approximately linear reduction of ∆pav and deposition rates
accompanied by an almost linear increase of nitrogen content and the level of mechanical
properties, respectively. A combination of the considerations of ∆pav dependence (Figure 1)
and nitrogen concentrations suggested that nitrogen was actively consumed because the
coatings were highly sub-stoichiometric. It was possible because the amount of sputtered
TM available for the reaction with nitrogen was greater than that of nitrogen. Additions of
nitrogen in this range into a sputtering atmosphere should increase the working pressure
and the deposition rate due to the additional nitrogen atoms. At the same time, increased
working pressure should cause a reduction in the deposition rates due to enhanced scatter-
ing of sputtered species. The result of these two opposite tendencies is a small decrease in
the deposition rates (Figure 2). At 4 sccm N2, nitrogen concentration achieved 42 at%, ∆pav

minimum, and mechanical properties their maxima. Above 6 sccm, a transition toward
∆pav saturation (see Figure 1) due to the gradual consumption of TM supply for the reaction
with nitrogen occurred, as indicated by the slow approach of nitrogen concentration to
the stoichiometric amount (Figure 10). At 8 sccm and 10 sccm N2, an excess of unreacted
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nitrogen contributed to a substantial increase in working pressure, enhanced scattering,
and a significant reduction in the deposition rates by suppressing the ballistic regime of
sputtered species transport from the target toward the substrate.

However, the above considerations did not involve the interaction of nitrogen with the
unsputtered TM, causing target poisoning. Hysteresis in ∆pav (Figure 1b) was definitely
present but it was significantly suppressed. From the viewpoint of reactions between
nitrogen and metallic species, it means that the amount of TM available for the reaction
included not only sputtered species but also the metal activated by bombardment on
the target surface. Such a TM source for nitrogen consumption should be much more
powerful than that of sputtered TM in the plasma because of low sputtering yields. At
the same time, the active sputtering area in HiTUS is substantially larger than that of the
racetrack in conventional DCMS. Assuming the possibility of a gradual increase in nitrogen
concentration (stoichiometry) in the film on a very large target surface during poisoning,
only slow and gradual changes of corresponding sputtering parameters can be expected in
the range of nitrogen additions below the optimum limit. Above that limit, the changes
were more pronounced, but apparently only due to the increase in working pressure. The
reason is that more nitrogen cannot generate over-stoichiometric poisoning, either on the
target or on the substrate. The range of stable deposition regimes during reactive HiTUS
would therefore extend well beyond the optimum flow, and the poisoning effects would
be significantly suppressed. Thus, target poisoning and subsequent hysteresis behavior in
HiTUS play a much smaller role than in conventional reactive magnetron sputtering. Even
for multicomponent transition metals systems, the reactive HITUS can be controlled solely
by the amount of nitrogen (and possibly by the substrate temperature) without the need
for feedback control.

The understanding of the reactive HiTUS process can be used to discuss the mecha-
nisms of structure evolution and corresponding mechanical properties of the deposited
coatings. TEM, SAED, and XRD analyses implied that the introduction of a sufficient
amount of nitrogen into the solid solution of transition metals resulted in the formation
of an fcc structure consisting of [100] and partially [111] textured nano-columns. A stoi-
chiometric fcc nitride solid solution structure with the TM:N ratio of 1:1 would be possible
when nitrogen occupies octahedral (Figure 15) interstitial positions (tetragonal positions
would correspond to the nitrides with the TM:N ratio of 1:2). It is possible because the ratios
RN/RTM of atomic radii of nitrogen and TM elements in all binary nitrides (empirical val-
ues: RN = 65 pm, RTi = 140–145 pm, RTa = 143–145 pm, RNb = 143–145 pm, Rv = 132–135 pm,
RZr = 155–160 pm, RHf = 155–159 pm [21,56]) were in the range 0.46–0.42. It is substantially
smaller than the 0.59 required for solid solutions by geometrical considerations and Hägg’s
rule [57].

