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Simple Summary: Environmental conditions are subject to unprecedented changes due to recent
progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are
susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism
(ROS), which eventually affect their productivity. The response of plants to these unfavorable
conditions is highly intricate and depends on several factors, among them are the species/genotype
tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems,
by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In
addition to this, plant-microbe interactions have been found to improve immune systems in plants
suffering from drought and salinity stress.

Abstract: Plants are exposed to various environmental stresses in their lifespan that threaten their
survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential sig-
nalling molecules in regulating multiple plant developmental processes as well as in reinforcing
plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as
salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism
and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxida-
tive stress. Cellular damage is confined to the degradation of biomolecular structures, including
carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS
as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance
between cellular ROS production and ROS removal machinery. The activities of enzyme-based
antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4),
dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate
peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase
(GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH),
carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive
strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis
during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-
enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial
impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant
tissues has also been provided.

Keywords: reactive oxygen species; environmental stress; oxidative damage; antioxidants

1. Introduction

Constant changes in environmental conditions exacerbates unfavorable, stressful
conditions such as salinity, drought, extreme temperatures, waterlogging, or heavy metal
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stress, severely affecting plant growth, development, and yield through inducing changes
in plant physiological and biochemical characteristics [1,2].

Plenty of studies have shown that plants are prone to generate both highly reactive
oxygen free radicals and slightly reactive non-radicals of oxygen derivatives after subjection
to various environmental biotic and/or abiotic stresses [3–5]. This generation, which corre-
sponds to nearly 1–2% of the total plant’s oxygen (O2) consumption [6], is highly premised
on the presence and functioning of respiratory burst oxidase homologues (RBOHs); and
the plant NADPH oxidases [7–9]. The oxidative products are collectively referred to as the
reactive oxygen species (ROS) and predominantly include superoxide anion radical (O2

•−),
hydroxyl radical (OH•), perhydroxyl radical (HO2

•), singlet oxygen (1O2) and hydrogen
peroxide (H2O2) [3,10]. The interconversion rate among unwanted ROS byproducts is
extremely high, making them functionally variable and potent oxidants considering their
disparity in stability, reactivity, and ability to transport through/across biological mem-
branes [11]. Both ROS types (radical/non-radical) are naturally formed at basal levels in the
course of many aerobic metabolic processes such as chloroplast and mitochondrial electron
transport chains [12,13], during photorespiration in peroxisomes [14], or in apoplastic
spaces [15,16].

Generally, ROS basic levels generated under optimal environmental conditions cannot
cause cellular damage due to the expression of stress-responsive genes [17]. This level
of ROS generation, based on some evidence, has been suggested to be connected to their
limited natural involvement in developmental processes [18] or the regulation of mor-
phogenetic processes associated with phytohormones such as cytokinins and auxins [19].
On the other hand, stressful environmental conditions excessively accelerate cellular ROS
concentrations [20] at levels exceeding the antioxidant scavenging capacities [11,17] em-
ployed by plants to neutralise excess ROS production [21]. This feature potentially leads
to oxidative stress along with damage to membrane lipids, proteins, and nucleic acids
and eventually results in cell death [4,22,23]. Abiotic stress-induced programmed cell
death (PCD) is a genetically controlled process in which the intensity of detrimental fac-
tors is harnessed through increased ROS generation [24]. Environmental stress factors
involved in exerting disturbance on the delicate balance between ROS production and ROS
removal pathways include but not limited to drought, salinity, high irradiance, extreme
temperatures, heavy metals, pollution, and pathogen infection [22,25,26].

Plant adaptation to the oxidative stress caused by elevated ROS concentrations is often
consistent with many key factors, among which are stress duration and severity, instan-
taneous cellular energy status, plant growth stages, ROS cellular level, and antioxidant
capacity [27]. Generally, ROS-scavenging systems in plants are comprised of ascorbate
(AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolic
compounds as non-enzymatic antioxidants, monodehydroascorbate reductase (MDHAR),
dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), catalase (CAT), ascor-
bate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (GPX) as well
as low molecular mass (LMS) antioxidants and/or enzymatic antioxidants [20,21,27–29].
It is well reported that increased activity of antioxidant enzymes or non-enzymatic an-
tioxidants in response to unprecedented environmental stresses helps to ameliorate the
degree of damage caused by oxidative stress [5,26]. For instance, in green bean (Phaseo-
lus vulgaris L.) plants affected by salinity stress, a subtle increase in the activity of CAT and
APX antioxidants was observed in salt-tolerant GS57 and salt-sensitive 4F-89 genotypes,
which was consistent with increased fresh and dry weight in these plants [30]. Similarly,
an overall increase was reported in antioxidant enzymes (i.e., APX, SOD, GPX, CAT and
GR) of some traditional rice plants suffering from drought stress [31]. The upregulation of
AA, GSH, phenolics, phytochelatins (as GSH oligomers), and sugars as non-enzyme-based
antioxidants was induced in Antarctica in Colobanthus quitensis (Kunth) Bartl by copper
stress treatment [32].

Plant growth-promoting rhizobacteria (PGPRs) are known to be beneficial microorgan-
isms and play a contributing role in reinforcing plant response to stressful conditions [33].
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Typically, after colonising the rhizosphere or endo-rhizosphere of plants, the PGPRs adopt
several direct and/or indirect mechanisms to promote plant growth at the expense of
tackling abiotic stresses [33–36]. Some of these mechanisms include the induction of
osmolyte accumulation [37], the activation of the antioxidant defence system [38], the
up/downregulation of stress-responsive genes [39,40], and alteration in root morphology
in acquisition of stress tolerance [41,42]. PGPR-induced drought or salinity tolerance in
biological systems mainly occurs though induction of physical and chemical alterations in
plants, which are collectively referred to as PGPR-induced systemic tolerance (IST) [43,44].
For instance, a consortium of three PGPR strains, viz. Bacillus subtilis SM21, Bacillus cereus
AR156, and Serratia sp. XY21, have been shown to enhance the drought tolerance of cu-
cumber (Cucumis sativus L.) plants by increasing the activity of SOD and mitigating the
expression of genes encoding the cytosolic APX in cucumber leaf tissues [45].

This review aimed to further extend our understanding of antioxidants and their
function in protecting plants against oxidative stress, as well as of plant–microbe inter-
actions that confer abiotic stress tolerance in planta. Therefore, we provided a relatively
comprehensive overview of major enzymatic and non-enzymatic antioxidants, pointed
out the importance of PGPRs in alleviating plant stress, and summarised some current
knowledge on them.

2. Enzymatic Defensive Mechanisms

Preventive mechanisms against ROS overaccumulation are the antioxidant capac-
ity by which enzymatic activities confer plant tolerance to adverse environmental con-
ditions [11,46]. Many genetic studies emphasised the significance of expressing these
antioxidant enzymes in increasing plant survival rate [47,48]. There are several main ROS-
eliminating enzymatic systems in the site of production (subcellular compartments) in
plants, namely, SOD, CAT, APX, GPX, GR, MDHAR, and DHAR [11,26].

