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Abstract

The paper presents an approach to reactive navigation

in cross-country terrains. The approach relies on a par-

ticular probabilistic obstacle detection procedure, that de-

scribes the area perceived by a pair of stereo cameras as a

set of polygonal cells. To generate the motion commands

on the basis of this terrain description, we present some im-

provements and adaptations to the classical potential fields

technique. Results on real stereo data illustrate our con-

tribution throughout the paper, and simulated long range

traverses are discussed.

1 Introduction

Most of the contributions to autonomous navigation

in outdoor environments consist in reactive sense-action

loops (e.g. [8]. Indeed, building and maintaining global

models of such environments is a quite difficult task. There

has been several work dedicated to outdoor environments

modeling, either to localize the robot, plan navigation

tasks, or complex trajectories (see for instance [1, 7]).

However, such global models are not required when the

environment is essentially flat: in such cases, it is more

efficient to reactively generate motion commands.

We consider in this paper an approach to reactive cross-

country navigation in lightly cluttered environments. Our

approach relies on potential fields and is sketched in fig-

ure 1 : a pair of stereo images is acquired, and a corre-

lation procedure produces a dense 3D points image. This

image is then analyzed to determine a polygonal map of

the perceived area, for which the probability for each cell

to correspond to an obstacle is estimated. The elementary

motion commands are finally generated thanks to potential

fields defined on (i) this local map and to (ii) on the result

of a visual goal tracker.

This sequence is repeated as long as the goal is not

reached, with a non-constant rate that is determined by the

time necessary to process the data: when available, a new

local map (or a new goal position) simply replaces the for-

mer one. The local maps are not fused into a global model,

and the robot position is only defined relatively to the goal

by the goal tracker: no dead-reckoning is required.
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Figure 1: The ”reach-goal” reactive loop

The paper essentially focusses on the generation of mo-

tion commands, and is organized as follows : the next

section briefly presents the probabilistic obstacle detection

procedure, that builds a polygonal obstacle map. Section 3

presents some improvements and adaptations to the classi-

cal potential fields technique, that ensure safe and smooth

robot motions within this local map. Results on real data il-

lustrates this section, and section 4 presents first long range

motion results, obtained in simulation.

2 Obstacle Detection

The difficulty of representing outdoor environments

comes essentially from their geometrical and physical na-

ture diversity. However, several obstacle detection tech-

niques on the basis of 3D data have been proposed [3, 9].

Most of these techniques produce a binary description of

the environment, in term of traversable and non-traversable

areas. In order to ensure safe robot motions on such rep-

resentations, one must force the number of non-detection

to be as close as possible to zero, which often induces

false alarms, and thus “over-constrains” the problem. We

present here a classification procedure that produces a

polygonal map, in which a probability for each cell to cor-

respond to an obstacle is estimated: it allows to consider

costs based on a risk to plan paths or to generate motion

commands.

This 3D data classification procedure, initially devel-

opped for complex terrains [1], relies on a specific discreti-

sation of the perceived area, that defines a cell image. At-

tributes are computed for each cell, and are used to label

the cells in term of navigation classes, thanks to a super-

vised Bayesian classifier.



2.1 Cells definition

The sensors that produce 3D points, be it a laser range

finder or a stereo-vision correlation algorithm, generally

have a constant scanning rate whithin the sensor frame.

But when perceiving a ground plane with such sensors, the

resolution of the perceived points decreases dramatically

with their distance to the sensor. This fundamental point

lead us to choose the discretization of the perceived zone

presented in figure 2, instead of a cartesian one such as

in [3]. This discretization corresponds to the central pro-

jection on a virtual horizontal ground of a regular (carte-

sian) discretization in the sensor frame.

Figure 2: Discretisation of a 3D stereo image : regular Cartesian

discretisation in the sensor frame (left - only the correlated pixels are

shown), and its projection on the ground (right - the actual discretisation

is much finer)

The fundamental property of this discretization is the

“conservation of density” : on a perfect flat ground corre-

sponding to the reference plane, the number of points that

belong to a cell - i.e. whose vertical projection coordinates

are bounded by the cell’s border - is equal to a constant

nominal density, defined by the discretization rates. On

the other hand, a cell covering an obstacle area contains

much more points than the nominal density. The number

of points contained in a cell is then an important feature to

determine the nature of the perceived zone covered by this

cell.