The lattice parameters of 5-component TM alloys with typically bcc structure were
reported in the range from 0.336 nm up to 0.342 nm depending on the presence of individual
transition metals [47–50]. In binary TM nitrides with an fcc structure, they were in the range
of 0.441–0.458 nm [51]. In near-stoichiometric multicomponent fcc 5-TM nitrides, lattice
parameters were 0.440–0.448 nm in TiZrNbHfV-xN [47], 0.446 nm in TiZrNbHfTa-xN [21],
0.4339 nm in HfNbTiVZr—43 at% N, and 0.4358 nm in over-equimolar Hf-NbTiVZr—43 at%
N coatings [51]. Thus, the increase in lattice parameters after the transition from metallic
bcc to fcc nitride structure was 28.9–36.3% in binary compounds and 26.8–33.3% in 5-TM-N
compounds. In the current HiTUS 6-TM-45.5 at% N coating, the lattice parameter was found
to be 0.4409 nm from X-ray diffraction and 0.4496 nm from SAED. The relative difference
of around 2% between these values can be related to the presence of local microstrains
and composition variations. The relative lattice parameter expansion in comparison with
the reference bcc HEA corresponded to 28.9–33.8%. It was in the same range as in the
5-TM-nitride coatings mentioned in [21,47,51].
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The introduction of Ta and V into our 6-TM nitrides with near-stoichiometric composi-
tion caused only a slight increase of lattice parameters (<2.2% in the case of Ta and 0.8% in
the case of V) compared to the reference 5-TM-xN systems. The relative changes in lattice
parameters due to nitrogen incorporation were in the range of 30%. Thus, the expansion
of interplanar spacings in multicomponent nitrides would result from a combination of a
small contribution of a transition from bcc (amorphous in our case) to fcc, the small effect
of different TM radii and the dominant contribution of nitrogen concentration.

The stoichiometric multicomponent fcc nitride structure can then be described as a
superposition of transition metal fcc sub-lattice and analogous nitrogen sub-lattice shifted
by half of the lattice parameter with nitrogen atoms occupying octahedral positions (see
Figure 15). This model of stoichiometric fcc nitrides can also be used to describe the
formation of sub-stoichiometric nitrides. Since all TM exhibit a strong affinity for nitrogen,
the process of gradual filling of the octahedral positions in TM sub-lattice by nitrogen
at low nitrogen flows would be controlled only by the amount of nitrogen. It complies
with linear relationships between nitrogen flow and its consumption (∆pav changes) and
its concentration in the coatings (see Figure 9). At high nitrogen flows, the transition
from linear kinetics toward saturation suggested that the kinetics of nitrogen supply
into the few remaining unoccupied interstitials may control the process. The coexistence
of small-size crystalline nitride and remaining amorphous metallic phases was in sub-
stoichiometric nitride implied from blurred SAED reflections related to nano-crystallites
(Figure 5b) and a nearly amorphous structure indicated by X-ray diffraction (Figure 12b).
Such a nanocomposite structure would be a natural consequence of local variations in the
occupancy of interstitial positions by nitrogen in the case of its deficit at low flows.
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A stoichiometric limit of 50 at% clearly seen in Figure 2 (and visible also in the earlier
reports [47,48,51]) would be a consequence of a strictly defined number of octahedral
interstitial positions. When they are already occupied, excess nitrogen cannot be accom-
modated in the lattice and must remain in the sputtering atmosphere. The second reason
for the existence of a nitrogen consumption limit fits with the earlier discussed amount of
sputtered metallic species. At a given voltage (RF energy) applied to the target, it would
be given by sputtering yields. That amount of TM (sputtered and on the target surface)
would define the “critical flow” of nitrogen available for nitride formation reactions. The
analogous mechanism was proposed earlier in W-C:H systems prepared by HiTUS with the
involvement of hydrocarbon gases [46]. This approach, combined with target poisoning,
explains the discrepancy between the critical relative nitrogen flow of only fN2 = 6.25%
necessary for stoichiometric composition in the current case (fN2 = 8 sccm N2/(120 sccm
Ar + 8 sccm N2) = 6.25%) and fN2 = 50% reported in DCMS made coatings [15,48]. The
conclusion is that not the relative flow of reactive gas, but the total amount of available TM
controls the “stoichiometric” nitrogen flow. Obviously, an increase in the critical flow can
be predicted when higher sputtering power is applied.