2.1. Superoxide Dismutase

This omnipresent metalloenzyme, which can be found in almost all aerobic organisms
including plants, in all intracellular organelles and apoplastic spaces [49], is actively present
at the forefront of defence against oxidative damage from ROS [4,50]. The primary function
of superoxide dismutase (SOD, EC 1.15.1.1) is to dismutate superoxide radicals (O•−

2) into
H2O2 and O2, such that it eventually wards off the formation of OH• by the metal-catalysed
Haber–Weiss reaction [26,49,51]. In other words, the catalysing activity of this enzyme
regulates the amount of O2 and H2O2, which are the Haber–Weiss reaction substrates,
and reduces the risk of producing highly active OH− radicals. Based on the metal ion
it binds, three main isozymes/isoforms (SODs) of this enzyme have been introduced
thus far in the Arabidopsis thaliana genome: Cu/Zn-SOD gene localised to the chloroplast
thylakoids (CSD2), peroxisomes (CSD3), and the cytosol (CSD1), Fe-SOD gene localised to
the chloroplast stroma (FSD1), cytosol (FSD1), thylakoids (FSD2, FSD3), and the nucleus
(FSD1), and Mn-SOD (MSD1) gene localised to the mitochondrial matrix [11,46,49,52–54].
These isoforms have been identified as the main ROS scavengers under drought stress
conditions [55]. Additionally, nutrient deficiency (K, P, Mg, Ca, S or N) increased SOD
functioning and introduced new isoforms in maize plants [56]. The existence of coherent
coordination between peroxidase (an H2O2 scavenger) and enhancement of the activity of
chloroplastidial Fe-SOD usually leads to plant protection when CO2 assimilation is intensely
reduced; or otherwise results in elevated cytotoxicity in the Haber–Weiss reaction [57,58].
Such coordination during exposure to oxidative stress has already been observed in leaves
of tea [59], tobacco [60], onion [61] and cotton [62] plants. In addition to the patented
purification and characterisation techniques (e.g., anion exchange chromatography and
ammonium sulfate precipitation) [63], another possible approach to increasing SOD levels
in leaves of stress-tolerant plant species would be exposing them to environmental stresses
such as low temperature, water deficit, or salinity [64,65].
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Regardless of SOD types, they are initially encrypted in the nucleus and then trans-
ferred to various organs [46,66]. In chloroplast, the SOD enzyme is attached/bonded to
the thylakoid membrane as a solution in the stroma [49]. The former one dismantles the
superoxide radical immediately at the site of production, and the stroma-soluble form
converts the superoxide radicals released in the stroma into H2O2 [4]. Most of the research
conducted on SOD was centred on how environmental stresses or genotypes might affect
the enzymatic antioxidants alone [57,67] or combined [68–70] with other plant items. In a
study by Boguszewska et al. [71], it was found that abiotic stress conditions can upregulate
the formation of SODs in potato plants. Heavy metals such as zinc oxide nanoparticles
(ZnO-NP) escalate NADP-oxidase activity and thus increase the production of superoxide
radicals [58]. Apart from their beneficial antioxidative function in plants suffering from
salt [72], oxidative [52], or photooxidative [73] stresses, there are indications showing that
SODs have an effect on root development [53], germination [46], flowering [74], and not
least, chloroplast development [52].

2.2. Catalase

As a Fe-containing homotetrameric enzyme, catalase (CAT, EC 1.11.1.6) is responsible
for the catalysation of H2O2 overproduced during light respiration or photorespiration in
peroxisomes, H2O2 produced during β-oxidation of fatty acids in glyoxysomes, or H2O2
produced by SOD [4,75]. In all these cases, CAT mediates the dismutation of oxygenated wa-
ter (H2O2) into water and oxygen in an energy-efficient way [26]. Peroxisomes are the core
sites of CAT activity in response to H2O2 production as a result of oxidative stress, purine
catabolism, photorespiration, and not least the β-oxidation of fatty acids [10,76]. Neverthe-
less, a more recent report highlights their presence in the cytosol, chloroplast, mitochondria,
and other subcellular compartments [77]. Despite having a high specificity for H2O2, CAT
showed a low affinity for organic peroxides [77]. One of the unique characteristics of
this enzyme is its high turnover rate and low demand for reducing equivalents [26]. This
enzyme is encoded by different CAT genes in several plant species [11]. For example, these
include seven CAT genes reported in cotton (Gossypium hirsutum L.) [78], four in cucumber
(Cucumis sativus L.) [79], and in rice (Oryza sativa L.) [80], three in (Arabidopsis thaliana L.)
Heynh. [81], pumpkin (Cucurbita Linn.) [82], maize (Zea mays L.) [83], Tex-Mex tobacco
(Nicotiana plumbaginifolia Viviani) [84], two in common barley (Hordeum vulgare L.) [85], and
in tomato (Lycopersicon esculentum Mill.) [86], and one in sweet potato (Ipomoea batatas L.)
Poir. [87], and in castor bean (Ricinus communis L. cv. Hale) [88], among others (Table 1).

Table 1. CAT cDNA isolated and characterised from different plant species.

Plant Species Common Name Genomic DNA or
Protein

Subcellular Localisation and Site of
Detection in Plant References

Brassica napus Rapeseed CAT1–CAT14

Peroxisomes (CAT2–CAT3, CAT6–CAT8,
CAT11–CAT14), cytoskeleton (CAT1),

cytoplasm (CAT4), mitochondrion (CAT9),
and chloroplast (CAT5, CAT10) in root,

leaf, stem, and silique samples

[89]

Helianthus annus Sunflower CAT1–CAT8 Peroxisomes in cotyledons and roots [90–92]

Gossypium
hirsutum Cotton CAT1–CAT7 Peroxisomes in leaves [78,93]

Pisum sativum Pea CAT1–CAT5 Peroxisomes in leaves and the whole fruit [94,95]

Cucumis sativus Cucumber CAT1–CAT4
Peroxisomes in roots, stem, leaves,

flowers, and fruits [79]

Oryza sativa L. Rice OsCATA–OsCATD

Cytosol (OsCATA–OsCATC),
peroxisomes (OsCATB, OsCATC), and

plasma membrane (OsCATD) in
immature seeds and rice seedlings

[80,96,97]
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Table 1. Cont.