Other features are used to identify a cell : the elevation

standard deviation and the maximum elevation difference

computed on the cell’s points give an information on the

“flatness” of the cell ; the mean normal vector and the vari-

ances on its coordinate are useful to determine if the cell

covers a regular slope or has an unregular surface. The cell

distance to the sensor is also an important feature : there is

actually no correlation between this distance and the cell’s

class, but all the former features strongly depend on it. The

introduction of this distance feature comes to implicitely

taking into account the sensor’s uncertainty and resolution

properties in the classification process.

2.2 Cell classification

A supervised bayesian classification procedure is used

to label each cell: during an off-line learning phase, a hu-

man prototyped a set of cell images. On line, once 3D data

are acquired, the cells image is defined by the discretiza-

tion, and the feature vector ✂ is computed for each cell.

The Bayes theorem is then applied to determine the partial

probabilities ✄✆☎✞✝✠✟☛✡ ✂✌☞ for a cell to correspond to each of

the ✍ terrain classes ✎✏✝✒✑✔✓✖✕✗✕✖✕✗✓☛✝✒✘✚✙ :

✄✆☎✛✝✜✟✜✡✏✂✌☞✣✢ ✄✆☎✞✂✤✡✥✝ ✟ ☞✦✄✆☎✛✝ ✟ ☞✄✆☎✧✂✌☞ ✢ ✄✆☎✞✂✤✡★✝ ✟ ☞✦✄✆☎✛✝ ✟ ☞✩✫✪✟✭✬✮✑ ✄✆☎✞✂✯✡★✝✠✟✰☞✱✄✆☎✞✝✠✟✰☞ ✓
where ✄✆☎✧✂✲✡✳✝ ✟ ☞ are the pdf’s computed thanks to a

nearest neighbour technique applied in the feature space

filled with the prototyped cells, and ✄✆☎✛✝✜✟✦☞ are the a priori

probabilities to perceive an area that belongs to the class✝ ✟ .
This classification procedure is very fast and robust : we

tested it on hundreds of images, using various prototype

data bases. In the case of the application considered in this

paper, we only consider two terrain classes, i.e. flat and

obstacle (Figure 3).

Figure 3: Classification of the stereo image of figure 2 : perceived area

(left) and reprojection in the sensor frame (right - only points closer than

15m are considered). The grey levels represent the partial probability✴✶✵✸✷✧✹✰✺✱✻
3 Obstacle avoidance

3.1 Potential functions

The artificial potential field method originally proposed

in [6] is one of the most widely used techniques for mobile

robot local collision avoidance: it is well adapted for real-

time motion control. Its principle is simple: the robot mo-

tion is defined by the application of (i) an attractive force

generated by the goal and of (ii) repulsive forces generated

by the obstacles.

Consider an obstacle ✼ , represented by an analytical

function in the plan ☎✞✽✾✓❀✿✮✓❀❁❂☞ , or as shown later by their en-

veloping segments. If ❃❅❄ represents the goal position and❃ the current robot position, the artificial potential func-

tion defined at ❃ is of the form:❆ ☎❇❃❈☞❉✢ ❆ ❄❊☎❇❃❈☞●❋ ❆■❍ ☎❇❃❈☞



where
❆ ☎✧❃❈☞ is the resultant potential,

❆ ❄❏☎❇❃❑☞ the at-

tractive potential produced by the goal at ❃ and
❆✣❍ ☎✧❃❈☞

the repulsive potential induced by the obstacle at ❃ . The

resultant force ✂ is then:

✂✆☎✧❃❈☞✣✢▲✂ ❄ ☎❇❃❈☞●❋▼✂ ❍ ☎✧❃❈☞
where ✂✆☎✧❃❈☞✆✢❖◆◗P❘❙❆ ☎❇❃❑☞ . ✂✮❄ is an attractive force

which guides the robot to the goal and ✂ ❍ is an artificial

repulsion induced by the obstacle surface.