In near-stoichiometric fcc nitride coatings, preferential growth in [100] and partially in
[111] directions were confirmed. Both planes exhibit high packing density, with the (111)
plane having energy slightly lower than that of the (100) plane. Because of the small differ-
ence in their energies, dominant orientation depends on thickness, competition between
interface and strain energies [58,59], as well as the energy of defects involving not only
vacancies and dislocations but also nano-twins [60]. The full width at half maxima (FWHM)
of 200 peak in near-stoichiometric 6-TM-6N coating (Figure 12c) was Γ200

BB = 1.24◦. It was
within the range Γ200

BB = 1.34◦–1.19◦ reported for similar DCMS TiTaVZrHf-N coatings
deposited with 30%, 40%, and 45% relative N2 flows [15], but substantially higher than
Γ200

BB = 0.76–0.89 in near-stoichiometric TiN coatings [61]. FWHM is primarily directly pro-
portional to defect concentration and microstresses and inversely proportional to crystallite
domain size [15]. When relatively small crystallite size and microstresses were taken into
account, high FWHM indirectly implied high defect concentrations. Thus, the occurrence
of both preferred orientations and even transitions between them during coating growth
could be expected, especially in highly defective sub-stoichiometric nitrides (Figure 5c).

Hardness and indentation modulus dependences principally followed the above
model of nitride formation based on ∆pav, deposition rates, and nitrogen concentration
dependences. It suggested that the increase of nitrogen concentration directly correlated
with the mechanical properties up to a certain limit. Degradation of properties above
critical flow can be related to lower densities of the coating due to the loss of energy of
impinging species resulting from enhanced scattering of sputtered species in the plasma at
increased working pressures. However, the question remains if this argument is sufficient to
explain why the highest mechanical properties were achieved in slightly sub-stoichiometric
(42 at% of nitrogen) and not in the stoichiometric coatings. Another remaining question
is associated with the brittle behavior of the current amorphous 6-TM-HEA coating. Its
HIT/EIT ratio was 0.086, which was above 0.05–0.078 reported in similar but crystalline
5-component DCMS HfNbTiVZr coatings [15,47,48,51]. It was found, that although high
quenching rates during magnetron sputtering on room temperature substrates favored
single-phase crystalline bcc solid solutions, at higher (450 ◦C) substrate temperatures, dual
bcc and Laves phases may appear [47]. Low HIT/EIT ratio and toughness were related to
the presence of brittle Laves phases formed in the bulk at temperatures below 800 ◦C [50].
Contrary to these conclusions, the current HiTUS 6-TM alloy coating deposited at 300 ◦C
was amorphous, the Laves phase was not detected, and its HIT/EIT ratio was higher.
Obviously, additional investigations are necessary to clarify the reasons for low toughness
and to explore possible toughening mechanisms in the multicomponent TM alloy and
nitride coatings.

Finally, possibly the most important output of the current work for industrial appli-
cations is the demonstration of the ability of reactive HiTUS to produce multicomponent
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coatings with mechanical properties equal to those in a similar arc and DCMS metallic and
nitride coating systems [9,10,12,15–25,47–51] without a feedback control of target poisoning.
The structures of the studied coatings, despite variations and deviations from equiatomic
concentrations of TM elements at different scales, corresponded to homogeneous solid solu-
tions regardless of the amount of nitrogen. Thus, the studied HiTUS 6 TM metallic alloy and
nitride coatings may be attributed to the materials with TM sub-lattice stabilized by high
configurational entropy [15], sometimes called “high entropy nitrides”. The equiatomic (or
equimolar) concentrations of all transition metal elements required in high entropy alloys
by definition [3,4] do not seem to be strict conditions. Indeed, solid solutions of metallic
sub-lattice remained homogeneous and exhibited very high mechanical properties even in
the coatings with substantial deviations of individual TM from ideal concentration.

5. Conclusions

The investigations of the pressure changes during reactive HiTUS, structure, chemical,
and phase composition, and their correlations with the resulting mechanical properties of
TiNbVTaZrHf-xN coatings, led to the following conclusions:

1. Formation of sub- and near-stoichiometric nitride structure from high entropy stabi-
lized metallic system during reactive HiTUS can be described by a gradual increase of
the occupancy of octahedral interstitial position in the face-centered cubic lattice by
nitrogen atoms;

2. The highest values of hardness HIT ~ 33 GPa and indentation modulus EIT ~ 400 GPa
were achieved in slightly sub-stoichiometric (~42 at% nitrogen) coatings;

3. Hysteresis behavior in reactive HiTUS is significantly suppressed. The structure and
mechanical properties of the studied TiNbVTaZrHf-xN coatings can be controlled
only by the amount of reactive nitrogen without a need for feedback control;

4. HiTUS and reactive HiTUS are suitable for the deposition of 6-TM alloy and ni-
tride coatings characterized as homogeneous solid solutions with metallic sub-lattice
stabilized by high configurational entropy.
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