Plant Species Common Name Genomic DNA or
Protein

Subcellular Localisation and Site of
Detection in Plant References

Nicotiana
plumbaginofolia Tex-Mex tobacco CAT1–CAT3 Peroxisomes in leaves [84]

Arabidopsis
thaliana Arabidopsis CAT1–CAT3

Peroxisomes in bolts, leaves, siliques
(CAT1, CAT2), in pollen and seeds (CAT1),

stems and roots (CAT3)
[81,98–101]

Cucurpita pepo Pumpkin CAT1–CAT3

Glyoxysomes in seeds and early seedlings
(CAT1), mature leaves, stem (CAT2), green
cotyledons and green hypocotyls (CAT2,

CAT3), and roots (CAT3)

[82]

Glycine max Soybean CAT1–CAT3

Glyoxysomes in developing kernels
(CAT1), green leaves (CAT2, CAT3), roots

(CAT3), and epicotyl of the developing
seedlings (CAT3)

[102]

Zea mays Maize CAT1–CAT3

In scutella, milky endosperm of immature
kernels, leaves and epicotyls (CAT1);
Post-germinative scutella, with lower

levels in leaves, epicotyls and growing
kernels (CAT2); Epicotyls and, to a lesser

extent, in leaves and scutella (CAT3)

[83,103–107]

Capsicum annuum Hot pepper CAT1–CAT3 Peroxisomes in leaf and stem [108]

Nicotiana tabacum Tobacco CAT1–CAT3 Peroxisomes in leaves [109,110]

Ricinus cammunis Castor bean CAT1, CAT2

Glyoxysomes, peroxisomes in hypocotyls
and roots (CAT2), in endosperms and

cotyledons (CAT1)
[88,111]

Hurdeom vulgare Barley CAT1, CAT2

Peroxisomes in whole endosperms, in
isolated aleurones and in developing

seeds (CAT1), in etiolated seedling shoots
and leaf blades (CAT2)

[85]

Triticum aestivum Wheat CAT1, CAT2 Peroxisomes in leaves [112]

Solanum
tuberosum Potato CAT1, CAT2 Peroxisomes in leaves [113,114]

Lycopersicum
sculentum Tomato CAT1, CAT2 Peroxisomes in leaves [86,115,116]

Nicotiana sylvestris Woodland
tobacco CAT1, CAT4 Peroxisomes in leaves [117]

Vigna radiata Mung bean CAT1

Glyoxysomes, leaf peroxisomes, and
nonspecialised microbodies (etiolated or

nongreen tissues)
[118]

Secale cereale Rye CAT1 Peroxisomes in leaves [119]

Ipomoea batatas Sweet potato CAT1 Peroxisomes in leaves [87,120]

In Arabidopsis, the first two (CAT1 and CAT2) genes are predominantly present in
glyoxysomes, peroxisomes and cytosol, and the latter (CAT3) is present in mitochondria
and cytosol, with no presence reported in chloroplasts [4,77]. Recent reports indicate
that these genes are primarily expressed in seeds (CAT1, CAT2, CAT3), pollens (CAT1),
roots (CAT2), photosynthetic tissues (CAT2), and vascular tissues (CAT3) [26,121–124].
The involvement of CATs in the growth, development, or senescence of organs such as
roots [122], shoots, flower parts (ovule, pollen), seeds [121,123], and leaves [77,125] has
been explicitly documented.
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Because of low affinity of CATs to H2O2, only high concentrations of H2O2 have
the possibility of being eliminated by CATs [126]. In particular, CAT1 is responsible for
scavenging H2O2 under abiotic stress conditions, and CAT2 and CAT3 for removing H2O2
to maintain ROS homeostasis both in light and darkness [78]. Stimulation of enzymatic
antioxidants such as CATs has been reported in maize plants exposed to arsenate and arsen-
ite [127]. Leaf senescence significantly impacts the concentration reduction of CAT2 rather
than CAT1 in tobacco [110]. As for the model plant, Arabidopsis, all three CATs are engaged
with photooxidation responses [11,124,128], CAT1 is involved in the plant’s response to
drought and salt stress [129], CAT2 is implicated in toxic metal [130], heat [131], cold and
salt [132] stress responses and CAT3 is incorporated in drought stress responses [133].

2.3. Ascorbate Peroxidase

The ascorbate peroxidase (APX, EC 1.1.11.1) enzyme functions in the ascorbate-
glutathione cycle and regularly exists in chloroplasts (stroma and thylakoid), mitochondria,
peroxisomes, cytosols, vacuoles, and the apoplast [4,11]. Five main isoforms of the APX
family in rice plants are named after their constituent amino acids and their subcellular
localisation [134]. Recent studies on the Arabidopsis genome revealed the presence of nearly
nine putative APX genes, localised in the cytosol (APX1, APX2, APX6), peroxisomes (APX3
and APX5), chloroplast stroma (sAPX), chloroplast thylakoid (tAPX) [135,136], and mito-
chondria (sAPX) [137], with two of them (APC4 and APX7) being annotated as genes lacking
H2O2 detoxifying activity and pseudogene, respectively [138]. The critical importance of
cytosolic APXs is not so much linked to their conference of plant tolerance to cold [139],
salinity (APX2), high light (APX2), heat and drought (APX1) [140,141] stresses as to their
depletion (e.g., APX1) which tends to inactivate chloroplastic H2O2 detoxification [142,143].

More importantly, APXs deal with H2O2 signalling during developmental stages [144,145]
through scavenging H2O2 toxicity in the chloroplast and cytosol [26,146]. APX enzymes
possess a strong affinity for H2O2, indicating that the ascorbate-glutathione (AA-GSH)
cycle plays a vital role in controlling ROS levels in cellular organelles [138]. The way this
enzyme decomposes H2O2 into water and oxygen is to use ascorbate (ascorbic acid-AA) as
a reducing factor [11]. In this reaction, ascorbate is converted to monodehydroascorbate
(MDHA) by APX activity, and this compound is also converted to dehydroascorbate (DHA)
through a non-enzymatic pathway. Additionally, the ascorbate is a prerequisite substance
to maintain the production cycle. In the AA-GSH cycle, monodehydroascorbate reductase
(MDHAR) converts the MDHA to AA utilising NADPH. Also, the conversion reaction of
DHA to AA is catalysed by dehydroascorbate reductase (DHAR) with redox glutathione
(GSH) oxidation in the process (Figure 1) [147].

Similar to the enzyme CAT, APX also presents either in the thylakoid membrane or
as a solution in the stroma. The form attached to the thylakoid membrane immediately
detoxifies the hydrogen peroxide at the production site, and the stroma-soluble type
decomposes the hydrogen peroxide released into the stroma. In comparison to CAT, APX
has a stronger affinity for H2O2; hence it is a better scavenger at times of stress [26]. The
noticeable concentration of SOD, CAT and APX in the heavy metal (HM)-resistant plant
Pteris vittata in proportion to the HM-sensitive plant Pteris ensiformis suggests that the
so-called enzymes play a central role in the detoxification of zinc oxide nanoparticles [148].
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Figure 1. Schematic model showing the reactive oxygen species (ROS) generation in plants as well as
the ascorbate-glutathione (ascorbic acid/AA-GSH) and the guaiacol peroxidase (GPX) cycles. AA is
oxidised by ROS and converted into monodehydroascorbate (MDHA). A set of three enzymes, includ-
ing FAD-dependent monodehydroascorbate reductase (MDHAR), GSH-dependent dehydroascorbate
reductase (DHAR) and glutathione reductase (GR), catalyse the recycling of ascorbate. Superoxide
dismutase (SOD) converts O2

•− into H2O2. Ascorbate peroxidase (APX) (1), catalase (CAT) (2), and
GPX (3) act as the main H2O2 detoxifying enzymes. AA and GSH are antioxidants. Abbreviations:
ascorbate peroxidase (APX), oxidised glutathione (GSH), reduced glutathione (GSSG).