3.1.1 Attractive potential

The attractive potential such as proposed in [6] induces

a force whose intensity is only function of the distance be-

tween the robot and the goal. As shown in [4], with such an

attractive force, it is difficult to define the repulsive forces

parameters to obtain a “constant” behavior with respect to

the obstacles, be they far or close to the goal. To cope with

this, an attractive potential function having a quadratic be-

havior at the goal neighborhood and an asymptotic linear

behavior away from it has been proposed in [4]:

❆ ❄ ✢✫❚ ❄❊❯ ❱❳❲❄ ❋▼❨ ❲
where ❱ ❄ denotes the distance to the goal, ❚✆❄ is a posi-

tive gain constant, and ❨ is a weighting function. The force

deduced from this potential is thus:

✂●❄❩✢❬◆❭❚❪❄ ❱❯ ❱✥❄ ❲ ❋❫❨❴❲ ❵ ❱✥❄❵ ❃ ✕
where

❨❛✢ ❱❝❜❡❞ ❢✂✌❣❄ ❲ ◆ ❢ ✓
is a function of a user-defined limit distance ❱❝❜ and a

maximum attractive force ✂ ❣❄ . Thus, ✂ ❄ is asymptotically

constant for distances greater than ❱❝❜ , and tends to zero as❱ ❄ tends to zero (figure 4).

3.1.2 Repulsive potential

Most of the proposed repulsive potential functions in

the literature depend only on the distance to the obstacles.

A major drawback of such potentials is that obstacle seg-

ments have an influence on the robot even if the robot is

moving in a parallel direction. This can lead to irregular

motions, especially in our case where the environment de-

scription is polygonal. To cope with this, some authors in-

troduced some parameters describing the geometrical sit-

uation between the robot and the obstacles to define the

repulsive function [2].

0

Potential
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Figure 4: Shape of the attractive potential and corresponding force we

consider

We have chosen to use the rotational potential ap-

proach, which initially proposed in [5]. In this approach,

the resultant repulsive potential is a linear combination of

two repulsive potentials ❤✐✑✥☎❇✿❥☞ and ❤ ❲ ☎✧✿✐☞ :❆❩❦ ☎❇❃❈☞✣✢♠❧✯♥ ❲ ❤ ❲ ☎✧❃❈☞❥❋✚❤✐✑✏☎✧❃❈☞ if ❱❪♦♣❱❳q ,r
else-wise.

(1)

where ❱✥q is a limit distance over which the obstacle has

no influence on the robot motion, and ♥ ✢ts❫✉✇✈②①✮☎✞③❡④❝☞✆s
( ③❡④ is the relative angle between the robot direction and

the nearest cell segment - figure 5).

Cell[i,j]

∆θ

d

Figure 5: Cell’s repulsive force computation.❤ ✑ and ❤ ❲ are defined as follows:

❤❥✑✏☎❇❃❑☞✣✢ ❢⑤⑦⑥ ✑❩⑧ ❢❱ ◆ ❢❱ q⑩⑨ ❲ ✓❤ ❲ ☎❇❃❑☞✣✢ ❢⑤ ⑥ ❲ ☎ ❱ ◆ ❱ q ☞ ❲ ✕❤✐✑★☎❇✿❥☞ has a quadratic behavior and ❤ ❲ ☎✧✿✐☞ a linear one.

The aim of ❤❥✑✏☎❇✿❥☞ , which dominates in the neighborhood

of the obstacle surface, is to guarantee the non-collision

(❤✐✑✔☎✧✿✐☞❷❶ ❸ when ❱ ❶ r
). ❤ ❲ ☎❇✿❥☞ having a linear

behavior, it dominates in the region near the limit distance

boundary and acts to smoothly pre-avoid the obstacle con-

sidering its relative orientation expressed by the parameter♥ (figure 3.1.2).
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3.2 Adaptation to the cell images

3.2.1 Cells Repulsive Potential

Our purpose is to guide the robot safely in the perceived

area using the classified image. For security reasons, we

divide the cells into two categories:❹
obstacle cells: are the non classified cells or cells with✄❻❺✮❼✰❽✰❾✒❿➁➀✠➂ where ➀✠➂ is an obstacle threshold. The repul-

sive potential function associated to such cells is the rota-

tional potential defined in 1;❹
traversable cells: are the classified cells with✄❻❺✮❼✰❽✰❾ ♦ ➀ ➂ . For a traversable cell ➃ ➄➅✓✛➆✥➇ , the repulsive po-

tential function is given by :