2.4. Guaiacol Peroxidase (GPX)

With its 40–50 kDa monomers, this heme-containing enzyme, GPX (EC 1.11.1.7), is
capable of eliminating excess H2O2, whether by normal or stress-driven metabolism [26].
GPX isoenzymes are localised in vacuoles, cell walls and the cytosol (Figure 1) [149]. The
two main functions of GPX are lignin biosynthesis and biotic stress defence by virtue of
indole acetic acid (IAA) degradation and H2O2 utilisation in the process [150]. GPX prefers
aromatic compounds (e.g., guaiacol and pyrogallol) over non-aromatic ones due to their
higher electron-donating ability [151]. As a consequence of its fairly high activity in intra-
and extracellular spaces or cell walls, it has been postulated to be a critical enzyme in
H2O2 removal [152]. Because this enzyme undertakes both peroxidative and hydroxylic
reactions, it comes as no surprise that it can participate in different plant processes such
as incorporation in biosynthetic processes, auxin metabolism, cell wall elongation and
lignification, as well as pathogenic resistance [153]. A number of environment-born stress
factors including herbicide [154], potentially toxic metals [155,156], polycyclic aromatic
hydrocarbon (PAH) [157], and ozone (O3) [158] are involved in the induction of GPX
activation.

2.5. Glutathione Reductase (GR)

This enzyme (GR, EC 1.6.4.2), also known as flavoprotein oxidoreductase, is the last
in the ascorbate-glutathione cycle that is found predominantly in chloroplasts (GR2) and
partially in the cytosol (GR1), mitochondria (GR2) [11,26,159] and peroxisomes (GR1) [11].
The proper enzymatic activity of GR mainly springs from its possession of triple do-
mains, including NADPH-binding domain, FAD-binding domain, and a dimerisation
domain [160]. The above-mentioned isozymes of GR are involved in tolerance to high
light (GR1, GR2) [161,162], salt stress (GR1) [163,164], chilling stress (GR2) [165,166], methyl
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viologen (MV2+)-induced oxidative stress (GR2) [167], and toxic metals (GR1) [168,169].
Moreover, GR2 has been proven to interfere with developmental processes involving
embryo development [170], seed germination [171], root growth, and apical meristems
maintenance [172]. Thus, it is follows from the above that abiotic [173,174] and possibly
biotic [175] stress factors induce the activity of GR in plants.

GR mediated plant tolerance to stress conditions often refers to its role in ROS detox-
ification through GSH (reduced glutathione) regeneration [176]. GR has been proven to
mediate the conversion of oxidised glutathione (glutathione disulfide-GSSG) to GSH, using
the electron donor (reductant) NADPH. Moreover, most of the synthesised GSH is involved
in the regeneration of ascorbate (AA) from DHA under DHAR mediation (Figure 1) [26],
and the activation of several CO2-stabilizing chloroplast enzymes [4]. Also, GR has the
potential to maintain a high GSH/GSSH cellular ratio by catalysing the formation of glu-
tathione disulfide [26], signifying that the pool of GSH consumed by the DHAR reaction is
replenished by GR [11]. Increasing GR activity increases the NADP+/NADPH ratio, thus
elevating the amount of available NADP+ as the last electron receptor in photosynthetic
light reactions, and eventually reducing the likelihood of electrons being transferred to O2
for superoxide radical production [177–179].

2.6. Monodehydroascorbate Reductase (MDHAR)

AA regeneration from transient MDHA is catalysed by the FAD (flavin adenine
dinucleotide)-dependent MDHAR (E.C.1.6.5.4) enzyme using electrons donated by
NADPH [26,180,181]. Notably, MDHAR and APX enzymes are co-localised in the mi-
tochondria and peroxisomes, where their reducing and oxidising activity creates a balance
between AA and MDHA pool sizes [10,182]. According to Obara et al. [183], six functional
proteins have been encoded from only five Arabidopsis genes. MDHAR isozymes are laid
out in different subcellular compartments, including mitochondria (MDHAR5), peroxi-
somes (MDHAR1) and its membrane glyoxysomes (MDHAR4), chloroplast (MDHAR6),
and cytosol (MDHAR2 and MDHAR3) [11,184]. Other than their antioxidant potential, not
much information is available on the specific function of MDHAR genes. As a case in point,
Eastmond [185] suggested the possible interference of MDHAR4 in different growth stages
of Arabidopsis, from germination to post-germination, through senescence. Based on stud-
ies conducted so far on rice, tobacco and Arabidopsis, it was revealed that overexpression
of MDHAR genes resulted in an increased tolerance to salt, ozone, and osmotic stress as
well as higher germination rate and grain weight [186,187].

2.7. Dehydroascorbate Reductase (DHAR)

What is certain in the reduction process of DHA to AA is the DHAR utilisation and
transformation of the reduced GSH as an electron donor, which eventually maintains the
redox state of plant cells [186,188]. This introduces DHAR as the second catalytic agent
along with the so-called MDHAR in regulating the regeneration of the cellular AA pool
both in symplast and apoplast [189]. The regulation of AA homeostasis by DHAR during
the plant’s developmental processes is no more likely than GSH homeostasis regulation by
DHAR [190]. DHAR is usually found in seeds, roots, and shoots with (green) or without
(etiolated) chlorophyll content [26]. To date, three types of DHAR proteins have been
identified as soluble monomeric enzymes in the chloroplast (DHAR3) and cytosol (DHAR1,
DHAR2) [11,188]. A plethora of studies have defined various functions for DHARs at their
site of localisation, where, for example, DHAR1 is involved in plant responses to high light,
high temperature, and MV2+-induced oxidative stresses [167,191,192], DHAR2 in plant
protection against Polyethylene glycol (PEG), salt, drought, and ozone [186,193], or DHAR3
in high light response conference [194].

3. Non-Enzymatic Defensive Mechanisms

Non-enzymatic antioxidants are low molecular weight molecules with specific struc-
tures, chemical properties, and locations. Possessing a pivotal role in eliminating free
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radicals by virtue of donating electrons or hydrogen, these compounds are divided into
two groups [4,26]: (1) Fat-soluble membrane antioxidants such as α-tocopherol, carotenoids
and xanthophyll; (2) Water-soluble antioxidants such as glutathione, ascorbate and phenolic
compounds [195].

3.1. Ascorbic Acid

As one of the most abundant antioxidants in plant systems, ascorbic acid ((AA),vitamin
C) has a critical function in plant growth and development [196]. The metabolisation of ROS
species by the redox buffer AA could have been explained by safeguarding cells against
free oxygen radicals generated under different environmental stress factors [197]. Usually,
continuous oxidation of AA is observed under the disguise of such scavenging [196].
Different pathways are in place to ensure the recycling of AA in spite of its slow and
time-consuming biosynthesis [196]. Two key enzymes are involved in maintaining the
AA homeostasis in living organisms under solicited and unsolicited exogenous stimuli;
MDHAR and DHAR [198]. The oxidised (MDHA, DHA), or reduced (MDHAR, DHAR)
forms of AA are tapped in AA regeneration [199]. As primary products of AA oxidation,
the MDHA molecules can bind each other to form AA or DHA [196]. There has always been
the possibility of generating an irreversible form of 2,3-diketogulonic acid in the course
of spontaneous DHA hydrolysis [198]. Notably, NAD(P)H figures as an MDHAR electron
donor, reducing MDHA to AA in an enzymatic reaction [200].

DHA reduction to AA is mediated by the coupled activity of DHAR and GSH (hy-
drogen donor) oxidation (Figure 1). There are positive reports on the impact of DHAR
overexpression on improved grain and biomass yield in several plants [193,201–204]. For
instance, Kim et al. [204] reported that transgenic japonica rice genotypes with high DHAR
expression had increased concentrations of AA and higher crop productivity than wild-type
rice. Based on these results, one may speculate on the existence of a direct relationship
between AA pools and the grain yield and decreased ROS in plants lacking sufficient
environmental adaptation. DHAR down-regulating tobacco plants have shown lower
ascorbate levels, signifying the importance of DHAR proteins in AA regeneration [205].
An opposite trend in DHAR expression, however, led to higher AA (oxidised) and GSH
(reduced) concentrations [198]. Despite the above statements, a recent finding by Rahanta-
niaina et al. [188] demonstrated that there is not much difference between an Arabidopsis
(Arabidopsis thaliana) mutant without all three DHAR proteins and a wild-type plant with
respect to AA regeneration levels, as well as of growth and development. In addition to
the analysis of DHAR mutants that show DHARs are required to tie the H2O2 metabolism
with GSH oxidation, this finding has brought uncertainty in the efficiency of DAHRs in AA
recycling [197].

Physiological studies demonstrate that DAHRs function properly in the course of
ascorbate oxidation and increase in ascorbate pool size in a state of high-light stress condi-
tions [206,207]. A study on the Arabidopsis Ddhar mutant identified that the DHAR proteins
contributed to increased growth and ascorbate homeostasis under low-light stress [197].
Under high-light stress, both the Ddhar mutant and wild-type plants elevate their ascor-
bate concentration, with a minor reduction seen in the ascorbate accumulation of Ddhar
compared to the wild type that was ascribed to an ascorbate degradation product, the thre-
onate [207]. Accordingly, the authors assumed that the ascorbate pool size determined the
activity range of DAHRs and that the necessity of DAHRs activity (to regenerate ascorbate)
was a function of higher ascorbate levels. In other words, the smaller the Arabidopsis pool
of ascorbate, the lower the DAHRs regeneration activity to sustain ascorbate recycling. It
appears that the non-enzymatic reduction of AA by GSH can act as a backup to maintain
DAHR activity [197]. In agreement with earlier results [208], a recent report shows that
only 30% of the average GSH level in a wild type plant is sufficient to sustain AA recy-
cling under high-light stress conditions [197]. However, an appreciable reduction in AA
accumulation as a result of prolonged high-light stress and/or pharmacologically induced
GSH deficiency was noticed in the Ddhar pad2-1 quadruple mutants. This was attributed
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to lower photochemical activity, bleaching, and increased accumulation of threonate [197].
This study put forward the hypothesis that glutathione compensates for the loss of DAHR
function under high-light conditions [207]. In the case of Arabidopsis, the activity of DAHR
proteins is necessary on the condition that the accumulation level of AA is high (high light)
or GSH is less available [207]. Unlike the earlier reports on the indispensable role of DAHRs
on ascorbate recycling in tobacco [189,205], recent studies in Arabidopsis underscore the
neutral function of DAHRs in ascorbate recycling or maintaining its redox state without
affecting ascorbate levels [188].

Even though AA is naturally synthesised in the inner membrane of mitochondria, it
may also be found in the cytosol, cell walls, chloroplasts, vacuoles, and apoplasts [209]. AA
performs different roles in cells, such as controlling cell cycles, growth and development,
and not least having effects on cell wall elongation and the redox level adjustment [196,199].
Ascorbate is a precursor to oxalate and tartrate as well as a cofactor of enzymes involved
in the synthesis of glycoproteins rich in hydroxyproline (Hyp), ethylene, gibberellin, and
anthocyanin [196]. In addition to being known as a substrate of many peroxidases, AA has
been shown to be one of the main components of the ascorbate-glutathione and/or water–
water cycle that effectively eliminates ROS [4]. Also, the possibility of AA oxidation in
direct reaction with active oxygen species, such as superoxide, singlet oxygen, or hydroxyl
radicals, or AA utilisation as a reducing agent in α-tocopherol regeneration to protect
membranes from oxidative stress was reported earlier by Parida and Das [147]. Another
point is that AA in conjunction with α-tocopherol scavenges lipid peroxyl radicals and
prevents the spread of lipid peroxidation in membranes [210,211]. As an example, in
chloroplasts, AA functions as a cofactor for the enzyme violaxanthin de-epoxidase (VDE)
and participates in the distribution of excessive excitation energy [4].

3.2. Glutathione

Glutathione (GSH) is an intact tripeptide, α-glutamylcysteinyl glycine present in all cell
parts, including cytosol, chloroplast, endoplasmic reticulum vacuole and mitochondria,
with the highest amount reported in the chloroplast [26,212]. The GSH pool is an essential
component of the cellular redox system, which effectively controls the amount of H2O2
through the ascorbate–glutathione cycle and the glutathione cycle [4]. Furthermore, the
regeneration process of ascorbate during the ascorbate–glutathione cycle is exclusively pre-
miered on the functioning of the GSH [147]. The antioxidant GSH can act as an eliminator
of ROS species. In addition to interfering with the antioxidant defence system, glutathione
may also be involved in regulating other processes such as cell entry into the G1 phase
and cell differentiation and death. It is believed that this compound is one of the primary
sources of non-protein thiols in most plant cells. Given the high reactivity domain of thiol
(Sulfhydryl -SH) groups of the low molecular weight compound, GSH, these substances are
tapped into many chemical reactions [26]. The nucleophilic nature of the thiol group is criti-
cal in the formation of bonds with metals and electrophilic materials. For instance, GSH has
been found to positively impact phytochelatin formation via phytochelatin synthase [213].
This reactivity, combined with high stability and solubility of glutathione in water, makes it
an ideal substance for protecting plants against environmental stimuli such as heavy metal
stress [26,214]. Another beneficial aspect of this molecule is the high reduction potential of
the glutathione molecule thanks to its central (C-terminal) cysteine residues [4].

3.3. Proline

The amino acid proline has also been regarded as a non-enzymatic antioxidant in
plant systems that can easily counteract the harmful effect of ROS [26,215,216]. Proline
synthesis from substrate glutamate (glutamic acid) is a consecutive reaction catalysed
by two enzymes, ð1-pyrroline 5-carboxylate (P5C) synthase (P5C-S) and P5C reductase
(P5C-R) [215]. The involvement of proline in scavenging ROS damage through direct
reaction with ROS has been widely investigated [217–219]. For example, some studies
revealed that proline osmolytes containing polypeptides could react with H2O2 and OH•
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to generate stable free radicals by adducting to prolines and hydroxyproline derivatives
such as as 4-hydroxyproline and 3-hydroxyproline [217,220]. Further observations by Kaul
et al. [218] indicated that proline indirectly scavenges the cellular H2O2 or O2•−. In Bras-
sica juncea plants, proline involvement could dramatically suppress the production of 1O2
in the thylakoids [221]. The 1O2 quenching feature of prolines has been suggested to help
stabilise proteins, DNA, and membranes [222]. One of the attractive functions of prolines
is to restore the cellular redox balance disrupted by ROS during heavy metal stress [219].
Sharma et al. [223] reported that proline has the potential to prevent zinc (Zn) and cadmium
(Cd) from reducing the activity of the cellular enzymes by forming complexes with these
metals. Similar protection was earlier observed in copper (Cu)-tolerant Armeria maritime
(Mill.) Willd [224]. Multiple studies have identified the progressive impact of proline on
antioxidant activities of defensive enzymes such as CAT-in oxidative stress [225,226], SOD-
in Cd stress [227], or enzymes related to GSH- in salt stress [228], and AA-GSH cycle- in
Cd stress [229].