❆✣❍ ➃ ➄➅✓✛➆✥➇✦☎❇❃❈☞❉✢✯❧ ♥ ❲ ✄❻❺✮❼✰❽✰❾✖➃ ➄➅✓✛➆✥➇★❤❂❾⑩☎❇❃❑☞ if ❱✆♦➁❱✥qr
else-wise.

where ❤❂❾⑩☎❇❃❑☞➈✢ ⑥ ❾ ✑❲ ☎ ❱ ◆ ❱❳q ☞ ❲ . The force issued form

this potential is linear and has a limit intensity as ❱ tends

to zero. This intensity is also modulated by the param-

eter ✄❻❺✮❼✰❽✰❾ , the gain of this potential, which represents

the cell traversability danger. As a consequence, the robot

subjected to such a potential can either avoid these cells

and come into regular terrain, or traverse them if no bet-

ter solution exists. The choice of ⑥ ❾ must insure that the

traversability of these cells is still possible when the robot

is subjected to forces coming from obstacle cells.

3.2.2 Resultant potential

The resultant repulsive potential
❆■❍

, generated by the

cell image, is the sum of all cells repulsive potentials❆■❍ ➃ ➄➅✓✰➆★➇ : ❆✣❍ ☎❇❃❈☞✣✢➊➉ ✟✧➋ ➌ ☎ ❆■❍ ➃ ➄☛✓✰➆✥➇❇☞
Note that and

❆✣❍ ➃ ➄➅✓✛➆✥➇✆✢ r
if there is an intersection

between the robot and the ➍➏➎✔➐✧➐❀➃ ➄➅✓✛➆✥➇ . Figure 6 shows the re-

sultant potential
❆ ✢ ❆ ❄❻❋ ❆✣❍

for the cell image presented

on figure 7, with the same goal position.

Figures 7 illustrates the advandage of the rotational po-

tential over the classical repulsive potential. We use an ob-

stacle threshold ➀✠➑ equal to
r ✕➓➒★➔ : the two dark grey cells

GOAL

Figure 6: Potential field for a cell image.

on the right are obstacle cells, whereas the grey cell on the

left is a traversable cell ( ✄ ❺❻❼✰❽✰❾ ✢ r ✕ →❊➔ ) that could be tra-

versed if necessary.

© Lama Pilot Classical Potential

Start

Goal

© Lama Pilot

Rotational Potential

Start

Goal

Figure 7: “Go to goal” with classical repulsive potential (left) and with

the rotational potential (right)

3.3 Dynamic adaptation of the limit distance

The robot’s safety is the most important argument which

influences our control parameters choice, the most impor-

tant one is the limit distance ❱❳q : it determines the influence

area rang of a cell on the robot behavior. Using a rather

big value of this distance would ensure safe and smooth

motions of the robot, that would avoid getting to close to

the obstacle (and therefore eliminate irregular maneuvers).

Unfortunately, this solution constrains too much the robot

motion if there are many obstacles around, because the

range of influence will be sufficiently big to include ob-

stacles which do not disturb the robot.

To tackle this problem, we propose to use a dynamic

limiting distance rather than a static one:

❱ q ☎✞➣❥☞■✢ ❱ ❜❴↔ ☎✞➣❥☞■✢ ❱ ❜ ⑧ ❢ ❋❫➎✥↕②➙✦➛✇➜✰↕✭➝✔➞✧➞❢ ❋▼➎ ⑨
where ❱ ❜ is the security distance corresponding to ❱ q in

the static case, and ➣ is the angle between the robot motion

direction and the heading angle of the closest point to the



obstacle. With such a definition of the weighting function↔ ☎✛➣✐☞ , the obstacle influence on the robot depend on their

relative position to the robot (figure 8): the limit distance❱❳q ☎✛➣✐☞ is maximal for ➣✚✢ r
(the obstacle is in front of the

robot), and is minimal for ➣✫✢➠➟ (the obstacle is behind

the robot).