3.4. α-Tocopherols

α-tocopherol with its three methyl substituents is considered to be one of the most
reactive antioxidants among the four well-known lipoperophilic isomers of tocopherol (α, β,
γ, and δ) [26]. Regardless of present tocopherol groups, they are responsible for scavenging
lipid peroxy radicals, oxygen free radicals and singlet oxygen [230–232]. Tocopherols
are often localised in the green tissues of plants where photosynthetic organelles and
pigments are found [152]. After tocopherol synthesis is completed in the inner envelope
of chloroplasts, it has been proposed that they transfer and accumulate in all chloroplast
membranes [233,234]. Given that tocopherols are generally incorporated in the protection
of lipids, and proteins and pigments are incorporated in the photosynthetic apparatus
against oxidative stress, loss of them would be expected to adversely affect growth and
photosynthesis in plant systems [235]. There are indications showing that tocopherols’
presence in chloroplasts reinforced plant tolerance to salinity, chilling and water deficit
stresses [236–239].

A combination of five catalysing enzymes (i.e., 4-hydroxyphenylpyruvate dioxyge-
nase, 2-methyl-6-phytylbenzoquinol methyl-transferase, homogentisate phytyl transferases,
γ-tocopherol methyl-transferase, tocopherol cyclase (VTE1), and two precursors (homogen-
tisic acid and phytyl diphosphate) compounds are required for tocopherol biosynthe-
sis [240]. Notably, the enzyme γ-tocopherol methyl-transferase (γ-TMT) has been found
to catalyse the biosynthesis of α-tocopherol from γ-tocopherol [26,241]. The penultimate
step in tocopherol biosynthesis in leaves is dependent on the availability of the VTE1
enzyme [235]. This suggests that VTE1 deficiency would result in a significant reduction in
tocopherol synthesis [242].

The way tocopherols are utilised to indirectly protect the structure and function of
photosystem II (PSII) is to establish a chemical reaction with O2 and physically quench its
excess energy, therefore protecting lipids and other components in the double-membrane of
chloroplasts [243]. The prevention of membrane lipid autoxidation through α-tocopherols
interaction with lipid radicals (i.e., RO•, ROO•, and RO*) has identified them as protectors
of biological membranes [241,244]. On the other hand, the free radical trapper α-tocopherol
represses the chain propagation step in the lipid peroxidation (LPO) cycle [26,152,245].
Cellular regeneration of oxidised tocopherols (TOH•) is often driven by coenzyme Q [246]
or AA and GSH [247,248]. More specifically, the benzoquinone ring (after full substitution)
or the phytyl chain (after full reduction) in tocopherols may act as an efficient antioxidant
for 1O2 neutralisation [249–251]. In addition to the inhibition of non-enzyme based LPO
under stress conditions [241], α-tocopherols are capable of protecting seed storage lipids,
activating plant defence responses, functioning in membrane stability, or involving in
seedling germination, transcript regulation and intracellular signalling [252–254].
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3.5. Carotenoids

Carotenoids are tetraterpene antioxidants found in the plastids of photosynthetic and
non-photosynthetic tissues of plants [255,256] and are synthesised by geranyl pyrophos-
phate (GPP) in the course of isoprenoids [26]. Carotenoids containing pure hydrocarbons
(carotene) and those with one or more oxygen atoms (xanthophyll) are two main types of
carotenoids in plant tissues [257]. Apart from their presence in plants, carotenoids have also
been found in algae and photosynthetic microorganisms [152,256]. Their light-harvesting
behaviour in chloroplasts encompasses not only light absorption by antenna molecules
(450–570 nm) and transfer of energy to chlorophyll (Chl) molecules but also photosynthetic
machinery protection [258–260]. Carotenoids exert their antioxidative functioning in pho-
tosynthetic apparatus through scavenging singlet oxygen activity, reacting with LPOs to
halt the chain reaction of ROS production, quenching triplet (3Chl*), and exciting (Chl*)
Chl molecules to prevent the formation of singlet oxygen, and dissipating excess excitation
energy in the xanthophyll cycle [26,261–263]. Depending on plants’ resistance threshold to
stressful conditions, the amounts of carotenoids are affected [264,265]. Sugarcane plants
with high carotenoids contents exhibited a better adaptation to saline conditions [266].

3.6. Phenolic Compounds

Flavonoids, anthocyanins, tannins, hydroxycinnamic acid esters, and lignins are pheno-
lic compounds that belong to the secondary metabolites arising from the phenylpropanoid
pathway in plant tissues [267]. The enzyme phenylalanine ammonia-lyase (PAL) is the trop-
ical initiator of phenylpropanoid, which converts L-phenylalanine to trans-cinnamic acid
by deamination. This pathway is necessary for the biosynthesis of secondary metabolites in
living cells [268]. Phenolic compounds are naturally synthesised in the cell under optimal
conditions, but when there is biotic or abiotic stress, the concentration of these products
are significantly affected [152]. Also, any alteration in the activity of biosynthesising or
degrading enzymes may influence the amount of these compounds in plant cells.

Flavonoids are a large group of secondary metabolites that are widely distributed
among plants and have multiple roles, including contributing to colouring of flowers,
seeds and pollen grains, helping in pollination, germination and pollen tube growth,
and auxin transport [26], as well as inducing protection against photosynthetic damages
caused by excess excitation energy [269]. The latter function is presumably associated
with its ROS scavenging capacity [152]. Thanks to the presence of flavonoids, living cells
are capable of alleviating the damage of 1O2 on the outer envelope of the chloroplastic
membrane [269,270]. The main enzymes involved in the biosynthesis of flavonoids are PAL
and chalcone synthase (CHS). Until now, about 12 groups of flavonoids have been identified,
the three most important of which are flavonoids, flavonols and anthocyanins [271]. Aside
from the roles mentioned above, phenolic compounds also have an antioxidant property in
the cell.