φ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.2 0.2 0.4 0.6 0.8 1

Figure 8: Definition of the angle ➡ (left), and weighting function ➢❝➤✭➡❊➥
in polar coordinates (right)

Figure 9 illustrates the advantage of the adaptation of

the limit distance, in the case where the robot moves be-

tween two obstacles. Note also that using a static limit

distance, the robot can hardly reach its goal because of an

important repulsive force generated by the obstacle close

to the goal. Using ❱✥q ☎✞➣❥☞ , the robot motion is smoother be-

tween the obstacles, and the influence of the obstacle close

to the goal is reduced considerably.
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Figure 9: “Go to goal” with static ➦➏➧❭➨❑➩➅➫ (left) and with dynamic➦ ➧ ➤➭➡❝➥ (right, ➦➏➯❑➨➲➩➅➫ ). The robot width is 1 meter

4 First results

4.1 Dealing with a sequence of images

The difficulty of dealing with a sequence of images

arises from the fact that the processing time ➳✱➵➏➸✦➺ needed

to obtain a cell image is not negligible with respect to the

robot speed.

Let us assume that at the instant ➳ of the image acqui-

sition, the robot is in a cell image ➻✶❾✰➼⑦✑ . From ➳ until the

availability of the next cell image ➻ ❾ , the robot is bounded

in ➻❂❾✰➼❥✑ , since it is the only area on which it has informa-

tions. At the time ➳ of the new image acquisition, only the

boundaries of the future cell image ➻✶❾ are available. There-

fore, the robot motion executed during the processing time➳ ➵➏➸✦➺ must constrain the robot to reach the area ➻ ❾✰➼❥✑➾➽ ➻ ❾
(figure 10).

This constraint reflects an important implication: the

time ➳ ➵➏➸✦➺ and the robot speed being given, one must make

sure that at any time there is enough free space in front of

the robot such that the intersection between the current cell

image and the next one still accessible. This constrains the

robot to avoid sharp turns and get close to ahead obstacles.

This is made possible thanks to the various improvements

presented in section 3.1: it was very easy to determine the

value of the limit distance ❱❳❜ to solve the problem in our

context (the actual maximum speed of Lama1 is aroundr ✕ ⑤★➚➶➪✥➹
, and image processing time is around ➔ seconds).

Goal

R

t-1

Rt

U

Vt-1 Vt

t+1

Vt

t-1

V R

Figure 10: Linking an image sequence

4.2 Results

To integrate and intensively test our algorithms, we have

completed a simulation system on Unix platforms: a ray-

tracing algorithm run on a digital elevation map produces

3D points images, at the resolution of the cameras that

equips Lama. The classification procedure being rather

qualitative, its results on simulated 3D images are similar

to those on real images. In the simulation, we impose the

maximum robot speed to (
r ✕ ⑤✏➚✚➪★➹

) and image processing

time to ( ➔ ➹ ). With such values, a new cell image is pro-

vided to the system almost every meter (figure 11). On fig-

ure 12, one can note the smoothness of the executed paths.

We ported the algorithms under the real-time OS Vx-

Works to test them on the robot Lama, and performed sev-

eral experiments, that showed smooth and sage path exe-

cutions.

5 Conclusion

We developed a complete reactive navigation system

that relies on the artificial potential fields method com-

bined with a probabilistic terrain classification procedure.

We proposed several improvements and adaptations of the

1Lama is a Marsokhod-like robot, that is lent to us by Alcatel



Figure 11: Complete image sequencing simulation

Figure 12: Simulation results

classical potential fields technique to ameliorate the robot

behavior on outdoor terrains. The main advantage of our

navigation algorithm is expressed by its behavior with re-

spect to the obstacles and traversable zones: experiments

showed that it produces smooth, safe and steady paths.

Future work will essentially focus on an intensive ex-

perimental evaluation of the method, under various envi-

ronments setups, and considering various robot speeds and

data acquisition parameters (size and resolution of the im-

ages). Dynamic cameras orientation control in order to

satisfy both local map building and visual goal detection

will also be tackled. Following these short term objectives,

we would like to implement other reactive navigation ap-

proaches (using other means to detect the obstacles or to

generate the motion), in order to experimentally evaluate

them.
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