Considering the fundamental role of phenolic compounds in reducing or inhibiting
lipid auto-oxidation, eliminating oxygen free radicals, quenching singlet oxygen or de-
composing peroxides, they have also been known as essential antioxidants responsible
for protection against proliferation and advancement of the oxidation chain and defence
against reactive oxygen species [271]. The antioxidant properties of phenolic compounds
are tied to their chemical structure that may act as an electron or H+ donor. Polyphenols
have been shown to chelate intermediate metals such as iron, thus preventing the Fenton
and/or Haber–Weiss reaction [272]. Numerous studies in plants demonstrated the impact
of potentially toxic heavy metals on the amounts of phenolic compounds, glutathione,
phytochelatins, ascorbate, carotenoids, anthocyanins and the activity of PAL enzyme. For
instance, the accumulation of these compounds in the presence of zinc oxide nanoparticles
was reported [273].
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4. Antioxidant Machinery in Plant Systems and Microbial Mediation in Promoting
Plant Tolerance

ROS signals are initially perceived and transduced in plants before being translated
into sufficient responses [11]. The oxidising nature of ROS aggregates determines the
modification/modulation level of potential signalling targets such as transcription factors,
kinases, and stress-induced proteins. Notably, this modulation is subject to ROS capability
in affecting the protein redox status through oxidation of thiol groups and methionine
residues [274]. Thio- and gluta-redoxins are two examples of proteins with the capacity
to regulate cellular redox states via their interactive activation/deactivation or reversible
oxidation/reduction [275]. For instance, a redox-sensing mechanism was introduced for
apoplastic H2O2 perception and transduction by Wu et al. [276]. Protein oxidation or
the attachment of carbonyl groups (ketones and aldehydes) to the protein side chains of
threonine, lysine, proline, or arginine is known as ROS-mediated carbonylation [277]. This
process might lead to protein instability and susceptibility to proteolysis [278,279]. ROS-
driven redox perturbations have been found to be transduced by metabolic signals to switch
on rapid adaptive mechanisms by mitochondrial/chloroplastic retrograde signalling [280].
Also, ROS can mediate the plastids to the nucleus retrograde-signalling pathway [11]. As
such, the nucleus can host the H2O2 generated in plastids at the expense of activating the
defence gene expression [281]. There are few reports showing that ROS can interplay with
other secondary messengers, such as reactive nitrogen species (RNS) and Ca2+ [11,282,283].
Thanks to their high oxidative potential, ROS interact with nitric oxide (NO) messengers,
leading to the generation of (non-)radical RNS products including nitrous acid (HNO2),
nitroxyl anion (NO−), nitrosonium cation (NO+), peroxynitrite (ONOO−), nitrate (NO•

3),
nitric oxide (NO•), and nitric dioxide (NO•

2) [284–287]. These NOx species by nature
are involved in plant development, metabolic processes, stress-dependent responses and
stomatal closure [288]. Delledonne et al. [289] were the first to report the existence of
an interplay between NO and H2O2 during plant hypertension responses. Usually, the
crosstalk of ROS and RNS accompanies, by direct or indirect modulation, antioxidant
enzymes [285] and may have deleterious or beneficial effects on plant cells, and is highly
dependent on the concentration and specific subcellular microcompartment/organelle
type [286,290,291].

Increased ROS generation as a result of different environmental stresses has always
been naturally responded to in biological systems in multiple ways under the disguise of
antioxidative defence mechanisms [11,292]. In addition to this, mitigating the damaging
consequences of adverse environmental conditions via the generation of ROS-response
antioxidants can also occur by exogenous factors such as plant growth-promoting rhi-
zobacteria (PGPR) [293,294], and plant growth-promoting fungi (PGPF) [295]. It has been
suggested that growth-promoting bacteria have the potential to confer enhanced tolerance
to abiotic stresses through the induction of physical and chemical alterations in planta, a
mechanism that offers protection and is referred to as PGPR-induced systemic tolerance
(IST) [296–303]. However, in the case of biotic stress, the so-called eliciting function of
PGPRs is known as induced systemic resistance (ISR) [304,305].

The PGPRs function in inducing plant tolerance against abiotic stresses, such as salt,
drought, and extreme temperatures, is of key importance in alleviating the adverse effect
of climate change on sustainable crop production [299]. As outlined earlier in this review,
Wang et al. [45] have shown that the inoculation of Cucumis sativus (cucumber) with a
consortium of three PGPR strains could induce systemic tolerance in drought-imposed
plants by maintaining root vigour, photosynthetic performance, and increased generation
and activity of SOD, CAT and prolines in the leaves. In Lycopersicon esculentum (tomato)
plants treated by a Bacillus cereus AR156 supernatant, an appreciable enhancement to
drought stress was reported by Wang et al. [306]. The induced tolerance was associated
with the increased chlorophyll a and b contents, as well as the enhanced activities of
CAT, SOD, and peroxidase (POX). Enhanced salinity tolerance in Panicum turgidum Forssk
plants has been attributed to the Arbuscular mycorrhizal fungi contribution by modifying
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photosynthetic and antioxidant pathways [307]. Similarly, PGPR alleviated drought stress
in potato (Solanum tuberosum L.) plants treated with Bacillus subtilis HAS31 by maintaining
higher photosynthetic processes, total soluble sugars, proteins and prolines with elevated
activity of POX, CAT, and SOD [281]. In another study by Banik et al. [308], it was revealed
that PGPR treatment significantly augmented drought tolerance in Agrostis palustris by
lowering MDA accumulation and developing osmotic adjustments associated with higher
synthesis and accumulation of compatible solutes, including soluble sugars, free amino
acids, proteins, and not least the non-enzymatic prolines. Plant inoculation with PGPRs
adds up to the available quantity of proline in plant systems under stress conditions [309].
As such, a sizable quantity of prolines was increased in Zea mays L. after inoculation with
P. fluorescens under drought stress [310]. A noticeable enhancement in drought tolerance of
Lavandula dentate plants treated with PGPR B. thuringiensis was recorded under drought
conditions, which was attributed to the increased shoot proline contents [311]. Also,
there was an excess secretion of proline in the root of tomato (Lycopersicon esculentum Mill
cv. Anakha) plants after exposition to Bacillus polymyxa [312]. Similar to plants, PGPRs
secrete osmolytes (e.g., proline) at the time of water scarcity, which cumulatively helps in
stimulating plant growth [313].

The application of Trichoderma afroharzianum strain T22 has been shown to enhance
tomato (Solanum lycopersicum L.) seed germination under biotic stress conditions by al-
leviating oxidative damage in salt-stressed seedlings [314]. Similarly, Zhang et al. [282]
demonstrated that the PGPF Trichoderma longibrachiatum strain T6 induced the tolerance of
wheat seedlings to salt stress through upregulation of SOD, CAT and POX genes, improving
the antioxidant defence machinery. Compared to uninoculated rice genotypes Swarna and
Swarna sub-1 under severe drought conditions, the PGPFs (Fusarium pallidoroseum strain-10
and Trichoderma harzianum strain-35) inoculated rice genotypes showed higher activity of
SOD, POX, and CAT [315]. Table 2 briefly presents the antioxidative responses in selected
plant species after exposure to various environmental stresses.

Table 2. Enzymatic/non-enzymatic antioxidants reported in selected plant species under stress con-
ditions.

Plant Species Stress Type Antioxidant Reported
+ (Increase)/−(Decrease) Reference

Phaseolus vulgaris L. Drought +SOD, +APX in leaves [316]

Trifolium repens L. Drought +SOD in leaves [317]

Cicer arietinum L. cv. ILC482 Drought +Proline in leaves [318]

Cicer arietinum L. cv. CSG-8962 Salinity +SOD, +CAT, + Peroxidase (POX),
+APX, +GR, and –AA in roots [319]

Cicer arietinum L. cv. Gökçe Salinity
+SOD in roots and leaves, +APX and

+GR in leaves, and +CAT in roots,
–CAT in leaves

[320]

Lycopersicon esculentum Mill. cv.
Perkoz Salinity

+SOD, +Glutathione S-transferase
(GST), and +Glutathione peroxidase

(GSH-PX) in roots
[321]

Withania somnifera L. UV-B
radiation

+CAT, +GR, +POX, +Polyphenol
oxidase (PPO), and +SOD in roots >

leaves
[322]

Vicia sativa L. Cd stress +SOD, +APX, and +CAT in roots [323]

Pisum sativum L. Cd stress –SOD, –CAT, –GPX, and +Lipid
peroxidation (LPO) in leaves [324]

Hibiscus cannabinus L. cvs.
Fuhong 991 and ZM 412 Cd stress

+GR in leaves (Fuhong 991), +SOD,
+CAT, and +POX in roots (Fuhong 991

and ZM 412), +Lipid peroxidation
(LPO) in roots (ZM 412)

[325]
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Table 2. Cont.

Plant Species Stress Type Antioxidant Reported
+ (Increase)/−(Decrease) Reference

Jatropha curcas L. Salinity +SOD, +CAT, +POX in the cotyledons,
hypocotyls and radicles [326]

Nicotiana tabacum L. line
Chl-APX5

Salinity and
drought +APX in chloroplast [327]

Nicotiana tabacum L. Salinity +SOD, +CAT, +APX, +POX, and +GR
in roots [328]

Nicotiana tabacum L.

Salt, O3 and
polyethylene
glycol (PEG)

stresses

+MDHAR in leaves [186]

Arabidopsis thaliana L. Salinity +DHAR in leaves [201]

Arabidopsis thaliana L. Salinity +SOD, +CAT, and +POX in leaves [329]

Arabidopsis thaliana L. UV-B/Ozone
(O3) radiation

+SOD, +APX, +GPX, +POX (UV-B and
O3), and +GR (O3) in leaves [330]

Eichhornia crassipes (water
hyacinth) Pb stress +APX, +POX, +SOD, +CAT in leaf and

root tissues [331]

Vigna radiata L. Wilczek CdCl2 stress +MDHA +POX, +CAT, and +Proline in
roots and leaves [332]

Vaccinium myrtillus L.
Heavy metal
stress (Cd, Pb,

and Zn)

+GSH, +Non-protein thiols, +Proline,
and +GPX in leaves [333]

Solanum tuberosum L. Salt stress +APX, +CAT and +GR in roots and
shoots [334]

Oryza sativa L. Drought +SOD, +APX, +MDHAR, +DHAR,
+GR, and –CAT in roots and leaves [335]

Oryza sativa L. cvs. IR-29 and
Pusa Basmati Drought +Flavonoids, +Phenolics, –CAT, –SOD,

and +GPX in leaves [336]

Oryza sativa L. vars. IR-29 and
Nonabokra

CdCl2/NaCl
stress

+ Anthocyanin, + Carotenoids, +GPX,
+APX, +Proline, +Polyamines

(spermidine and spermine)
(IR-29/Nonabokra), –Cysteine and
–CAT (IR-29), +Cysteine and +CAT

(Nonabokra) in leaves

[337,338]

Oryza sativa L. cv. Pokkali Salt stress +CAT, +AA, and +GSH in leaves [339]

Oryza sativa L. cvs. CSR-27 and
Osmancık-97 Salt stress

+SOD, +APX, +GPX, +CAT, +MDHAR,
+DHAR, +GR, and +Proline in roots

and leaves
[340,341]

Oryza sativa L. vars. Jasmine
(KDML105) and Sangyod (SY) Salt stress +Flavonoids, and +Proline in shoots [342]

Turfgrass species Heat stress +GSH, and +AA in leaves [343]

Lens culinaris Medik. Heat stress +CAT, +APX, +SOD, and +LPO in
leaves [344]

Triticum aestivum L. cv. C306 Drought +SOD, +APX, +CAT, and +AA in
leaves [345]

Triticum aestivum L. cv.
Chakwal-50 Drought +Proline,+CAT, +SOD, +POX, and

+MDHAR in leaves [346]

Triticum aestivum L. cv.
Hindi62 Heat stress +GSH, +SOD, +CAT, +APX, +GR, and

+MDHAR in leaves [347]

Triticum aestivum L. cv. C 306. Heat stress +SOD, +APX, +CAT, +GR and +POX in
leaves [348]

Brassica juncea L.
High

temperature
and salt stress

+SOD, +CAT, +APX, +GR, +DHAR,
and +MDHAR in seedlings [349]

Zea mays L. Heat stress +CAT, +APX, +GR, +AA, +GSH, and
+Proline in leaves [350]
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Table 2. Cont.

Plant Species Stress Type Antioxidant Reported
+ (Increase)/−(Decrease) Reference

Lavandula angustifolia cv.
Hidcote, Lavandula angustifolia
cv. Munstead, and Lavandula

stricta

Drought
+Proline, +CAT, +APX, +POX, +SOD,

+MDHA, +Flavonoids, and +Phenols in
leaves

[351]

Rosmarinus officinalis L. Drought +Carotenoids, and +α-tocopherol in
leaves [352]

Cucumis sativus L. Heat stress +SOD, +CAT, and +POX in leaves [353]

Glycine max L. cv. Clark UV-B radiation –APX, –CAT, +SOD, +DHA, and
+Flavonoid in leaves [354]

5. Conclusions and Future Prospects

ROS are natural byproducts of many metabolic pathways or their respective electron
transport activities in different cellular compartments. Thanks to cellular auto adjustment
mechanisms, there is always a homeostatic balance between ROS production and removal
machinery which make ROS less harmful to plants in normal environments. However,
prolonged environmental stresses such as salinity, chilling, drought, water deficit, and UV
radiation can severely exacerbate the production level of ROS by disrupting the natural
cellular homeostasis, changing the ROS role as a signalling molecule to a damaging oxidant
capable of harming lipids, proteins and DNA. Plants have developed different enzymatic
and non-enzymatic antioxidative pathways to alleviate the adverse effects of oxidative
damages. The term Induced Systemic Tolerance (IST) has been coined in this review to
capture the concept of microbial modulation of enhanced plant tolerance against abiotic
stresses through inducing physical and chemical alterations. The beneficial microbiome
related to roots and plant tissues suppresses plant stress by a variety of processes. As
an example among them, PGPRs are capable of enhancing plant micronutrient uptake,
regulating phytohormones homeostasis, and stimulating the plant immune system against
biotic and abiotic stresses.

Insofar as the results of ROS experiments under a variety of imposed stresses are
concerned, it is not entirely clear how plants deal with stress-induced ROS homeostasis dis-
ruption and the consequent cellular degradation. There are still many unsolved questions
regarding the simultaneous antioxidative activities of enzymatic antioxidants and their
non-enzymatic counterparts. These uncertainties can be considered as hints for further
studies in ROS formation and ROS removal machinery. In light of ROS studies, the use of
state of art analytical and/or imaging techniques might provide a broader insight into un-
derstanding the complex antioxidant networks involved in plant responses to elevated ROS
levels. Further, the combined application of advanced functional genomics, proteomics
and metabolomics might be helpful in ROS network elaboration. Transgenic techniques
can also be used for producing plants with high tolerance to multiple stresses.
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